

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS6659 ARTIFICIAL INTELLIGENCE

Question Bank

III YEAR A & B / BATCH : 2016 - 20

III YEAR / VI SEM / AI QB

JEPPIAAR ENGINEERING COLLEGE

Vision of Institution

To build Jeppiaar Engineering College as an Institution of Academic Excellence in Technical education and Management education and to become a World Class University.

Mission of Institution

M1	To excel in teaching and learning, research and innovation by promoting the principles of scientific analysis and creative thinking
M2	To participate in the production, development and dissemination of knowledge and interact with national and international communities
M3	To equip students with values, ethics and life skills needed to enrich their lives and enable them to meaningfully contribute to the progress of society
M4	To prepare students for higher studies and lifelong learning , enrich them with the practical and entrepreneurial skills necessary to excel as future professionals and contribute to Nation's economy

Program Outcomes (POs)

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

2	III YEAR / VI SEM / AI QB	JEPPIAAR ENGINEERING COLLEGE

PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Vision of Department

To emerge as a globally prominent department, developing ethical computer professionals, innovators and entrepreneurs with academic excellence through quality education and research.

Mission of Department

M1	To create computer professionals with an ability to identify and formulate the engineering problems and also to provide innovative solutions through effective teaching learning process.
M2	To strengthen the core-competence in computer science and engineering and to create an ability to interact effectively with industries.
M3	To produce engineers with good professional skills, ethical values and life skills for the betterment of the society.
M4	To encourage students towards continuous and higher level learning on technological advancements and provide a platform for employment and self-employment .

Program Educational Objectives (PEOs)

PEO1	To address the real time complex engineering problems using innovative approach				
	with strong core computing skills.				
PEO2	To apply core-analytical knowledge and appropriate techniques and provide				
	solutions to real time challenges of national and global society				
PEO3	Apply ethical knowledge for professional excellence and leadership for the				
	betterment of the society.				
PEO4	Develop life-long learning skills needed for better employment and				
	entrepreneurship				

Programme Specific Outcome (PSOs)

PSO1 – An ability to understand the core concepts of computer science and engineering and to enrich problem solving skills to analyze, design and implement software and hardware based systems of varying complexity.

PSO2 - To interpret real-time problems with analytical skills and to arrive at cost effective and optimal solution using advanced tools and techniques.

PSO3 - An understanding of social awareness and professional ethics with practical proficiency in the broad area of programming concepts by lifelong learning to inculcate employment and entrepreneurship skills.

BLOOM TAXANOMY LEVELS

BTL1: Remembering., BTL2: Evaluating., BTL3: Analyzing., BTL4: Applying., BTL5: Understanding., BTL6: Creating

SYLLABUS

UNIT I INTRODUCTION TO AI AND PRODUCTION SYSTEMS

Introduction to AI-Problem formulation, Problem Definition -Production systems, Control strategies, Search strategies. Problem characteristics, Production system characteristics -Specialized production system- Problem solving methods - Problem graphs, Matching, Indexing and Heuristic functions -Hill Climbing-Depth first and Breath first, Constraints satisfaction - Related algorithms, Measure of performance and analysis of search algorithms.

UNIT II REPRESENTATION OF KNOWLEDGE

Game playing - Knowledge representation, Knowledge representation using Predicate logic, Introduction to predicate calculus, Resolution, Use of predicate calculus, Knowledge representation using other logic-Structured representation of knowledge.

UNIT III KNOWLEDGE INFERENCE

Knowledge representation -Production based system, Frame based system. Inference - Backward chaining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, Bayesian Theory-Bayesian Network-Dempster - Shafer theory.

UNIT IV PLANNING AND MACHINE LEARNING

Basic plan generation systems - Strips -Advanced plan generation systems - K strips -Strategic explanations -Why, Why not and how explanations. Learning- Machine learning, adaptive Learning.

UNIT V EXPERT SYSTEMS

Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON, Expert systems shells.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill- 2008. (Units-I,II,IV & V)

2. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007. (Unit-III).

REFERENCES:

1. Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.

2. Stuart Russel and Peter Norvig "AI – A Modern Approach", 2nd Edition, Pearson Education 2007.

3. Deepak Khemani "Artificial Intelligence", Tata Mc Graw Hill Education 2013.

4. http://nptel.ac.in

5

III YEAR / VI SEM / AI QB

9

CS6659 ARTIFICIAL INTELLIGENCE

9

9

9

Course Outcomes (COs)

C313.1	Identify problems that are amenable to solution by AI methods
C313.2	Describe the way of representation of knowledge
C313.3	Formalise a given problem in the language/framework of different AI methods.
C313.4	Design and summarize Different type of Activity Planning.
C313.5	Outline the concepts of Expert Systems and illustrate its applications

INDEX PAGE

UNIT	REFERENCE BOOK	PAGE NUMBER
Ι	Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill- 2008.	
Π	Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill	
III	Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007	
IV	Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill	
V	Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill	

III YEAR / VI SEM / AI QB JEPPIAAR ENGINEERING COLLEGE

Г

<u>UNIT I</u>

INTRODUCTION TO AI AND PRODUCTION SYSTEMS

Introduction to AI-Problem formulation, Problem Definition -Production systems, Control strategies, Search strategies. Problem characteristics, Production system characteristics -Specialized production system- Problem solving methods - Problem graphs, Matching, Indexing and Heuristic functions -Hill Climbing-Depth first and Breath first, Constraints satisfaction - Related algorithms, Measure of performance and analysis of search algorithms.

PART A			
S. No.	Question	Course Outcome	Blooms Taxanomy Level
1	What is Artificial Intelligence?		
	Artificial Intelligence is the study of how to make computers do	C313.1	BTL6
	things which at the moment people do better.		
2	What are the different types of agents?		
	A human agent has eyes, ears, and other organs for sensors and		
	hands, legs, mouth, and other body parts for actuators.		
	A robotic agent might have cameras and infrared range		
	finders for sensors and various motors for actuators.	C212 1	
	A software agent receives keystrokes, file contents, and network	C315.1	BILO
	packets as sensory inputs and acts on the environment by displaying		
	on the screen, writing files, and sending network packets.		
	Generic agent – A general structure of an agent who		
	interacts with the environment.		
3	Define rational agent?		
	For each possible percept sequence, a rational agent should select		
	an action that is expected to maximize its performance measure,	C313.1	
	given the evidence provided by the percept sequence and whatever		BILO
	built-in knowledge the agent has. A rational agent should be		
	autonomous		
4	List down the characteristics of intelligent agent. [APRIL/MAY		
	2017]		
	Internal characteristics are		
	- Learning/reasoning: an agent has the ability to learn from		
	previous experience and to successively adapt its own		
	behavior to the environment.		
	– reactivity: an agent must be capable of reacting appropriately		
	to influences or information from its environment.	C313.1	
	– autonomy: an agent must have both control over its actions		DILO
	and internal states. The degree of the agent's autonomy can be		
	specified. There may need intervention from the user only for		
	important decisions.		
	- Goal-oriented: an agent has well-defined goals and		
	gradually influence its environment and so achieve its own		
	goals.		
	External characteristics are		

7

III YEAR / VI SEM / AI QB

	 communication: an agent often requires an interaction with its environment to fulfill its tasks, such as human, other agents, and arbitrary information sources. cooperation: cooperation of several agents permits faster and better solutions for complex tasks that exceed the capabilities of a single agent. mobility: an agent may navigate within electronic communication networks. Character: like human, an agent may demonstrate an external behavior with many human characters as possible. 		
5	What is PEAS? PEAS (Performance, Environment, Actuators, Sensors)	C313.1	BTL6
6	 What are the tasks of Artificial Intelligence? ➢ Mundane Task ➢ Formal Task ➢ Expert Task 	C313.1	BTL6
7	 What things we should do to built a system? Define the problem precisely Analyze the problem Isolate and represent the task knowledge that is necessary to solve the problem Choose the best problem solving technique 	C313.1	BTL6
8	 What production system consists of? A set of rules, each consists of a left side that determines the applicability of the rule and a right side that describes the operation to be performed if the rule is applied. One or more knowledge database that contains whatever information is appropriate for particular task. A control strategy that specifies the order in which the rules will be compared to the database and a way of resolving the conflict that arises when several rules match at once. 	C313.1	BTL6
9	 What are the advantages of Breadth First Search? [NOV/DEC 2017, APR/MAY 2018] BFS will not get trapped exploring a blind alley. This contrast to the DFS which may follow a single unfruitful path for a very long time, perhaps forever before the path actually terminates in a state that has no successors. If there is a solution, then BFS is guaranteed to find it. Furthermore, if there are multiple solutions then a minimal solution will be found. 	C313.1	BTL6
10	 What are the advantages of Depth First Search? DFS requires less memory since only the nodes on the current path are stored. In contrast to BFS where all the tree that has so fab been generated must be stored. By chance, DFS may find a solution without examining much of the state space at all, where in BFS the entire tree must be examined to level n before any nodes on level n+1 can be examined. 	C313.1	BTL6

0	0
6	2

11	What is Heuristic Search?	69494	
	A heuristic search is a technique that improves the efficiency of a	C313.1	BTL6
	search process, possibly by sacrificing claims of completeness.		
12	What is Heuristic Function?	C212.1	
	A function that maps from problem state description to	C313.1	BTL6
	measures of desirability, usually represented as numbers.		
13	Write Generate and Test algorithm. [MAY / JUNE 2016]		
	• Generate a possible solution. For some problems this means		
	generating a particular point in the problem space. For others,		
	it means generating a path from a start state.	C313.1	DTI 6
	• Test to see if this is actually a solution by comparing the		DILO
	chosen point or the end point of the chosen path to the set of		
	acceptable goal states.		
	• If a solution has been found, quit otherwise return step1		
14	What is the difference between Simple Hill Generate and Test		
	algorithm Climbing [MAY / JUNE 2016]	C212 1	
	The key difference between Simple Hill Climbing and Generate and	C315.1	BTL6
	Test algorithm is the use of an evaluation function as a way to inject		
	task-specific knowledge into the control process.		
15	What is Local Maxima?		
	local maxima is a state that is better than all its neighbor but is not		
	better than some other states father away. At local maxima all the	C313.1	BTL6
	moves appear to make things worse. Local maxima are particularly		DILO
	frustrating because they often occur almost within sight of a solution.		
	In this case they are called foothills.		
16	What is a plateau?		
	It is a flat area of the search space in which a whole set of	C313.1	
	neighboring states have the same value. On a plateau it is not possible	001001	BTL6
	to determine the best direction in which to move by making local		
17	comparisons.		
1/	What is a Ridge? <u> MAY/JUNE 2016</u>]	C313 1	
	A ridge is a special kind of local maximum. It is an area of the search	0313.1	BTL6
	space that is higher than surrounding area and that itself has a slope.		
18	What is Simulated Annealing?		
	It is a variation of hill climbing in which, at the beginning of the		
	process some downhill moves may be made. The idea is to do enough	C313.1	BTI 6
	exploration of the whole space early on so that the final solution is		DILO
	relatively insensitive to the starting state. We use the term objective		
	function in place of the term heuristic function.		
19	What do you mean by Graceful Decay of Admissibility?		
	If h' rarely overestimates h by more than (delta), then the A*	C313.1	BTL6
	algorithm will rarely find a solution whose cost is more than (delta)		DILO
	greater than the cost of the optimal solution.		
20	What do you mean by Constraint Satisfaction?		
	It is a search procedure that operates in the space of constraint sets.	C313.1	
	The initial state contains the constraints that are originally given in		BTL6
	the problem description and the goal state is constrained "enough"		
	where "enough" must be defined in the problem.	<u> </u>	

21	What is meant by Means-Ends Analysis? A collection of search strategies that can either reason a forward or backward, but for a given problem, one direction or the other must be chosen. However, a mixture of two directions is appropriate. Such a mixed strategy would make it possible to solve the major parts of the problem first and then go back and solve the small problems. This is known as means-ends analysis.	C313.1	BTL6
22	Define Operator subgoaling . The thing of backward chaining in which operators are selected and then the sub goals are set up to establish the preconditions of the operators is called operator subgoaling.	C313.1	BTL6
23	Differentiate simple hill Climbing and Steepest Hill climbing. A useful variation on simple hill climbing considers all the moves from the current state and selects the best one as the next state.	C313.1	BTL2
24	 Differentiate Simple hill climbing and Simulated annealing. Annealing schedule must be maintained. Moves to worst case may be accepted. It is a good Idea to maintain in addition to the current state the best state found so far. 	C313.1	BTL2
25	 Differentiate uniformed and informed search? [APRIL/MAY 2017] Uninformed or blind search strategies uses only the information available in the problem definition Informed or heuristic search strategies uses additional information 	C313.1	BTL2
26	What are the ways to formulate the problem? [APR/MAY 2018] 1. A set of states S 2. An initial state si \in S 3. A set of actions A s Actions(s) = the set of actions that can be executed in s, \forall — that are applicable in s. sr \rightarrow Actions(s) Result(s, a) \in a \forall s \forall 4. Transition Model: —sr is called a successor of s —{si Successors(si \cup })* = state space 5. Goal test Goal(s) — Can be implicit, e.g. checkmate(x) — s is a goal state if Goal(s) is true 6. Path cost (additive) —e.g. sum of distances, number of actions executed, —c(x,a,y) is the step cost, assumed \geq 0 – (where action a goes from state x to state y)	C313.1	BTL6
27	What is frame problem? [MAY/JUNE 2016] The <i>frame problem</i> in AI is concerned with the question of what piece of knowledge is relevant to the situation.	C313.1	BTL6
28	What is Poblem graph ? [APR/MAY 2018] The AND-OR GRAPH (or tree) is useful for representing the solution of problems that can solved by decomposing them into a set of smaller problems, all of which must then be solved. This decomposition, or reduction, generates arcs that we call AND arcs.	C313.1	BTL6

	One AND arc may point to any number of successor nodes, all of which must be solved in order for the arc to point to a solution. Just as in an OR graph, several arcs may emerge from a single node, indicating a variety of ways in which the original problem might be solved. This is why the structure is called not simply an AND-graph but rather an AND-OR graph (which also happens to be an AND-OR tree)		
29	How much knowledge would be required by a perfect program for the problem of playing chess? Assume the unlimited computing power is available. [MAY/JUNE 2016] The rules for determining legal moves and some simple control mechanism that implements an appropriate search procedure. Additional knowledge about such things as good strategy and tactics could of course help considerably to constrain the search and speed up the execution of the program.	C313.1	BTL6
30	Give the structure of an agent in an environment.(MAY/JUNE 2014) Agent interacts with environment through sensors and actuators. A general structure of an agent interacts with the environment.	C313.1	BTL6
31	List the criteria to measure the performance of search strategies. (MAY/JUNE 2014) Completeness Time complexity Space complexity Optimality	C313.1	BTL6
32	List some of the uninformed search techniques. [APRIL/MAY 2017] Uninformed Search Techniques: —Depth-first Search —Breadth-first Search —Iterative Deepening	C313.1	BTL6

33	Differentiate forward an	d backward reasoning. (F	forward and		
	backward chaining) [NO	V/DEC 2017]			
	E-mond chaining	Destand sheining			
	Starts with the initial facts.	Starts with some hypothesis or goal.			
	Asks many questions.	Asks few questions.			
	Slow, because it tests all the rules.	Fast, because it tests fewer rules.			
	Provides a huge amount of information from just a small	Provides a small amount of information from just a small			
	amount of data.	amount of data.			
	Attempts to infer everything possible from the available	Searches only that part of the knowledge base that is relevant to			
	information.	the current problem.			
	Uses input; searches rules for	Goal-driven Begins with a hypothesis; seeks		C313 1	
	answer	information until the hypothesis is		001011	BTL2
	Top-down reasoning	Bottom-up reasoning			
	Works forward to find conclusions from facts	Works backward to find facts that support the hypothesis			
	Tends to be breadth-first	Tends to be depth-first			
	Suitable for problems that start from data collection e g	Suitable for problems that start from a hypothesis c g diagnosis			
	planning, monitoring, control	- nyponions, eigi anglionio			
	Non-focused because it infers all conclusions, may answer	Focused; questions all focused to prove the goal and search as only the			
	unrelated questions	part of KB that is related to the			
	Explanation not facilitated	Explanation facilitated			
	All data is available	Data must be acquired interactively			
	A small number of initial states	A small number of initial goals and a			
	but a high number of conclusions	large number of rules match the facts			
34	What are the comphilit	easy to totil a goal			
54	What are the capabilities, computer should posses to pass				
	Turing test?			C313.1	BTI 6
	Natural Language Proc	essing• Knowledge rep	presentation		DILO
	Automated reasoning• N	Iachine Learning•			
35	What is autonomy?				
	A rational agent should	be autonomous. It should l	learn what it	C313.1	
	can do to compensate	e for partial (or) in c	orrect prior		BILO
	knowledge		oneer phon		
26	Kilowiedge.	1			
30	What is important for t	ask environment?		C313 1	
	$PEAS \rightarrow P$ - Performation	ance measure E - Envir	ronment A-	0313.1	BTL6
	Actuators S – Sensors				
37	Define problem solving	agent.			
	Problem solving agent is	s one kind of goal based a	gent where	C212 1	
	the agent Should select	s one kind of goar based a	a of options	C313.1	BTL6
	the agent Should select	one action from sequenc	e of actions		
	which lead to desirable s	tates.			
38	List the steps involved i	in simple problem solving	g technique.	6212.1	
	i. Goal formulation ii.	Problem formulation iii.	Search iv.	C313.1	BTL6
	Solution v. Execution ph	ase			-
30	What are the componer	use			
57	These are four component	ts of a problem.		C212.1	
	There are four componen	its. They are 1. Initial state	II. Successor	C313.1	BTL6
	function iii. Goal test iv	. Path cost v. Operator vi	. state space		-
	vii. path				
40	Give example for real w	vorld end tov problems.			
	Real world problem ex	amples: i Airline travel	problem ii	C313.1	BTL6
	Touring problem ::: T	rovoling colormon mobile			DILU
	1 rouring problem. m. T	avening salesinali probler	II. IV. VLOI		

 III YEAR / VI SEM / AI QB
 JEPPIAAR ENGINEERING COLLEGE

	Layout problem v. Robot navigation vi. Automatic Assembly vii. Internet searching Toy problem		
	Puzzle problem		
41	Define fringe. The collection of nodes that have been generated but not yet expanded, this collection is called fringe or frontier	C313.1	BTL6
42	Define Path Cost. A function that assigns a numeric cost to each path, which is the sum of the cost of the each action along the path.	C313.1	BTL6
43	Define Path. A path in the state space is a sequence of state connected by sequence of actions.	C313.1	BTL6
44	What is environment program? It defines the relationship between agents and environments.	C313.1	BTL6
45	List the properties of environments. o Fully Observable Vs Partially Observable o Deterministic Vs Stochastic o Episodic Vs Sequential o Static Vs Dynamic o Discrete Vs Continuous o Single Agent Vs Multi agent a. Competitive Multi agent b.Co – operative Multi agent	C313.1	BTL6
46	Define Omniscience. An Omniscience agent knows the actual outcome of its actions and can act accordingly	C313.1	BTL6
47	How agent should act? Agent should act as a rational agent. Rational agent is one that does the right thing, (i.e.) right actions will cause the agent to be most successful in the environment.	C313.1	BTL6
48	How to measure the performance of an agent? Performance measure of an agent is got by analyzing two tasks. They are How and When actions.	C313.1	BTL6
49	Define Percept Sequence . An agent's choice of action at any given instant can depend on the entire percept sequence observed to elate.	C313.1	BTL6
50	 What are the factors that a rational agent should depend on at any given time? 1. The performance measure that defines degree of success. 2. Ever thing that the agent has perceived so far. We will call this complete perceptual history the percept sequence. 3. When the agent knows about the environment. 4. The action that the agent can perform. 	C313.1	BTL6

	PART – B		
1	Explain briefly the various problem characteristics? [APR/MAY 2018] Refer Page 36 in Kevin Night	C313.1	BTL5
2	What are the problems encountered during hill climbing and what are the ways available to deal with these problems? [MAY 2016] Refer Page 52 in Kevin Night	C313.1	BTL6
3	Write A* algorithm and discuss briefly the various observations about algorithm [NOV/DEC 2018] Refer Page 59 in Kevin Night	C313.1	BTL6
4	Write in detail about the constraint satisfaction procedure with map coloring example? [NOV/ DEC 2018] Refer Page 68 in Kevin Night	C313.1	BTL6
5	Explain how the steepest accent hill climbing works and Heuristic Functions? [MAY 2016][NOV/DEC 2017] Refer Page 53 in Kevin Night	C313.1	BTL5
6	Write in detail about Generate and Test and Simple Hill Climbing. [MAY 2016] [NOV/DEC 2017] Refer Page 52 in Kevin Night	C313.1	BTL6
7	Discuss the memory bounded heuristic search. [NOV/DEC 2018] Refer Page 32 in Kevin Night	C313.1	BTL6
8	Solve the Water Jug problem: you are given 2 jugs, a 4-gallon one and 3-gallon one. Neither has any measuring maker on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of water into 4-gallon jug? Explicit assumptions: A jug can be filled from the pump, water can be poured out of a jug onto the ground, water can be poured from one jug to another and that there are no other measuring devices available. [MAY 2016] Refer Page 27 in Kevin Night	C313.1	BTL3
9	Explain the various problem solving and problem reduction methods with algorithm and example? Refer Page 64 in Kevin Night	C313.1	BTL5
10	Discuss in detail the uninformed search strategies and compare the analysis of various searches. [NOV/DEC 2018] Refer Page 101 in Stuart Russell	C313.1	BTL6
11	Explain informed search strategies with an example [APRIL/MAY 2017] Refer Page 122 in Stuart Russell	C313.1	BTL5
12	Explain the process of simulated annealing with example. [APRIL/MAY 2017] [NOV/DEC 2017] Refer Page 55 in Kevin Night	C313.1	BTL5
13	Discuss constraint satisfaction problem with an algorithm for solving a Cryptarithmetic problem. [NOV/DEC 2017, APR/MAY 2018] Refer Page 68, 70 in Kevin Night	C313.1	BTL6
14	Discuss AO* algorithm in detail? [NOV/ DEC 2018]	C313.1	BTL6
15	Explain problem reduction methods with algorithm and example? Refer Page 64 in Kevin Night	C313.1	BTL5

UNIT II

REPRESENTATION OF KNOWLEDGE

Game playing - Knowledge representation, Knowledge representation using Predicate logic, Introduction to predicate calculus, Resolution, Use of predicate calculus, Knowledge representation using other logic-Structured representation of knowledge.

	PART A			
S. No.	Question	Course Outcome	Blooms Taxanomy Level	
1	 What is game playing? The term Game means a sort of conflict in which <i>n</i> individuals or groups (known as players) participate. Game theory denotes games of strategy. Game theory allows decision-makers (players) to cope with other decision-makers (players) who have different purposes in mind. In other words, players determine their own strategies in terms of the strategies and goals of their opponent. 	C313.2	BTL6	
2	 What is Mini –Max Strategy? generate the whole game tree , calculate the value of each terminal state based on the utility function - calculate the utilities of the higher-level nodes starting from the leaf nodes up to the root - MAX selects the value with the highest node - MAX assumes that MIN in its move will select the node that minimizes the value from MAX's perspective MAX tries to move to a state with the maximum value, MIN to one with the minimum assumes that both players play optimally selects the best successor from a given state , invokes MINIMAX-VALUE for each successor state 	C313.2	BTL6	
3	 Define pruning? [<u>MAY/JUNE 2016</u>] Alpha–beta pruning is a search algorithm that seeks to decrease the number of nodes that are evaluated by the minimax algorithm in its search tree. It is an adversarial search algorithm used commonly for machine playing of two-player games (Tic-tac-toe, Chess, Go, etc.). It stops completely evaluating a move when at least one possibility has been found that proves the move to be worse than a previously examined move. 	C313.2	BTL6	
4	How Knowledge is represented? [<u>MAY/ JUNE 2016</u>] A variety of ways of knowledge (facts) have been exploited in AI programs. Facts: truths in some relevant world. These are things we want to represent.	C313.2	BTL6	
5	What is propositional logic? It is a way of representing knowledge. In logic and mathematics, a propositional calculus or logic is a formal system in which formulae representing <i>propositions</i> can be formed by Combining atomic propositions using <i>logical connectives</i> . Sentences considered in	C313.2	BTL6	

III YEAR / VI SEM / AI QB

JEPPIAAR ENGINEERING COLLEGE

	propositional logic are not arbitrary sentences but are the ones that are either true or false, but not both. This kind of sentences are called propositions. Example Some facts in propositional logic: It is raning RAINING It is sunny - SUNNY		
	It is windy - WINDY If it is raining ,then it is not sunny - RAINING -> ¬ SUNNY		
6	What are the elements of propositional logic?Simple sentences which are true or false are basic propositions.Larger and more complex sentences are constructed from basicpropositions by combining them with connectives. Thus propositionsand connectives are the basic elements of propositional logic. Thoughthere are many connectives, we are going to use the following five basicconnectiveshere:NOT,AND,OR, IF_THEN(orIMPLY), IF_AND_ONLY_IF.They are also denoted by the symbols: \neg , \land , \lor , \leftrightarrow , respectively.	C313.2	BTL6
7	Define Generalized Modus ponens. [NOV/DEC 2018]In Boolean logic, with the rule ``IF X is A THEN Y is B", theproposition X is A has to be observed to consider the proposition Y is B.In fuzzy logic, a proposition ``X is A' ", close to the premise ``X is A"can be observed to provide a conclusion ``Y is B' " close to theconclusion ``Y is B ".A simple fuzzy inference can be represented as:Rule: IF X is A THEN Y is BFact: X is A'Conclusion :Y is B'	C313.2	BTL6
8	 Define Logic Logic is one which consist of i. A formal system for describing states of affairs, consisting of a) Syntax b)Semantics. ii. Proof Theory – a set of rules for deducing the entailment of a set sentences. 	C313.2	BTL6
9	What is entailment? Propositions tell about the notion of truth and it can be applied to logical reasoning. We can have logical entailment between sentences. This is known as entailment where a sentence follows logically from another sentence. In mathematical notation we write : $\alpha \models \beta$	C313.2	BTL6
10	Define First order Logic? First-order logic (like natural language) assumes the world contains Objects: people, houses, numbers, colors, baseball games, wars, Relations: red, round, prime, brother of, bigger than, part of, comes between, Functions: father of, best friend, one more than, plus,	C313.2	BTL6

11	Specify the syntax of First-order logic in BNF form		
	$\begin{array}{rcl} Sentence & \rightarrow & AtomicSentence \\ & & (Sentence Connective Sentence) \\ & & Quantifier Variable, \dots Sentence \\ & & \neg Sentence \\ \end{array}$ $\begin{array}{rcl} AtomicSentence & \rightarrow & Predicate(Term, \dots) & Term = Term \\ \hline & Term & \rightarrow & Function(Term, \dots) \\ & & & (Constant) \\ & & & Variable \\ \end{array}$ $\begin{array}{rcl} Connective & \rightarrow & \Rightarrow \land V \Leftrightarrow \\ Quantifier & \rightarrow & \forall 3 \\ Constant & \rightarrow & A X_1 John \dots \\ Variable & \rightarrow & a x s \dots \\ Variable & \rightarrow & Before HasColor Raining \dots \\ Function & \rightarrow & Mother LeftLeg \dots \end{array}$	C313.2	BTL6
12	 What are quantifiers? There is need to express properties of entire collections of objects, instead of enumerating the objects by name. Quantifiers let us do this. FOL contains two standard quantifiers called a) Universal (∀) and b) Existential (∃) 	C313.2	BTL6
13	Explain the connection between ∀ and ∃ "Everyone likes icecream" is equivalent", "there is no one who does not like ice cream" This can be expressed as : ∀x Likes(x,IceCream) is equivalent to ¬ ∃¬Likes(x,IceCream)	C313.2	BTL5
14	 What is universal instantiation? ♦ Every instantiation of a universally quantified sentence is entailed by it:	C313.2	BTL6
15	What are the levels in Structuring of knowledge? (i) The knowledge level at which facts are described (ii)The symbol level at which representation of objects at knowledge level are defined in terms of symbols.	C313.2	BTL6
16	 What are the four properties for knowledge representation ? . Representational adequacy . Inferential adequacy . Inferential efficiency . Acquisitional efficiency 	C313.2	BTL6
17	What is resolution ? Resolution produces proof by refutation. It attempts to show that the	C313.2	BTL6
17	III YEAR / VI SEM / AI QB JEPPIAAR ENGIN	EERING CO	DLLEGE

	negation of the statements produces contradiction with the known		
18	Statements. What is predicate calculus?		
10	Predicate Calculus is a generalization of propositional calculus.Hence besides terms, predicates, and quantifiers, predicate calculus contains propositional variables, constants and connectives as part of the language.	C313.2	BTL6
19	What is frame problem? [MAY/JUNE 2016] The whole problem of representing the facts, the change as well as those that do not is known as frame problem	C313.2	BTL6
20	What are semantic nets? A semantic net are informations represented as a set of nodes connected to each other by a set of labeled arcs, which represent relationship among the nodes.	C313.2	BTL6
21	Define Declarative and procedural knowledge. [NOV/DEC 2018] Declarative knowledge involves knowing THAT something is the case - that J is the tenth letter of the alphabet, that Paris is the capital of France. Declarative knowledge is conscious; it can often be verbalized. Metalinguistic knowledge, or knowledge about a linguistic form, is declarative knowledge involves knowing HOW to do something - ride a bike, for example. We may not be able to explain how we do it. Procedural knowledge involves implicit learning, which a learner may not be aware of, and may involve being able to use a particular form to understand or produce language without necessarily being able to explain it.	C313.2	BTL6
22	What are frames? A frame is a collection of attributes and associated values that describe some entity in the world.	C313.2	BTL6
23	What is structured knowledge representation? [APR/MAY 2018, NOV/DEC 2018] Structure knowledge representations were explored as a general representation for symbolic representation of declarative knowledge. One of the results was a theory for schema systems.	C313.2	BTL6
24	 Difference between Logic programming and PROLOG. In logic, variables are explicitly quantified. In PROLOG, quantification is provided implicitly by the way the variables are interpreted In logic, there are explicit symbols for and, or. In PROLOG, there is an explicit symbol for and, but there is none for or In logic, implications of the form "p implies q" are written as p. q. In PROLOG, the same implication is written "backward" as q:-p. 	C313.2	BTL2
25	What is property inheritance? Property inheritance, in which, elements of specific classes inherit attributes and values from more general classes in which they are included.	C313.2	BTL6

26	Difference between predicate and propos	sitional logic.		
	[AI KIL/MAK1 2017, AI K/MA1 2016, 1	NO V/DEC 2010]		
	PROPOSITIONAL LOGIC PH	REDICATE / FIRST RDER LOGIC		
	Symbols are logical constants Sy True / False pro	ymbols are constants, edicates and function embols	C313.2	BTL2
	Sentences are formed from 5 Se logical connectives (and , or, pro implies, equivalent, not) pa log	entences are formed from edicate symbol followed by arenthesized list of terms and gical connectives		
27	Define Interpretation Interpretation specifies exactly w functions are referred to by the constant pre	which objects, relations and edicate, and function symbols.	C313.2	BTL6
28	What do you mean by local maxim techniques? A local maxima is a peak that neighboring state but lower than the global	ha with respect to search is higher than each of its l maximum	C313.2	BTL6
29	Define an inference procedure An inference procedure reports we entiled by knowledge base provided a knowledge base provided a knowledge base provided a knowledge base procedure 'i' can be described derive. If i can derive from knowledge base base base base base base base bas	whether or not a sentence is owledge base and a sentence. ed by the sentences that it can base, we can write. Alpha is B	C313.2	BTL6
30	For the given sentence "All Pompians v formed formula in predicate logic. [MAY] ∀x Pompian(x) => Roman(x)	were Romans" write a well <u>Y / JUNE 2016]</u>	C313.2	BTL4
31	Define FOL. FOL is a first order logic. It is a representa which is powerful than propositional logic expressive, declarative, compositional langu	ational language of knowledge c (i.e.) Boolean Logic. It is an uage	C313.2	BTL6
32	Define an inference procedure An inference procedure reports whether on knowledge base provided a knowledge base procedure 'i' can be described by the senter derive from knowledge base, we can write KB or i derives alpha from KB.	r not a sentence is entiled by e and a sentence .An inference nces that it can derive. If i can e. KBAlpha is derived from	C313.2	BTL6
33	What are the three levels in describin Logical level• Implementation leve epistemological level•	ng knowledge based agent? el• Knowledge level or	C313.2	BTL6
34	Define Quantifier and it's types . Quantifiers are used to express properties rather than representing the objects by Quantifier ii. Existential Quantifier iii. Nest	of entire collection of objects name. Types: i. Universal ted Quantifier.	C313.2	BTL6
35	Define kinship domain. The domain of family relationship is calconsists of objects unary predicate, binary predicate,	alled kinship domain which predicate, function, relation.	C313.2	BTL6

III YEAR / VI SEM / AI QB

JEPPIAAR ENGINEERING COLLEGE

36	Define Unification.	C212.2	
	Lifted Inference rule require finding substitutions that make different	C313.2	BTL6
	logical expressions look identical (same). This is called Unification.		
37	Explain the function of Rete Algorithm?	C212 2	
	This algorithm preprocess the set of rules in KB to constant a sort of data	C313.2	BTL6
	flow network in which each node is a literals from rule a premise.		
38	Define backward chaining.	C212 2	
	This algorithm works backward from the goal, chaining through rules to	C313.2	BTL6
	find known facts that support the proof.		
39	Define Prolog program.	C313 2	
	It is a set of definite clauses written in a notation somewhat different	C313.2	BTL6
	from standard FOL		
40	What is important for agent?	C313 2	
	Time (i.e.) intervals is important for agent to take an action. There are 2	C313.2	BTL6
	kinds; i. Moments ii. Extended Intervals		
41	What are the basic Components of propositional logic?	C313.2	BTI 6
	i. Logical Constants (True, False)		DILO
42	What are the basic Components of propositional logic?	C313.2	BTI 6
	i. Logical Constants (True, False)		DILO
43	Define AND –Elimination rule in propositional logic	C313 2	
	AND elimination rule states that from a given conjunction it is possible	C313.2	BTL6
	to inference any of the conjuncts.		
44	Define a Proof		
	A sequence of application of inference rules is called a proof. Finding	C313 2	
	proof is exactly finding solution to search problems. If the successor	0313.2	BTL6
	function is defined to generate all possible applications of inference rules		
	then the search algorithms can be applied to find proofs.		
45	What are the two we use to query and answer in knowledge base?	C313.2	BTL6
1.5	ASK and TELL.		
46	What are the 3 types of symbol which is used to indicate objects,	~~~	
	relations and functions?	C313.2	BTL6
	1) Constant symbols for objects 11) Predicate symbols for relations 111)		
47	Function symbols for functions		
4/	Define Logic		
	Logic is one which consist of 1. A formal system for describing states of	C313.2	BTL6
	affairs, consisting of a) Syntax b)Semantics. II. Proof Theory – a set of		
40	rules for deducing the entailment of a set sentences.		
48	Define a knowledge base: Vnowledge base is the control common of imoviledge base agent and it	C313.2	DTI 6
	Knowledge base is the central component of knowledge base agent and it		BILO
40	is described as a set of representations of facts about the world.		
49	with an example, snow objects, properties functions and relations.		
	EXAMPLE "EVIL KING JOHN BROTHER OF RICHARD RULED ENCLAND IN 1200"	C313.2	
	Chiests : John Dishard England 1200 Delation : Bulad Droporties :		DILO
	Superior Sound Figure Construction Structure Properties :		
50	Define a Sontance?		
50	Define a Sentence:	0212.0	
	Each individual representation of facts is called a sentence. The	U313.2	BTL6
	semences are expressed in a language called as knowledge representation		
	language.		

	<u>PART – B</u>		
1	List the Issues in knowledge representation	C313.2	BTL6
	Refer Page 86 in Kevin Night	~~~~~	
2	State Representation of facts in predicate logic with an example.	C313.2	BTL6
3	How will you represent facts in propositional logic with an avample?	C212.2	
5	[NOV/DEC 2018, APR/MAY 2018] Refer Page 113 in Kevin Night	C313.2	BTL6
4	Explain Resolution in brief with an example. [MAY/JUNE 2016]	C313.2	
	Refer Page 108 in Kevin Night		BILS
5	Write algorithm for propositional resolution and Unification	C313.2	ρτι 6
	algorithm. [MAY/JUNE 2016] Refer Page 113 in Kevin Night		BILO
6	Convert the following well formed formula into clause from with		
	sequence of steps: [MAY/JUNE 2016]	C313.2	BTI /
	$\forall x: [Roman(x) \land Know (x, Marcus)] \rightarrow [hate(x, Caesar) v (\forall y: \exists z:$		DIL4
	hate(y,z) \rightarrow thinkcrazy(x,y))] Refer Page 100 in Kevin Night		
7	Explain the Minimax algorithm in detail. [APRIL/MAY 2017,	C313 2	
	APR/MAY 2018]	0313.2	BTL5
	Refer Page 165 in Stuart Russell		
8	Explain Alpha-Beta Pruning [APRIL/MAY 2017]	C313.2	BTL5
	Refer Page 167 in Stuart Russell		2120
9	Consider the following sentences: [NOV/DEC 2017, NOV/DEC 2018]		
	• John likes all kinds of food * Applies are food * Chicken is		
	 Bill acts meanuts and is still alive 	C212.2	
	 Diff eats peatruis and is still alive Supports overwithing Bill costs 	C313.2	BTL4
	(i) Translate these sentences into formulas in predicate logic		
	(i) Convert the formulas of part a into clause form		
	Refer Notes		
10	Trace the operation of the unification algorithm on each of the following		
	pairs of literals:	G212.2	
	• f(Marcus) and f(Caesar) ii. f(x) and f(g(y))	C313.2	BTL4
	• f(Marcus,g(x,y)) and f(x,g(Caesar,Marcus)) Refer Page 100 in		
	Kevin Night		
11	Explain Alpha-Beta algorithm [APRIL/MAY 2017]	C313.2	BTL5
	Refer Page 167 in Stuart Russell		DIES
12	Write algorithm for Unification algorithm. [MAY/JUNE 2016]	C313.2	BTL6
	Refer Page 113 in Kevin Night		2120
13	State Representation of facts in propositional logic with an example.	C313.2	BTL6
1.4	Refer Page 99 in Kevin Night	6212.2	
14	Perform Resolution for "India Wins the match" example. <u>MAY/JUNE</u>	C313.2	BTL5
15	<u>2010</u> Refer Page 108 in Kevin Night		
15	used to compute the best moves for the first player. Assume a static		
	evaluation function that returns values ranging from -10 to 10 with 10		
	indicating a win for the first player and -10 a win for the second player	C313 2	
	Assume the following game tree in which the static scores are from the	~~1012	BTL5
	first player's point of view. Suppose the first player is the maximizing		
	player and needs to take the next move. What move should be chosen at		
	this point? Can the search be optimized? [APR/ MAY 2018]		
21	III YEAR / VI SEM / AI QB JEPPIAAR ENGIN	EERING CO	DLLEGE

	<u>UNIT III</u>		
	KNOWLEDGE INFERENCE		
Kno cha Bay	owledge representation -Production based system, Frame based system. Infer ining, Forward chaining, Rule value approach, Fuzzy reasoning - Certainty factors, vesian Network-Dempster - Shafer theory.	ence - I Bayesiar	Backward Theory-
	PART A		
S. N o.	Question	Cours e Outco me	Blooms Taxan omy Level
1	 What is a Production System? Knowledge representation formalism consists of collections of condition- action rules (Production Rules or Operators), a database which is modified in accordance with the rules, and a Production System Interpreter which controls the operation of the rules i.eThe 'control mechanism' of a Production System, determining the order in which Production Rules are fired.A system that uses this form of knowledge representation is called a productionsystem.A production system consists of rules and factors. 	C313. 3	BTL6
2	 List out the advantages of production systems Production systems provide an excellent tool for structuring AI programs. Production Systems are highly modular because the individual rules can be added, removed or modified independently. The production rules are expressed in a natural form, so the statements contained in the knowledge base should the recording of an expert thinking out loud. 	C313. 3	BTL6
3	What is Frame based System? [MAY/JUNE 2016]A frame is an artificial intelligence data structure used to divide knowledgeinto substructures by representing "stereotyped situations." Frames are theprimary data structure used in artificial intelligence Frame languages.Frames are also an extensive part of knowledge representation andreasoning schemes. Frames were originally derived from semanticnetworks and are therefore part of structure based knowledgerepresentations.	C313. 3	BTL6
4	What type of information frame contains? Facts or Data , Values (called facets) Procedures (also called procedural attachments) a. IF-NEEDED : deferred evaluation b. IF-ADDED : updates linked information Default Values c. For Data d. For Procedures Other Frames or Sub frames	C313. 3	BTL6
5	What is forward chaining? [APRIL/MAY 2017, APR/MAY 2018] Using a deduction to reach a conclusion from a set of antecedents is called forward chaining. In other words, the system starts from a set of facts, and a	C313. 3	BTL6

 III YEAR / VI SEM / AI QB
 JEPPIAAR ENGINEERING COLLEGE

	set of rules, and tries to find the way of using these rules and facts to deduce a conclusion or come up with a suitable course of action. This is known as		
	data driven reasoning.		
6	What is backward chaining? ? [APRIL/MAY 2017, APR/MAY 2018]		
	In backward chaining , we start from a conclusion , which is the hypothesis we	C313.	
	wish to prove, and we aim to show how that conclusion can be reached from the	3	BTL6
	rules and facts in the data base. The conclusion we are aiming to prove is called a		
	goal and the reasoning in this way is known as goal-driven .		
7	Define Prior probability?	0212	
	p(a) for the Unconditional or Prior Probability Is That the Proposition A is	C313.	
	True. It is important to remember that $p(a)$ can only be used when there is	3	BIL6
	no other information		
	Give the Baye's rule equation? [APRIL/MAY 2017, APR /MAY 2018]		
8	$W.K.T P(A^B) = P(A/B) P(B)$ 1	C313.	
	$P(A^B) = P(B/A) P(A)2$	3	BTL6
	DIVIDINGBYP(A);WEGET	Ũ	
	P(B/A) = P(A/B) P(B) $P(A)$		
9	What is the basic task of a probabilistic inference?	0212	
	The basic task is to reason in terms of prior probabilities of conjunctions,	C313.	
	but for the most part, we will use conditional probabilities as a vehicle for	3	BIL6
	probabilistic inference.		
10	Define certainty factor?		
	A certainty factor (cf), a number to measure the expert's belief. The	C212	
	maximum value of the certainty factor is, say, $+1.0$ (definitely true) and	C313.	
	the minimum -1.0 (definitely false). For example, if the expert states that	3	BIL6
	some evidence is almost certainly true, a cf value of 0.8 would be		
	assigned to this evidence.		
11	What is fuzzy logic?		
	• The term fuzzy logic is used in two senses:		
	– Narrow sense: Fuzzy logic is a branch of fuzzy set theory, which		
	deals (as logical systems do) with the representation and	C313.	
	inference from knowledge. Fuzzy logic, unlike other logical	3	BTL6
	systems, deals with imprecise or uncertain knowledge. In this	_	
	narrow and perhaps correct sense, fuzzy logic is just one of the		
	branches of fuzzy set theory.		
	 Broad Sense: fuzzy logic synonymously with fuzzy set theory 		
12	Write the semantics of Bayesian network?	C313	
	Semantics of Bayesian Networks	C315.	DTI 6
	1. Representing the full joint distribution	3	DILO
	2. Conditional independence relations in Bayesian networks		
13	Define Dempster-Shafter Theory?		
	It considers sets of propositions and assigns to each of them an interval	C313	
	[Belief, Plausibility]	2	BTI 6
	in which the degree of belief must lie. Belief (Bel) measures the strength of the	5	DILU
	evidence in favor of set of propositions. It ranges from 0 (indicating no		
	evidence) to 1 (denoting certainty)		
14	What is meant by belief network?	C313.	
	A belief network is a graph in which the following holds	3	BTL6
	A set – of random variables		

	A set of directive links or arrows connects pairs of nodes.		
	The conditional probability table for each node		
	The graph has – no directed cycles.		
15	What is a Bayesian network? [MAY/JUNE 2016]	C313.	
	Bayesian network is an approach in which we preserves the formulations &	3	BTL6
	rely instead on the modulating of the world we are trying to model.		
16	What is goal directed node?	C313.	
	In goal directed node the search is done in the backward direction from the goal	3	BTL6
	state to an achievable initial node		
17	Why does uncertainty arise?		
	Agents almost never \neg have access to the whole truth about their environment.	C313.	
	Agents cannot find \neg a categorical answer.	3	BTL3
	Uncertainty can also arise because of incompleteness, incorrectness in agents		
	understanding of properties of environment.		
18	What is the need for utility theory in uncertainty?	C313.	
	Utility theory says that every state has a degree of usefulness, or utility to in	3	BTL6
	agent, and that the agent will prefer states with higher utility. The use utility	5	
10	theory to represent and reason with preferences.		
19	Define conditional probability?		
	Once the agents has obtained some evidence concerning the previously unknown	C212	
	propositions making up the domain conditional or posterior probabilities with the	C515.	
	propositions making up the domain conditional of posterior probabilities with the notation $p(A/B)$ is used. This is important that $p(A/B)$ can only be used when all	3	DILO
	notation $p(A/B)$ is used. This is important that $p(A/B)$ can only be used when all		
	be is known.		
20	What are the ways in which one can understand the semantics of a belief		
20	What are the ways in which one can understand the semantics of a belief network?		
20	What are the ways in which one can understand the semantics of a belief network?	C313.	
20	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability	C313. 3	BTL6
20	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence	C313. 3	BTL6
20	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements.	C313. 3	BTL6
20	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements.	C313. 3	BTL6
20	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more.	C313. 3 C313.	BTL6
20	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path	C313. 3 C313. 3	BTL6 BTL6
20	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path.	C313. 3 C313. 3	BTL6 BTL6
20 21 22	 What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path. Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are 	C313. 3 C313. 3 C313. 3	BTL6 BTL6
20 21 22	 What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path. Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children. 	C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6
20 21 22 23	 What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path. Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children. What are called as Poly trees? 	C313. 3 C313. 3 C313. 3 C313.	BTL6 BTL6 BTL6
20 21 22 23	 What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path. Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children. What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly 	C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6
20 21 22 23	 What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path. Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children. What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly trees. Here at most one undirected path between any two nodes is present. 	C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6
20 21 22 23 24	What are the ways in which one can understand the semantics of a belief network?There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements.What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path.Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children.What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly trees. Here at most one undirected path between any two nodes is present.What is the basic task of a probabilistic inference?	C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6
20 21 22 23 24	What are the ways in which one can understand the semantics of a belief network?There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements.What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path.Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children.What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly trees. Here at most one undirected path between any two nodes is present.What is the basic task of a probabilistic inference? The basic task is to reason in terms of prior probabilities of conjunctions, but for	C313. 3 C313. 3 C313. 3 C313. 3 C313.	BTL6 BTL6 BTL6 BTL6
20 21 22 23 24	What are the ways in which one can understand the semantics of a belief network?There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements.What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path.Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children.What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly trees. Here at most one undirected path between any two nodes is present.What is the basic task of a probabilistic inference? The basic task is to reason in terms of prior probabilities of conjunctions, but for the most part, we will use conditional probabilities as a vehicle for probabilistic	C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6 BTL6
20 21 22 23 24	What are the ways in which one can understand the semantics of a belief network?There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements.What is called as multiple connected graphs?A multiple connected graph is one in which two nodes are connected by more than one path.Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children.What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly trees. Here at most one undirected path between any two nodes is present.What is the basic task is to reason in terms of prior probabilities of conjunctions, but for the most part, we will use conditional probabilities as a vehicle for probabilistic inference.	C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6 BTL6
20 21 22 23 24	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path. Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children. What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly trees. Here at most one undirected path between any two nodes is present. What is the basic task of a probabilistic inference? The basic task is to reason in terms of prior probabilities of conjunctions, but for the most part, we will use conditional probabilities as a vehicle for probabilistic inference.	C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6 BTL6
20 21 22 23 24 25	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path. Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children. What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly trees. Here at most one undirected path between any two nodes is present. What is the basic task of a probabilistic inference? The basic task is to reason in terms of prior probabilities of conjunctions, but for the most part, we will use conditional probabilities as a vehicle for probabilistic inference. What Is Called As Decision Theory? Define the part of the probabilities of the probabi	C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313.	BTL6 BTL6 BTL6 BTL6 BTL6
20 21 22 23 24 25	What are the ways in which one can understand the semantics of a belief network? There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements. What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path. Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children. What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly trees. Here at most one undirected path between any two nodes is present. What is the basic task of a probabilistic inference? The basic task is to reason in terms of prior probabilities of conjunctions, but for the most part, we will use conditional probabilities as a vehicle for probabilistic inference. What Is Called As Decision Theory? Preferences As Expressed by Utilities Are Combined with Probabilities in the Compared Theory of Only and Collect Decision Theory.	C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6 BTL6 BTL6
20 21 22 23 24 25	What are the ways in which one can understand the semantics of a belief network?There are two ways to see the network as a representation of the joint probability distribution to view it as an encoding of collection of conditional independence statements.What is called as multiple connected graphs? A multiple connected graph is one in which two nodes are connected by more than one path.Define evidential support. E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children.What are called as Poly trees? The algorithm that works only on singly connected networks known as Poly trees. Here at most one undirected path between any two nodes is present.What is the basic task of a probabilistic inference? The basic task is to reason in terms of prior probabilities of conjunctions, but for the most part, we will use conditional probabilities as a vehicle for probabilistic inference.What Is Called As Decision Theory? Preferences As Expressed by Utilities Are Combined with Probabilities in the General Theory of Rational Decisions Called Decision Theory.	C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6 BTL6 BTL6

	Decision Theory = Probability Theory + Utility Theory.				
26	What is called as principle of maximum expected utility?	C313			
	The basic idea is that an agent is rational if and only if it chooses the action that	2	BTI 6		
	yields the highest expected utility, averaged over all the possible outcomes of	aged over all the possible outcomes of 5			
	the action. This is known as MEU.				
27	Define Transition Probability?				
	Transition probability - process moves from one state to another, as	C313			
	defined by the conditional distribution given the Markov blanket of the variable	2	BTI 6		
	being sampled.	3	DILO		
	Let $q(x \rightarrow x')$ be the probability that process makes a transition from state x state				
	<i>x'</i> .				
28	What is Likelihood Weighting?				
	Likelihood weighting avoids the inefficiency of rejection sampling by generating	C313.			
	only events that are consistent with the evidence e.Each event is weighted by the	3	BTL6		
	likelihood that the event accords to the evidence, as measured by the product of	c			
	the conditional probabilities for each evidence variable, given its parents. Query				
20	P(Rain /Sprinkler = true, Wet Grass = true).First, the weight wisset to 1.0.				
29	What is clustering algorithm? The basic idea of clustering is to join individual nodes of the network to form	C212			
	The basic idea of clustering is to join individual nodes of the network to form	C315.	DTI 6		
	Light a glustering algorithms (also known as join tree algorithms), the time can	3	DILO		
	be reduced to $\Omega(\mathbf{n})$				
30	Write the properties of fuzzy sets [MAV/II]NF 2016]				
30	write the properties of fuzzy sets. [WA1/JOINE 2010]				
	De Morgans law				
	$(\overline{A \cap P}) = \overline{A} \cap \overline{P} (\overline{A \cup B}) = \overline{A} \cap \overline{B}$				
	$(A \cap B) = A \cap B$, $(A \cup B) = A \cap B$				
	Associativity	C313.			
	$(A \cap B) \cap C = A \cap (B \cap C)$	2	K6		
	$(A \cup B) \cup C = A \cup (B \cup C)$	5	110		
	Commutativity				
	$A \cap B = B \cap A , A \cup B = B \cup A$				
	Distributivity				
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$				
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$				
31	What is Commutative production systems? [NOV/DEC 2017, APR/MAY]				
	2018]				
	A commutative production system is a production system that is				
	both monotonic and partially commutative. Partially commutative, monotonic				
	production systems are useful for solving ignorable problems.				
	Monotonic Production System: A commutative production system: A	C313.			
	commutative production system is a production system that is both	3	BTL6		
	monotonic and partially commutative.				
	Partially Commutative Production system: A partially commutative production				
	system is a production system with the property that if the application of a				
	particular sequence of rules transforms state x into state y then any permutation				
	of those rules that is allowable (i.e. each rules preconditions are satisfied				
	when it is applied) also transforms state x into state y.				
32	Define Fuzzy reasoning. [NOV/DEC 2017].	C313.	BTL6		

ibles ig in YES		
ig in YES		
YES		
DEC		
	C313	
	2	BTL2
	5	DILL
nent.	C313.	
se of	3	BTL6
of		
c	C313.	
of a	3	BTL6
osed	· ·	
Friend	C313.	
	3	BTL6
ame		
o in	C313.	
tility	3	BTL6
unity		
own	C313.	
n the	3	BTL6
n all	5	2120
	C313.	
other	3	BTL6
	· ·	
	0212	
t for	C313.	
listic	3	BTL6
	C313.	
dom	3	BTL6
The	5	
	DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC	DECC313. 3DECC313. 3C313. 3anent. a of a of a of a osedC313. 3of a osedC313. 3from ame ameC313. 3from ame ameC313. 3from ame ameC313. 3from ame ameC313. 3from ame ameC313. 3from the n allC313. 3from therC313. 3other listicC313. 3

III YEAR / VI SEM / AI QB JEPPIAAR ENGINEERING COLLEGE

	conditional probability table for each node The graph has no directed cycles.		
42	What is called as multiple connected graph?	C313.	
	A multiple connected graph is one in which two nodes are connected by more	3	BTL6
	than one path	č	
43	What are the ways in which one can understand the semantics of a belief		
	network?	C313.	
	There are two ways to see the network as a representation of the joint probability	3	BTL6
	distribution to view it as an encoding of collection of conditional independence	č	
	statemen		
44	Define joint probability distribution	C 212	
	This completely specifies an agent's probability assignments to all propositions	C313.	
	in the domain. The joint probability distribution $p(x_1, x_2, \dots, x_n)$ assigns	3	BTL6
	probabilities to all possible atomic events; where X1, X2Xn 10 = variables.		
45	State the reason why first order, logic fails to cope with that the mind like		
	medical diagnosis.	G2 12	
	Three reasons a laziness: o it is hard to lift complete set of antecedents of	C313.	
	consequence, needed to ensure and exceptionless rule, b. Theoritical Ignorance:	3	BTL6
	o medical science has no complete theory for the domain. Practical ignorance:		
	even if we know all the rules, we may be uncertain about a particular item		
46	Define Prior Probability?	G2 12	
	p(a) for the Unconditional or Prior Probability Is That the Proposition A is True.	C313.	
	It is important to remember that $p(a)$ can only be used when there is no other	3	BTL6
	inform		
47	What are called as Poly trees?	C313.	
	The algorithm that works only on singly connected networks known as Poly		
		3	BILO
	trees. Here at most one undirected path between any two nodes is present.	3	BIL6
48	trees. Here at most one undirected path between any two nodes is present.	3 C313.	BIL6
48	Define casual support E+X is the casual support for X- the evidence variables "above" X that are	3 C313.	BTL6
48	 The algorithm that works only on singry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent 	3 C313. 3	BTL6
48	 The algorithm that works only on snigry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support 	3 C313. 3 C313.	BTL6 BTL6
48	The algorithm that works only on singry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are	3 C313. 3 C313. 2	BTL6
48	 The algorithm that works only on singry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children 	3 C313. 3 C313. 3	BTL6 BTL6 BTL6
48	The algorithm that works only on snigry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution	3 C313. 3 C313. 3 C313.	BTL6 BTL6 BTL6
48 49 50	The algorithm that works only on singry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eq. P(weather) = (0.7, 0.2, 0.08, 0.02). This type of notations simplifies many	3 C313. 3 C313. 3 C313. 2	BTL6 BTL6 BTL6
48 49 50	 The algorithm that works only on snigry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations 	3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6
48 49 50	The algorithm that works only on singry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations.	3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6
48 49 50	The algorithm that works only on snigry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Evaluation	3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6
48 49 50	The algorithm that works only on snigry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC	3 C313. 3 C313. 3 C313. 3 C313.	BTL6 BTL6 BTL6 BTL6
48 49 50	The algorithm that works only on singry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night	3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6 BTL5
48 49 50	The algorithm that works only on singry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night	3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL6 BTL5
48 49 50 1 2	The algorithm that works only on shigry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support Befine probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night Explain the frame based knowledge representation? [APR/MAY 2018] Part – B	3 C313. 3 C313. 3 C313. 3 C313. 3 C313.	BTL6 BTL6 BTL6 BTL6 BTL5
48 49 50 1 2	The algorithm that works only on singry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night Explain the frame based knowledge representation? [APR/MAY 2018] Refer Page 193 in Kevin Night	3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL5 BTL5
48 49 50 1 2	The algorithm that works only on shigly connected networks known as fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night Explain the frame based knowledge representation? [APR/MAY 2018] Refer Page 193 in Kevin Night Write whert notes on Declarated Chainline and an end on the frame based knowledge representation? [APR/MAY 2018]	3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL5 BTL5
48 49 50 1 2 3	The algorithm that works only on singly connected networks known as fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night Explain the frame based knowledge representation? [APR/MAY 2018] Refer Page 193 in Kevin Night Write short notes on Backward Chaining and explain with example. [<u>MAY/</u>	3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL5 BTL5 BTL5
48 49 50 1 2 3	The algorithm that works only on shigly connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night Explain the frame based knowledge representation? [APR/MAY 2018] Refer Page 193 in Kevin Night Write short notes on Backward Chaining and explain with example. [<u>MAY/JUNE 2016</u> , APRIL/MAY 2017, NOV/DEC 2018] Defen Dece 127 in K evin Night	3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL5 BTL5 BTL5
48 49 50 1 2 3	The algorithm that works only on singry connected networks known as Fory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night Explain the frame based knowledge representation? [APR/MAY 2018] Refer Page 193 in Kevin Night Write short notes on Backward Chaining and explain with example. [MAY/JUNE 2016, APRIL/MAY 2017, NOV/DEC 2018] Refer Page 137 in Kevin Night	3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL5 BTL5 BTL5
48 49 50 1 2 3 4	The algorithin that works only on singry connected networks known as rory trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night Explain the frame based knowledge representation? [APR/MAY 2018] Refer Page 193 in Kevin Night Write short notes on Backward Chaining and explain with example. [MAY/ JUNE 2016 , APRIL/MAY 2017, NOV/DEC 2018] Refer Page 137 in Kevin Night Discuss briefly about Bayesian probability Refer 179 in Kevin Night	3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL5 BTL5 BTL6 BTL6 BTL6
48 49 50 1 2 3 4	The algorithm that works only on singly connected networks known as roly trees. Here at most one undirected path between any two nodes is present. Define casual support E+X is the casual support for X- the evidence variables "above" X that are connected to X through its parent Define evidential support E-X is the evidential support for X- the evidence variables "below" X that are connected to X through its children Define probability distribution Eg. P(weather) = (0.7,0.2,0.08,0.02). This type of notations simplifies many equations. PART – B Explain the production based knowledge representation techniques? [NOV/DEC 2017] Refer Page 30 in Kevin Night Explain the frame based knowledge representation? [APR/MAY 2018] Refer Page 193 in Kevin Night Write short notes on Backward Chaining and explain with example. [MAY/ JUNE 2016, APRIL/MAY 2017, NOV/DEC 2018] Refer Page 137 in Kevin Night Discuss briefly about Bayesian probability Refer 179 in Kevin Night	3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3 C313. 3	BTL6 BTL6 BTL6 BTL5 BTL5 BTL5 BTL6 BTL6

5	Write short notes on Rule value approach Refer 174 in Kevin Night	C313. 3	BTL6
6	Briefly discuss about reasoning done using fuzzy logic. [MAY/JUNE 2016] Refer Page 184 in Kevin Night	C313. 3	BTL6
7	Discuss the Dempster-Shafer Theory [MAY/ JUNE 2016], [APRIL/MAY 2017, NOV/DEC 2017, APR/MAY 2018] Refer Page 181 in Kevin Night	C313. 3	BTL6
8	Discuss about Bayesian Theory and Bayesian Network [NOV/DEC 2017, APR/MAY 2018, NOV/DEC 2018] Refer Page 179 in Kevin Night	C313. 3	BTL6
9	Write short notes on Forward chaining and explain with example. [MAY/JUNE 2016, APRIL/MAY 2017, NOV/DEC 2018] Refer Page 137 in Kevin Night	C313. 3	BTL6
10	Discuss briefly about Bayesian Networks Refer 179 in Kevin Night	C313. 3	BTL6
11	Write short notes on Certainty factor Refer Page 174 in Kevin Night	C313. 3	BTL6
12	Suppose the police is informed that one of the four terrorist organizations A,B, C or D has planted a bomb in a building. Draw the lattice of subsets of the universe of discourse, U. Assume that one evidence supports that groups A and C were responsible to a degree of $m1({A,C})=0.6$ and another evidence supports the belief that groups A,B and D were involved to a degree $m2({A,B,D})=0.7$. Compute and create the tableau of combined values of belief for m1 and m2. [APR/MAY 2018]	C313. 3	BTL6
13	Construct a Bayesian Network and define the necessary CPTs for the given scenario. We have a bag of three biased coins a,b and c with probabilities of coming up heads of 20%, 60% and 80% respectively. One coin is drawn randomly from the bag (with equal likelihood of drawing each of the three coins) and then the coinis flipped three times to generate the outcomes X1, X2 and X3. [NOV/DEC 2018]	C313. 3	BTL6
14	Explain fuzzy logic. [MAY/JUNE 2016] Refer 184 in Kevin Night	C313. 3	BTL6
15	Explain the frames [APR/MAY 2018] Refer Page 193 in Kevin Night	C313. 3	BTL5

UNIT IV

PLANNING AND MACHINE LEARNING Basic plan generation systems - Strips -Advanced plan generation systems - K strips -Strategic explanations -Why, Why not and how explanations. Learning- Machine learning, adaptive Learning.

PART A

III YEAR / VI SEM / AI QB

JEPPIAAR ENGINEERING COLLEGE

S. No.	Question	Course Outcome	Blooms Taxanomy Level
1	What is learning? Learning covers a wide range of phenomena.At one end of the spectrum is skill refinement.People get better at many tasks simply by practicing.At the other end of the spectrum lies knowledge acquisition.Knowledge is generally acquired through experience.	C313.4	BTL6
2	 What are types of learning? ROTE learning Learning by taking advice Learning in problem solving Learning from examples Explanation based learning 	C313.4	BTL6
3	What is ROTE learning? [MAY/ JUNE 2016, NOV/DEC 2018] When computation is more expensive than recall, this strategy can save a significant amount of time.Caching has been used in Artificial Intelligence programs to produce some surprising performance improovement.Such caching is known as ROTE learning.	C313.4	BTL6
4	Define Machine learning. [APR/MAY 2018] Machine Learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data. The core of machine learning deals with representation and generalization. Representation of data instances and functions evaluated on these instances are part of all machine learning systems. Generalization is the property that the system will perform well on unseen data instances; the conditions under which this can be guaranteed are a key object of study in the subfield of computational learning theory	C313.4	BTL6
5	What is Adaptive learning? [NOV/DEC 2017] Adaptive learning has been partially driven by a realization that tailored learning cannot be achieved on a large-scale using traditional, non- adaptive approaches. Adaptive learning systems endeavor to transform the learner from passive receptor of information to collaborator in the educational process. Adaptive learning systems' primary application is in education, but another popular application is business training. They have been designed as both desktop computer applications and web applications	C313.4	BTL6
6	What is planning? Planning refers to the process of computing several steps of a problem solving procedure before executing any of them.	C313.4	BTL6
7	What are K-Strips? K-Strips is a modification of strips that uses a goal regression mechanism of circumventing goal interaction problems. A typical use of this mechanism prevents K-STRIPS from applying an F-rule,F1,that would interfere with an achieved precondition.	C313.4	BTL6
8	What are Strips? [NOV/DEC 2018] Strips or Stanford Reseach Institute Problem Solver is an automated planner.An strips instance consists of 1. An initial state;	C313.4	BTL6

	2. The specification of the goal states – situations which the planner		
	is trying to reach;		
	3. A set of actions. For each action, the following are included:		
	•preconditions (what must be established before the action is		
	performed);		
	•postconditions (what is established after the action is		
	performed).		
9	What is non linear planning?		
	It is not composed of a linear sequence of complete subplans. These are	C212 4	BTL6
	interwined plans which most problems require in which multiple sub	C313.4	
	problems are worked on simultaneously.		
10	What are the components of a planning system?		
	Components of a planning system are as follows:		
	1. Choose the best rule to apply next based on the best available heuristic		
	information.		
	2. Apply the chosen rule to compute the new problem state that arises		DTI 6
	from its application.	C313.4	DILO
	3. Detect when a solution has been found.		
	4. Detect dead ends so that they can be abandoned and the system's effort		
	directed in more fruitful directions.		
	5. Detect when an almost correct solution has been found and employ		
	special techniques to make it totally correct.		
11	What do you mean by default reasoning?		BTI 6
	Default reasoning refers to drawing conclusions based on what is most	C313.4	DILO
	likely to be true		
12	What are singular extensions?		
	Singular extensions are a successful form of secondary search. If a leaf		BTL6
	node is judged to be far superior to its siblings and if the value of the	C313.4	DILO
	entire search depends critically on the correctness of that nodes value,		
10	then the node is expanded one extra ply. These are singular extensions.		
13	What do you mean by mapping problem?		
	If a set of input-output pairs is given corresponding to an arbitrary	6212.4	BTL6
	function transforming to a point in the M-dimensional input pattern space	C313.4	_
	to a point in the N-dimensional output pattern space, then the problem of		
1.4	capturing the implied functional relationship is called mapping problem.		
14	what are the Fundamental concepts of machine learning?	C212 4	BTL6
	1. Induction,	C313.4	
15	2. Generalisation		
15	List out successful applications of machine learning?		
	Adaptable software system A Bioinformatics	C212 4	BTL6
	• Natural language processing • Speech recognition	C313.4	
	Trend prediction		
16	What is the Need for Learning?		
	The general learning approach is to generate potential improvements, test		
	them, and only use those that work well. Naturally, there are many ways	C313.4	BTL6
	we might generate the potential improvements, and many ways we can	-	
	test their usefulness. At one extreme, there are model driven (top-down)		
1	generators of potential improvements, guided by an understanding of how		

	the problem domain works. At the other, there are data driven (bottom-		
	up) generators, guided by patterns in some set of training data.		
17	What is the idea of Concept Learning and Classification?		
	The idea of concept learning and classification is that given a training set		
	of positive and negative instances of some concept (which belongs to		
	some pre-enumerated set of concepts), the task is to generate rules that	C212 /	BTL6
	classify the training set correctly, and that also 'recognize' unseen	0313.4	
	instances of that concept, i.e. generalize well. To do this we work with a		
	set of patterns that describe the concepts, i.e. patterns which state those		
	properties which are common to all individual instances of each concept.		
18	List the three Core Elements of Adaptive Learning Systems ?		
	A content model - This refers to the way the specific topic, or content		
	domain, is structured, with thoroughly detailed learning outcomes and a		
	definition of tasks that need to be learned.		PTI 6
	A learner model -In order to adapt, many adaptive systems make	C313.4	DILO
	statistical inferences about the student's knowledge based on their		
	performance; they must "model" the learner.		
	An instructional model - The instructional model determines how a		
	system selects specific content for a specific student at a specific time		
19	What is Supervised learning ? [NOV/DEC 2018]		
	The computer is presented with example inputs and their desired outputs,	C313.4	BTL6
	given by a "teacher", and the goal is to learn a general rule	0313.4	
	that maps inputs to outputs.		
20	What is Unsupervised learning? [NOV/DEC 2018]		
	No labels are given to the learning algorithm, leaving it on its own to		BTI 6
	find structure in its input. Unsupervised learning can be a goal in itself	C313.4	DILO
	(discovering hidden patterns in data) or a means towards an end (feature		
	learning).		
	What is Dainforcoment learning?		
21	what is Remorcement learning:		
21	A computer program interacts with a dynamic environment in which it		BTL6
21	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher	C313.4	BTL6
21	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example	C313.4	BTL6
21	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent.	C313.4	BTL6
21	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines?	C313.4	BTL6
21	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related supervised	C313.4	BTL6
21	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised</u> <u>learning</u> methods used for <u>classification</u> and <u>regression</u> . Given a set of	C313.4 C313.4	BTL6 BTL6
21	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised</u> <u>learning</u> methods used for <u>classification</u> and <u>regression</u> . Given a set of training examples, each marked as belonging to one of two categories, an	C313.4 C313.4	BTL6 BTL6
21	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised</u> <u>learning</u> methods used for <u>classification</u> and <u>regression</u> . Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new	C313.4 C313.4	BTL6 BTL6
21	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised</u> <u>learning</u> methods used for <u>classification</u> and <u>regression</u> . Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other.	C313.4 C313.4	BTL6 BTL6
21 22 23	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised</u> <u>learning</u> methods used for <u>classification</u> and <u>regression</u> . Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other. What is Clobbering?	C313.4 C313.4	BTL6 BTL6 BTL6
21 22 23	 A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised learning</u> methods used for <u>classification</u> and <u>regression</u>. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other. What is Clobbering? A clobberer is a potentially intervening step that destroys the condition achieved has a supervised bind. 	C313.4 C313.4 C313.4	BTL6 BTL6 BTL6
21 22 23	 A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised learning</u> methods used for <u>classification</u> and <u>regression</u>. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other. What is Clobbering? A clobberer is a potentially intervening step that destroys the condition achieved by a causal link.Example Go(Home) clobbers At(Supermarket) 	C313.4 C313.4 C313.4	BTL6 BTL6 BTL6
21 22 23 24	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised</u> <u>learning</u> methods used for <u>classification</u> and <u>regression</u> . Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other. What is Clobbering? A clobberer is a potentially intervening step that destroys the condition achieved by a causal link.Example Go(Home) clobbers At(Supermarket) What is Resilience in Planning	C313.4 C313.4 C313.4	BTL6 BTL6 BTL6 BTL6
21 22 23 24	A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised</u> <u>learning</u> methods used for <u>classification</u> and <u>regression</u> . Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other. What is Clobbering? A clobberer is a potentially intervening step that destroys the condition achieved by a causal link.Example Go(Home) clobbers At(Supermarket) What is Resilience in Planning After performing a wrong operation, if the system again goes towards the	C313.4 C313.4 C313.4 C313.4	BTL6 BTL6 BTL6 BTL6
21 22 23 24	 A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come close to its goal. Another example is learning to play a game by playing against an opponent. What are Support vector machines? Support vector machines (SVMs) are a set of related <u>supervised learning</u> methods used for <u>classification</u> and <u>regression</u>. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other. What is Clobbering? A clobberer is a potentially intervening step that destroys the condition achieved by a causal link.Example Go(Home) clobbers At(Supermarket) What is Resilience in Planning After performing a wrong operation, if the system again goes towards the goal, then it has resilience with respect to that operation. 	C313.4 C313.4 C313.4 C313.4	BTL6 BTL6 BTL6 BTL6

III YEAR / VI SEM / AI QB JEPPIAAR ENGINEERING COLLEGE

	Planning s	ystems do the followi	ng:			
	1) open up action and goal representation to allow selection					
	2) divid	le-and-conquer by sub				
	2) roles	requirement for coal				
	5) relax	requirement for sequ				
		Search	Planning			
	States	Lisp data structures	Logical sentences			
	Actions	Lisp code	Preconditions/outcomes			
	Goal	Lisp code	Logical sentence (conjunction)			
	Plan	Sequence from S_0	Constraints on actions			
26	What are f	the types of planner?				
	Situation	space planner: search	through possible situations			
	Progressi	on planner: start with	initial state, apply operators until g	goal is	C313.4	BTL6
	reached l	Regression planner: st	tart from goal state and apply ope	erators		
	until start	state reached.				
27	What are	the differences and	similarities between problem so	olving		
	and planni	ing? <u>[MAY 2011, NO</u>	<u>V/DEC 2012, APRIL/MAY 2017</u>			
	Problem so	lving and planning in	volves finding sequences of action	n that	C313.4	BTL6
	lead to des	sirable states. But pla	inning is also capable of working	g back		
	from an ex	plicit goal description	to minimize irrelevant actions, po	ossess		
20	autonomy a	and can take advantage	e of problem decomposition	47		
28	What is co	ntingency planning?	MAY 2012 MAY/JUNE 2014	<u>• </u>		
	information	vise called as collulit	onal planning. It deals with incom	npiele		
	noogible sit	by constructing a c	that accounts for	each		
	Condition	al planning : Also	known as contingency plan	ning		
	conditional	nlanning deals with i	ncomplete information by construct	ting a		BTI 6
	conditional	plan that accounts for	r each possible situation or contine	genev	C313.4	DILO
	that could a	arise. The agent finds	out which part of the plan to execu	ute by		
	including	sensing actions in	the plan to test for the appro-	opriate		
	conditions.	For example, the sh	hopping agent might want to include	ude a		
	sensing act	ion in its shopping pl	an to check the price of some obj	iect in		
	case it is to	o expensive.	1 5	,		
29	What are t	the functions of plan	ning systems? [<u>MAY 2011</u>]			
	Planning sy	stems are problem-sc	olving algorithms that operate on ex	xplicit		
	proposition	al (or first-order) rep	resentations of states and actions.	These	C212 4	BTL6
	representat	ions make possible th	ne derivation of effective heuristic	es and	0313.4	
	the develo	opment of powerful	and flexible algorithms for so	olving		
	problems.	1 4525 1				
30	What is th	e need of POP algor	11hms? [<u>MAY 2011, NOV/DEC 2</u>	<u>2011 ,</u>		
	Dartial ard	<u>, 2012</u> ar planning (DOD) a	logrithms explore the space of	nlang		
	without co	mmitting to a totally α	ordered sequence of actions They	work	C313.4	BTL6
	hack from	the goal adding activ	ons to the plan to achieve each sub	hgoal	0313.7	
	They are r	articularly effective	on problems amenable to a divide	e-and-		
	conquer an	proach.				
31	List out	the various plannin	g techniques. [MAY/JUNE 2	.014 .	0212.4	BTL6
	APRIL/M	AY 2017]			U313.4	
32	III YEAR / VI SEM / AI QB JEPPIAAR ENGINEERING COLLEGE					

	The different types of planning are as follows:		
	i Situation anoso planning		
	i. Shuation space planning.		
	11. Progressive planning.		
	111. Regressive planning.		
	iv. Partial order planning.		
	v. Fully instantiated planning		
32	What is hierarchical planning? [NOV/DEC 2017]		
	 planning starts with complex action on top 		
	 plan constructed through action decomposition 		
	 substitute complex action with plan of less complex 		
	actions (pre-defined plan schemata; or learning of		
	plans/plan abstraction)		PTI 6
	• overall plan must generate affect of complex action	C313.4	DILO
	Example:		
	<u>example.</u> move (x, y, z)		
	operator		
	expansion pickup (x, y) putdown (x, z)		
	The lowest level corresponds to executable actions of		
	the agent.		
33	What is the purpose of learning?		
	The idea behind learning is that percepts should be used not only for	C313.4	BTL6
	acting but also for improving the agent's ability to act in the future.		
34	What are issues in learning element?		BTI 6
51	i Component ii Feedback iii Representation	C313.4	DILO
35	What are the types of machine learning?		
55	i Supervised Learning ii Unsupervised Learning iii Reinforcement	C313.4	BTL6
	Learning II. Unsupervised Learning III. Reinforcement	0313.4	
36	Define Reinforcement Learning		
50	This Learning is rather than being told what to do by teacher a		
	reinforcement learning agent must learn from occasional rewards	C313 /	BTL6
	Example If taxi driver does not get a tip at the end of journey it gives	C313.4	
	him a indication that his behaviour is undesirable		
27	Define Inductive Learning		
57	Define inductive Learning.		
	An algorithm for supervised learning is given as input the correct value of the unknown function for portioning inputs and it must true to recover the	C313.4	BILO
	the unknown function for particular inputs and it must try to recover the		
20	unknown lunction.		
38	Define Classification Learning.	6212.4	BTL6
	Learning a discrete valued function is called is called classification	C313.4	
20	learning.		
39	What is parity and majority function?		BTL6
	Parity Function : It Returns 1 if and only if an even number of inputs are	C313.4	_
	1. Majority function : It Returns 1 if more than half of its inputs are 1.		
40	What is training set?		BTL6
	The complete set of examples is called the training set. Example	C313.4	2120
	Restaurant problem Goal predicate "will wait"		
41	Define Information gain.		
	Information gain from the attribute test is the difference between the	C3134	BTL6
	original information requirement and the new requirement. Gain (A) =	0313.4	
	I(p/(p+n)), n/(p+n)) - Remainder(A)		

42	What is over fitting?		
	Whenever there is a large set of possible hypotheses, one has to be	C212 /	BTL6
	careful not to use the resulting freedom to find meaningless "regularity"	C313.4	
	in the data. This problem is called over fitting.		
43	What is the purpose of cross validation?		
	It reduces over fitting. It can be applied to any learning algorithm, not	C212 /	BTL6
	just decision tree learning. The basic idea is to estimate how well each	C313.4	
	hypotheses will predict unseen data.		
44	Mention the exercises which broaden the applications of decision		
	trees.	C313 /	BTL6
	i. Missing data ii. Multivalued attributes iii. Continuous and integer	0313.4	
	valued input attributes iv. Continuous valued output attributes.		
45	Define knowledge based Inductive learning.		
	KBIL algorithm finds inductive hypotheses that explain sets of	C313.4	DILO
	observations with the help of background knowledge.		
46	Define Bayesian Learning.		
	It calculates the probability of each hypotheses, given the data and		
	makes predictions on that basis, (i.e.) predictions are made by using all	C313.4	BILO
	the hypotheses, weighted by their probabilities rather than by using just		
	single "best" hypotheses.		
47	What is Maximum – Likelihood hypotheses?		
	ML – it is reasonable approach when there is no reason to prefer one	C313.4	BIL6
	hypotheses over another a prior		
48	Define Passive learning.		
	The agent's policy is fixed and the task is to learn the utilities of states,	C313.4	BTL6
	this could also involve learning a model of the environment.		
49	Define Active Learning.		
	The agent must learn what to do. An agent must experience as much as	C313.4	BTL6
	possible of its environment in order to learn how to behave in it.		
50	What are the two functions in Neural network's Activation		
	functions?		BTL6
	i. Threshold function	C313.4	
	i. Sigmoid function		
	PART – B		
1	Explain the Strategic Explanation in detail.	G212.4	BTL5
	Refer notes	C313.4	
2	Explain the basic plan generation in detail?	~~	BTL5
	Refer Page 403 in Stuart Russelll	C313.4	DILL
3	List out the planning terminologies and components of planning [MAY/		BTL6
C	JUNE 2016 Refer Page 410 in Stuart Russelll	C313.4	DILO
4	Explain in detail about Machine learning? [APRIL/MAY 2017.		
	NOV/DEC 2017. APR/MAY 2018. NOV/DEC 2018]	C313.4	BTL5
	Refer Page 31 in Stuart Russelll		
5	Explain about Adaptive learning with example? [MAY/ IIINE 2016]		BTL5
	Refer Page 718 in Stuart Russelll	C313.4	DILU
6	What is ID3? Write the drawback of ID3 [MAV/ IIINE 2016]		BTI 6
	Refer Page 106 in Stuart Russelll	C313.4	DILO
7	Describe the Learning with macro-operators [MAV/ IIINE 2016]		BTI 6
'	Refer Page 706 in Stuart Russelll	C313.4	DILU
	Kerer i age 700 ill Stuart Kusselli		

0	Eveloin in detail the STRIDS [ADDII (MAN 2017 ADD/MAN 2019		
0	Explain in detail the STRIPS. [AFRIL/MAT 2017, AFR/MAT 2010, NOV/DEC 2019]	C212 4	BTL5
		C313.4	
-	Refer Notes		
9	Write short notes on the [NOV/DEC 2017]	C313.4	BTL6
	Learning by Parameter Adjustment		
10	Write down STRIPs-style operators that corresponds to the following		
	blocks world description. [NOV/DEC 2017]		
	A $ON(A,B,S0)^{\wedge}$		BTI 6
		C313.4	DILO
	B ONTABLE(B,S0) ^ CLEAR(A,S0)		
	Refer Notes		
11	Write short notes on Nonlinear Planning using Constraint Posting.		
	[NOV/DEC 2017]		BTL1
		C313.4	DILI
	Refer Page 430 in Stuart Russelll		
12	Write short notes on the [NOV/DEC 2017]	C313.4	BTL6
	Learning with Macro-Operaors, Learning by Chunking	001011	
13	Consider the problem of changing a flat tire. The goal is to have a good		
	spare tire properly mounted onto the car's axle, where the initial state has		
	a flat tire on the axle and a good spare tire in the trunk. To keep it simple,		
	our version of the problem is an abstract one, with no sticky lug nuts or	C313.4	BTL6
	other complications. There are just four actions: removing the spare from	0313.4	
	the trunk, removing the flat tire from the axle, putting the spare on the		
	axle and leaving the car unattended overnight. Write the STRIPS and find		
	out the solution.		
14	Explain about Hierarchical planning method with example? [MAY/		BTL5
	JUNE 2016]	C313.4	
	Refer Page 718 in Stuart Russelll		
15	Explain in detail about STRIPS and write the components of STRIPS for		BTI 6
	the given scenario: "Consider a flight journey in a luxurious flight fom	C313.4	DILU
	India to US" [NOV/DEC 2018]		

	<u>UNIT V</u>				
	EXPERT SYS	ГЕМЅ			
Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge Acquisition - Meta					
knowl	ledge, Heuristics. Typical expert systems - MYCIN, 1	DART, XOON, Expert systems she	lls.		
	PART A	L			
S. No.	Question	Course Outcome	Blooms Taxanomy		
35	III YEAR / VI SEM / AI QB	JEPPIAAR ENGINEERING CC	LLEGE		

			Level
1	What is Expert system?		
	Expert systems are computer programs that are derived from a branch of		
	computer science research called AI. The programs that achieve expert	C212 5	BTL6
	level competence in solving problems in task areas by bringing to bear a	C313.5	
	body of knowledge about specific tasks are called expert systems or		
	knowledge base.		
2	What are the most important aspects of expert systems?	C313 5	BTI 6
	The knowledge base	C313.3	DILO
	The reasoning or inference engine		
3	What are the characteristics of expert systems? [NOV/DEC 2017]		
	1. Expert systems use the knowledge rather than data to control the		
	solution process.		
	2. The knowledge is encoded and maintained as an entity separate	C313 5	BTI 6
	from the control program.	0313.5	DILO
	3. They explain how a particular conclusion was reached.		
	4. They use symbolic representations for knowledge and perform		
	their inference through symbolic computation.		
	5. They often reason with Meta knowledge.		
4	Explain the role of domain expert?		
	The role of the domain expert is to discover and cumulate the knowledge	C313.5	BTL5
	of the task domain. The domain knowledge consists of both formal,		
	textbook knowledge and experimental knowledge.		
5	What is the use of expert systems building tools?	C313 5	BTL6
	The use of expert system building tools is to build an expert system using	0010.0	DILO
	a piece of development software known as a tool or shell.		
6	Define the knowledge acquisition process.		
	Knowledge acquisition is the programs that interact with the domain		
	experts to extract expert knowledge efficiently. These programs provides	C313.5	BTL6
	support for the following activities	0010.0	DILO
	 Entering knowledge. 		
	 Maintain knowledge base consistency. 		
	 Ensuring knowledge base completeness. 		
7	Name the programming languages used for expert systems	C313.5	
	application.	ce i ce	BTL6
	PROLOG, LISP		
8	What are the stages in the development of expert system tools?		
	Knowledge base.		
	Interence process.	C313.5	BTL6
	Explaining how and why.		
	Building a knowledge base.		
	I ne I/U interface.		
9	what is metaknowledge? <u> MAY / JUNE 2016</u> , <u>APRIL/MAY 2017</u> ,		
	INUV/DEC 2018	C313.5	BTL6
	I ne term <i>meta-knowledge</i> is possible to interpret as knowledge about		
	knowledge. These search control knowledge can be represented		
10	declaratively using rules.		
10	Denne Heuristic.	0313.5	BIL6
	In numan computer-interaction, neuristic evaluation is a usability testing		

III YEAR / VI SEM / AI QB JEPPIAAR ENGINEERING COLLEGE

	technique devised by expert usability consultants. In heuristic evaluation,		
	the user interface is reviewed by experts and its compliance to usability		
	heuristics (broadly stated characteristics of a good user interface, based		
	on prior experience) is assessed, and any violating aspects are recorded.		
11	What are the players in expert system?	C313.5	BTL6
	Players in expert system are: Expert, Knowledge Engineer, User		
12	What are the advantages of Expert system? [MAY / JUNE 2016]		
	– Availability: Expert systems are available easily due to mass		
	production software.		
	 Cheaper: The cost of providing expertise is not expensive. 	C313.5	BTL6
	- Reduced danger: They can be used in any risky environments	conten	2120
	where humans cannot work with.		
	- Permanence: The knowledge will last long indefinitely.		
	- Multiple expertises: It can be designed to have knowledge of		
10	many experts.		
13	List out the limitations of expert system?		
	• Not widely used or tested		
	• Limited to relatively narrow problems		
	• Cannot readily deal with "mixed" knowledge	C313 5	BTI 6
	Possibility of error	0313.3	DILO
	 Cannot refine own knowledge base 		
	Difficult to maintain		
	 May have high development costs 		
	Raise legal and ethical concerns		
14	What are applications of Expert Systems? [MAY/JUNE 2016]		
	 Credit granting 		
	 Information management and retrieval 		
	 AI and expert systems embedded in products 	C313 5	BTI 6
	– Plant layout	0313.3	DILO
	 Hospitals and medical facilities 		
	 Help desks and assistance 		
	 Employee performance evaluation 		
	– Loan analysis		
15	What is expert system shell? [APR/MAY 2018]		
	The Expert System Shell is essentially a special purpose toolthat is built		
	in line with the requirements and standards of particular domain or		
	expert-knowledge area applications. It may be defined as a software	C313.5	BTL6
	package that facilitates thebuilding of knowledge-based expert systems	001000	2120
	by providing aknowledge representation scheme and an inference		
	engine The Shell refers to the software module containing aninterface, an		
	interence engine, and a structured skeleton of aknowledge base (in its		
1.6	empty state) with the appropriateknowledge representation facilities.		
16	Sketch the Components of an Expert System Shell. <u>MAY/JUNE</u>	C313.5	BTL6
1	2016		=-

 III YEAR / VI SEM / AI QB
 JEPPIAAR ENGINEERING COLLEGE

	Encode Context of all		
	Expert Acquisition Knowledge Base Mechanism Explanation User		
	Subsystem Facts, heuristics Reasoning with Subsystem Interface		
	Knowledge Engineer		
17	What is XCON? [MAY/JUNE 2016]		
	The R1 (internally called XCON, for eXpertCONfigurer) program is a		
	production-rule-based system written in OPS5 by John P. McDermott of		
	CMU in 1978 to assist in the ordering of DEC's VAX computer systems	C313.5	BTL6
	by automatically selecting the computer system components based on the		
	customer's requirements. The development of XCON followed two		
	previous unsuccessful efforts to write an expert system for this task, in		
	FORTRAN and BASIC.		
18	Define DART? [MAY/JUNE 2016]		
	The Dynamic Analysis and Replanning Tool, commonly abbreviated		
	to DART , is an artificial intelligence program used by the U.S. military	C313.5	BTL6
	to optimize and schedule the transportation of supplies or personnel and	0010.0	DILO
	solve other logistical problems. DART uses intelligent agents to aid		
	decision support systems located at the U.S. Transportation and		
10	European Commands		
19	What is MYCIN? <u>MAY/JUNE 2016</u>		
	MYCIN was an early expert system that used artificial intelligence to		
	identify bacteria causing severe infections, such as bacteremia and	C313.5	BTL6
	meningitis, and to recommend antibiotics, with the dosage adjusted for		-
	patient's body weight — the name derived from the antibiotics		
	themselves, as many antibiotics have the suffix "-mycin". The Mycin		
20	System was also used for the diagnosis of blood clothing diseases.		
20	Pouse and knowledge sharing	C313.5	BTL6
	Reliability		
21	Mention the guidelines to be considered while planning for		
	knowledge Acquisition		
	a. Domain selection		
	b. Selection of knowledge engineer	C313.5	BTL6
	c. Selection of expert		
	d. The initial meeting		
	e. Organization of follow-on meetings		
	f. Conducting follow on meetings		
22	List out the issues in knowledge Acquisition. [APR/MAY 2018]		
	 knowledge is in the head of experts 		
	 Experts have vast amounts of knowledge 	C313.5	BTL6
	• Experts have a lot of tacit knowledge	~~~~~	DILO
	 Experts are very busy and valuable people 		
	 One expert does not know everything Knowed does have a "interference" 		
22	• Knowledge has a "shelf life		
23	1. Combines the facts of a specific case with the browledge	C313.5	BTL6
	1. Controlled the lacts of a specific case with the knowledge		
	contained in the knowledge base to come up with a recommendation.		

	In a rule-based expert system, the inference engine controls the or in which production rules are applied and resolves conflicts if m than one rule is applicable at a given time.				order more		
	2. Directs the user interface to query the user for any information i				on it		
	needs for	or further infe	rencing.	2			
24	What is rule based knowledge representation. The rule based system uses knowledge encoded in the form of production rules, that is if then rules. The rules have an antecedent or condition part, the left hand side, and a conclusion or action part, the right hand side. Each rule represents a small chunk of knowledge relating to the domain of expertise				n of nt or , the ating	C 313.5	BTL6
25	Differentia	e Human Ex	pert and Expert sys	tem?			
	Hu	nan Experts	Expert Systems	Conventional Programs]		
	Use knowledge in the form of rules of thumb or heuristics to solve problems in a narrow domain. Process knowledge expressed in the form of rules and use symbolic reasoning to solve problems in a <i>narrow</i> domain. Process knowledge expressed in the form of rules and use symbolic reasoning to solve problems in a <i>narrow</i> domain. Process knowledge expressed in the form of rules and use symbolic reasoning to solve problems in a <i>narrow</i> domain. Process knowledge expressed in the form of rules and use symbolic reasoning to solve problems in a <i>narrow</i>						
	In a hun knowled compiled	an brain, ge exists in a l form.	Provide a clear separation of knowledge from its processing.	Do not separate knowledge from the control structure to process this knowledge.		0313.5	BTL2
	Capable line of re providin	of explaining a asoning and g the details.	<i>Trace the rules fired</i> during a problem-solving session and <i>explain how</i> a particular conclusion was reached and <i>why</i> specific data was needed.	Do not explain how a particular result was obtained and why input data was needed.			
26	Define Knowledge base It is a set of sentences that represents some assertions about the world.			d. (C 313.5	BTL6	
27	List out th	e classes of	Expert system / Lis	t out the problem a	reas		
	addressed	by Expert sys	tems [APRIL/MAY	2017]			
	Latego	y Pro	oituation descriptions	from concor data			
	Prediction	Inferring	likely consequences	of given situations			
	Diagnosis	Inferring	system malfunctions	from observables			
	Design	Configuri	ng objects under con	straints			
	Planning	Designing	g actions			C 313.5	BTL6
	Monitoring	Comparir	g observations to pla	n vulnerabilities			
	Debugging	Providing	incremental solution	s for complex problem	ns		
	Repair	Executing	g a plan to administer	a prescribed remedy			
	Instruction	Diagnosii	ng, assessing, and rep	airing student behavio	r		
	Control	Interpretin system be	ng, predicting, repairi haviors	ng, and monitoring			
28	What are t	ne capabilitie	s of Expert system?		(C 313.5	BTL6

	Strategic goal setting		
	Planning		
	Design		
	Decision making		
	Ouality control and monitoring		
	Diagnosis		
29	Name some early expert systems? [MAY / JUNE 2016]		
	• DENDRAL – used in chemical mass spectroscopy to identify		
	chemical constituents	C313.5	BTL6
	• MYCIN – medical diagnosis of illness	00100	
	 DIPMETER – geological data analysis for oil DROSPECTOR - geological data analysis for minerals 		
	 YCON/R1 – configuring computer systems 		
30	What is forward chaining in rule based system?		
20	Forward chaining - is a data-driven strategy. The inferencing		
	process moves from the facts of the case to a goal (conclusion). The	C313.5	BTL6
	strategy is thus driven by the facts available in the working memory		
	and by the premises that can be satisfied		
31	What are the advantages of the MYCIN. [APRIL/MAY 2017]		
	- It reduces the time taken to solve the problem		
	• It includes the knowledge of many experts, its more accurate then a single expert		DTI 6
	• It improves customer/patient services and the standing of the	C313.5	DILO
	expert		
	 Can predict future problems and solve current ones 		
	• It saves the company money due to faster service time		
32	What is MOLE? [NOV/DEC 2017]		
	MOLE works for systems which classify cases as instances of fixed	C313.5	BTL6
	categories, such as a fixed number of possible diagnoses. It builds an	0010.0	
22	Inference network similar to belief networks.		
33	List out the problem areas addressed by Expert systems [APRIL/MAV 2017]		
	Category Problem Addressed		
	Interpretation Inferring situation descriptions from sensor data		
	Prediction Inferring likely consequences of given situations		
	Diagnosis Informing system molfunctions from charmables	C313.5	BTL6
	Diagnosis inferring system manunctions from observables		
	Design Configuring objects under constraints		
	Planning Designing actions		
	Monitoring Comparing observations to plan vulnerabilities		
	Debugging Providing incremental solutions for complex problems		

	Repair Executing a plan to administer a prescribed remedy		
	Instruction Diagnosing, assessing, and repairing student behavior		
	Interpreting predicting repairing and monitoring		
	Control system behaviors		
34	Define Facts	C313 5	BTI 6
	A definite clause with no negative literals simply asserts a given	0313.3	DILO
	preposition		
35	Define Rules	C313 5	BTI 6
	knowledge representation formalises and organises the knowledge. One	0313.5	DILO
	widely used representation is called rule.		
36	Define Interpreter	C313.5	BTL6
	An interpreter is used to interpret the program line by line.		
37	Define Scheduler	C313 5	BTI 6
	The actual determination of which KS should be activated next is done	0313.3	DILO
	by a special KS, called the scheduler.		
38	Define Inference engine	C313 5	BTI 6
	The inference engine enables the expert system to draw deductions from	0313.3	DILO
	the rule in knowledge base.		
39	What is backward chaining in rule based system?		
	Backward chaining- the inference engine attempts to match the	C313 5	PTI 6
	assumed (hypothesized) conclusion - the goal or subgoal state - with	0313.5	DILO
	the conclusion (THEN) part of the rule. If such a rule is found, its		
	premise becomes the new subgoal.		
40	How meta knowledge is represented in rule-based expert systems?		
	MAY / JUNE 2016 , APRIL/MAY 2017, NOV/DEC 2018]	C212 5	DTI 6
	The term <i>meta-knowledge</i> is possible to interpret as knowledge about	C313.5	DILO
	knowledge. These search control knowledge can be represented		
	declaratively using rules.		
41	What are the roles of expert system? [NOV/DEC 2017]		
	Expert systems use the knowledge rather than data to control the solution		
	process.		
	The knowledge is encoded and maintained as an entity separate from the	C212 5	
	control program.	C313.5	DILO
	They explain how a particular conclusion was reached.		
	They use symbolic representations for knowledge and perform their		
	inference through symbolic computation.		
	They often reason with Meta knowledge.		
42	What are the properties of Expert system? [MAY / JUNE 2016]		
	- Availability: Expert systems are available easily due to mass		
	production software.		
	 Cheaper: The cost of providing expertise is not expensive. 		
	- Reduced danger: They can be used in any risky environments		
	where humans cannot work with.	C313.5	BTL6
	 Permanence: The knowledge will last long indefinitely. 		
	– Multiple expertises: It can be designed to have knowledge of		
	many experts.		
	- Explanation: They are capable of explaining in detail the		
	reasoning that led to a conclusion.		
	- Fast response: They can respond at great speed due to the		
41	III YEAR / VI SEM / AI QB JEPPIAAR ENGINE	EERING COI	LLEGE

	inherent advantages of computers over humans.		
	– Unemotional and response at all times: Unlike humans, they		
	do not get tense, fatigue or panic and work steadily during		
	emergency situations.		
43	What are the disadvantages of the MYCIN. [APRIL/MAY 2017]		
	Expert systems cost alot to set up		
	- The user (mechanics /patients/doctors) will need training in how		
	to use it, which takes time and money	C313.5	BTL6
	– It will need continuous updating which can take it temporarily		
	out of use		
	- In a company or doctors practice, there will need to be one in		
	every garage/branch/ surgery		
44	What are the roles in expert system?		
	Expert	C313.5	BTL6
	Knowledge Engineer		-
	User		
45	Compare forward chaining and backward chaining in rule based		
	system?		
	Forward chaining - is a data-driven strategy. The inferencing		
	process moves from the facts of the case to a goal (conclusion). The		
	strategy is thus driven by the facts available in the working memory		
	and by the premises that can be satisfied	C313.5	BTL6
	Backward chaining , the inference engine attempts to match the		
	assumed (hypothesized) conclusion the goal or subgoal state with		
	the conclusion (THEN) port of the rule. If such a rule is found its		
	me conclusion (THEN) part of the rule. If such a rule is found, its		
	premise becomes me new subgoar.		
16	Montion the guidelines to be considered while planning for		
40	Mention the guidelines to be considered while planning for		
	knowledge Acquisition		
	a. Domain selection		
	b. Selection of knowledge engineer	C313.5	BTL6
	c. Selection of expert		
	d. The initial meeting		
	e. Organization of follow-on meetings		
	f. Conducting follow on meetings		
47	Give the classification of learning process.		
	The learning process can be classified as: Process which is based on		
	coupling new information to previously acquired knowledge a. Learning		
	by analyzing differences. b. Learning by managing models. c. Learning	C313.5	BTL6
	by correcting mistakes. d. Learning by explaining experience. Process		
	which is based on digging useful regularity out of data, usually called as		
	Data base mining: a. Learning by recording cases. b. Learning by		
	building identification trees		
48	What are the different types of induction heuristics?	C212 5	
	There are two different types of induction heuristics. They are: i.	U313.5	DILO
	Require-link heuristics. ii. Forbid-link heuristics.		
49	Define a solution.	G212 -	
	A solution is defined as a plan that an agent can execute and that	C313.5	BTL6
	guarantees the achievement of goal.		

50	Define conditional planning. Conditional planning is a way in which the incompleteness of information is incorporated in terms of adding a conditional step, which involves if – then rules.	C313.5	BTL6
	<u> PART – B</u>		
1	With neat sketch explain the architecture, characteristic features and roles of expert system. [MAY / JUNE 2016 , APR/MAY 2018] Refer Page 422 in Kevin Knight	C313.5	BTL5
2	Discuss about the Knowledge Acquisition process in expert systems [MAY / JUNE 2016] Refer Page 427 in Kevin Knight	C313.5	BTL6
3	Write notes on Meta Knowledge and Heuristics in Knowledge Acquisition Refer Page 427 in Kevin Knight	C313.5	BTL6
4	Explain in detail about the expert system shell.[NOV/DEC 2018] Refer Page 424 in Kevin Knight	C313.5	BTL5
5	Write notes on expert systems MYCIN, DART and XCON and how it works? Explain. [NOV/DEC 2017, APR/MAY 2018] Refer Page 422 in Kevin Knight	C313.5	BTL5
6	Explain the basic components and applications of expert system. [MAY / JUNE 2016] Refer Page 424 in Kevin Knight	C313.5	BTL5
7	Define Expert system. Explain the architecture of an expert system in detail with a neat diagram and an example. [APRIL/MAY 2017] Refer Page 422 in Kevin Knight	C313.5	BTL6
8	Write the applications of expert systems. [MAY / JUNE 2016] Refer Page 425 in Kevin Knight	C313.5	BTL6
9	Explain the need, significance and evolution of XCON expert system. [APRIL/MAY 2017] Refer Page 425 in Kevin Knight	C313.5	BTL5
10	 Explain the expert system architectures: [NOV/DEC 2017] Rule-based system architecture 2. Associative or semantic Network Architecture 3. Network architecture 4 Blackboard system Architectures Refer Page 422 in Kevin Knight 	C313.5	BTL5
11	Design an expert system for Travel recommendation and discuss its roles. : [NOV/DEC 2017] Refer Page 422 in Kevin Knight	C313.5	BTL6
12	Explain the architecture of an expert system in detail with a neat diagram and an example. [APRIL/MAY 2017] Refer Page 422 in Kevin Knight	C313.5	BTL6
13	Explain the XCON expert system. [APRIL/MAY 2017] Refer Page 425 in Kevin Knight	C313.5	BTL5
14	Explain the applications of expert system. [MAY / JUNE 2016] Refer Page 424 in Kevin Knight	C313.5	BTL5
15	Explain the architecture of expert system. [MAY / JUNE 2016 , APR/MAY 2018]	C313.5	BTL5

III YEAR / VI SEM / AI QB JEPPIAAR ENGINEERING COLLEGE

Refer Page 422 in Kevin Knight	