

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Faculty Name: Mr. E. Sakthivel

Project Title: IoT-based system for real-time Temperature and Humidity monitoring using

ESP32

Academic Year: 2022-23

Semester/Year: VII/IV

**Type**: Hardware Implementation (ESP32(NODEMCU)-based)

# **Objective**

To design an IoT-based system for real-time Temperature and Humidity monitoring for home automation using ESP32

## **Core Components:**

o ESP32 (Wi-Fi/BLE enabled).

ODHT22 or BME280 sensor (higher accuracy than DHT11).

o Power Source: USB/micro-18650 battery for portability.

o Optional: LCD display (local readout)

## CO & PO Mapping

| СО  | PO1                        | PO2                   | PO3                      | PO4             | PO5               | PO6      | PO7           | PO9                       |
|-----|----------------------------|-----------------------|--------------------------|-----------------|-------------------|----------|---------------|---------------------------|
|     | (Engineering<br>Knowledge) | (Problem<br>Analysis) | (Design/<br>Development) | (Investigation) | (Modern<br>Tools) | (Ethics) | (Environment) | (Individual/<br>Teamwork) |
| CO1 | 3                          | 2                     | 3                        | -               | 2                 | _        | -             | 2                         |
| CO2 | 3                          | 3                     | 3                        | 2               | 3                 | -        | -             | 2                         |
| CO3 | 2                          | 3                     | 2                        | 3               | 3                 | 1        | 2             | 3                         |
| CO4 | 2                          | 3                     | 2                        | 3               | 2                 | -        | 3             | _                         |
| CO5 | _                          | 3                     | =                        | 3               | 2                 | -        | -             | 2                         |
| CO6 | -                          | -                     | -                        | _               | -                 | 3        | 2             | _                         |



## Wokwi link for simulation https://wokwi.com/projects/392411702976184321

## **Technical Outcomes**

## **Functional IoT System:**

- Real-time monitoring of temperature/humidity with ESP32 + DHT22/BME280.
- Wireless data transmission via **Wi-Fi/Bluetooth** to cloud platforms (Firebase/MQTT).

#### **Cloud Integration:**

- Live data logging and visualization (e.g., Firebase dashboard, Node-RED UI).
- Automated alerts (email/SMS) for threshold breaches (e.g., temp > 30°C).

## **Power Efficiency:**

• Optimized battery life using **deep sleep mode** (10µA vs. 80mA active).

### **Scalability:**

• Design supports adding more sensors (e.g., air quality, motion) or nodes (via ESP-NOW).

#### **Skill Development Outcomes**

#### **Hardware Skills:**

- Circuit design, sensor interfacing, and PCB troubleshooting.
- Hands-on experience with oscilloscopes, multimeters, and logic analyzers.

## **Software Skills:**

- Embedded C/C++ programming for ESP32 (Arduino IDE/ESP-IDF).
- Cloud API integration (Firebase/MQTT) and data parsing.

## **IoT & Networking:**

- Wi-Fi configuration, MQTT protocols, and REST API basics.
- Security practices (e.g., data encryption, secure Wi-Fi credentials).