

8 Is it always possible to realize win-win spiral model for software? Justify.

NOV/DEC-12

o Must identify stake holder and their win condition

o Developing buy-in to the model is important than the model itself

o Eliminating the clashes between customers is important.

 (
is software process? List its activities. MAY/JUN-13
Software process is defined as the structured set of activities that are required to
 develop the software system.
Activities
–
Specification, design & implementation, validation & evolution.
are the various categories of software?
System software
 Application software
 Engineering/Scientific software
 Embedded software
Web Applications
Artificial Intelligence software
are the umbrella activities of a software process? APR/MAY 2015
Software project tracking and control.
 Risk management.
Software Quality Assurance.
 Formal Technical Reviews.
Software Configuration Management.
 Work product preparation and production.
Reusability management.
)9 What

10 What













11 What















 Measurement

12 What are the merits of incremental model?
i. The incremental model can be adopted when tere are less number of people involved in the project.

 (
DOWNLOADED FROM STUCOR APP
)
7
 (
DOWNLOADED FROM STUCOR APP
)

ii. Technical risks can be managed with each increment.

iii. For a very small time span,at least core product can be delivered to the customer.

13 List the task regions in the Spiral model.

	Customer communication – In this region it is suggested to establish customer communication.
 eline



 tations



14 Char

 (
Planning
–
All planning activities are carried out in order to define resources tim
and otherproject related activities.
Risk analysis
–
The tasks required to calculate technical and management risks.
 Engineering
–
In this the task region,tasks required to build one or more represen
 of applications are carried out.
Construct and release
–
All the necessary tasks required to
 construct,test,install the applications are conducted. ¾_Customer evaluation
– Customer‟ s feedback
is obtained and based on the customer evaluation
 required tasks are performed and implemented at installation stage.
acteristics of software contrast to characteristics of hardware?
 R/MAY 2016
Software is easier to change than hardware. The cost of change is much hig
 hardware than for software.
Software products evolve through multiple releases by adding new features
 writing existing logic to support the new features. Hardware products consist of phy
 components that cannot be
“refactored” aft
er manufacturing, and cannot add
 capabilities that require hardware changes.
)AP

o her for

o	and re- sical new

o	Specialized hardware components can have much longer lead times for acquisition than is true for software.
o	Hardware design is driven by architectural decisions. More of the architectural work must be done up front compared to software products.
o The cost of development for software products is relatively flat over time.

8

However, the cost of hardware development rises rapidly towards the end of the development cycle.
o Testing software commonly requires developing thousands of test cases. Hardware

testing involves far fewer tests.

15 List t

Hardware must be designed and tested to work over a range of time and environmental conditions, which is not the case for software.

l

t

rstood

 (
he process maturity levels in SEIs CMM. NOV/DEC2015
Level 1:Initial
–
Few processes are defined and individual efforts are taken. Leve
2:Repeatable
–
To track cost schedule and functionality basic project managemen
 processes are established.
Level 3:Defined
–
The process is standardized, documented and followed.
Level 4:Managed
–
Both the software process and product are quantitatively unde
 and controlled using detailed measures.
does Verification represent?
Verification represents the set of activities that are carried out to confirm that the
 ware correctly implements the specific functionality.
does Validation represent?
Validation represents the set of activities that ensure that the software that has be
 s satisfying the customer requirements.
)16 What

soft

17 What
en built i

9

18 What are the steps followed in testing? MAY/JUNE 2016
i. Unit testing – The individual components are tested in this type of testing. ii. Module testing – Related collection of independent components are

tested.

iii. Sub-system testing – This is a kind of integration testing. Various modules are integrated into a subsystem and the whole subsystem is tested.

19 Stat AY

 (
iv. System testing
–
The whole system is tested in this system.
v. Acceptance testing
–
This type of testing involves testing of the system
with customer data.If the system behaves as per customer need then it is accepted.
e the advantages and disadvantages in LOC based cost estimation? APR/M
Advantages of LOC
It is straight forward (simple)
Easily can be automated (plenty of tools are available)
Disadvantages of LOC
Its Language dependent
Penalizes the well designed short programs
Cannot easily accommodate nonprocedural languages
)2015

 Need a level of detail that may not be available at the early stages of development.

10

20 What is requirement engineering?

Requirement engineering is the process of establishing the services that the customer requires from the system and the constraints under which it operates and
is developed.

21 What are the various types of traceability in software engineering?

i. So ho propo

ii. Re

iii. De

22	If you you choos
We the as user.
 (
urce traceability
–
These are basically the links from requirement to stakeholders w
 se these requirements.
quirements traceability
–
These are links between dependant requirements.
sign traceability
–
These are links from requirements to design.
have to develop a word processing software product, what process models will
 e? Justify your answer. NOV/DEC 2016
will choose the incremental model for word processing software. It focuses on
 pects of the word processing software that are visible to the customer / end
The feedback is used to refine the prototype.
at led to the transition from product to process oriented development in sof
 gineering? APR/MAY 2016
duct
techniques to designing software - Large numbers of software projects do n
r expectations in terms of functionality, cost, or delivery schedule. Process - Compo
 practitioners who have varied skills, the group is at the center of the collaborative
 everyone in the organization who is involved with software engineering
 provement.
)23 Wh tware

en 	

Pro ot meet thei sed of line effort of process im

Process-oriented view on cooperating software components based on the concepts and terminology of a language/action perspective on cooperative work provides a more suitable foundation for the analysis, design and implementation of software
components in business applications.

11

24 What are the advantages and disadvantages of iterative software development model

NOV/DEC 2015

Advantages
In iterative model we can only create a high-level design of the application before we actually begin to build the product and define the design solution for the entire product.

Building and improving the product step by step.

Disad

nts are

 (
can get the reliable user feedback
Less time is spent on documenting and more time is given for designing.
 vantages
Each phase of an iteration is rigid with no overlaps
Costly system architecture or design issues may arise because not all requireme
 gathered up front for the entire lifecycle
are the issues in measuring the software size using LOC as metric NOV/DEC
 NOV/DEC 2017
Lack of Accountability.
Lack of Cohesion with Functionality.
 Adverse Impact on Estimation.
 Difference in Languages.
Advent of
GUI
Tools
Lack of Counting Standards.
)25 What 2015,













26 What is System Engineering? April/may 2018

System Engineering means designing, implementing, deploying and operating systems which include hardware, software and people.
27 What is the use of CMM? NOV/DEC2015

Capability Maturity Model is used in assessing how well an organization’s

processes allow to complete and manage new software projects.
12

28 What is meant by Software engineering paradigm?

The development strategy that encompasses the process, methods and tools and generic phases is often referred to as a process model or software engineering
paradigm.

29 Define agility and agile team. April /May 2015

 Agility-Effective (rapid and adaptive) response to change (team members, new

 mbers,





 se

 (
technology, requirements)
Effective communication in structure and attitudes among all team me
 technological and business people, software engineers and managers
。
Drawing the customer into the team. Eliminate “us and them”
attitude.
 Planning in an uncertain world has its limits and plan must be flexible.

Organizing a team
so that it is in control of the work performed
The development guidelines stress delivery over analysis and design although the
 activates are not discouraged, and active and continuous
communication between developers and customers
Eliminate all but the most essential work products and keep them lean.
hasize an incremental delivery strategy as opposed to intermediate products that get
 ng software to the customer as rapidly as feasible
any two characteristics of software as a product. April /May 2015
tware is developed or engineered, it is not manufactured in the classical sense
 tware doesn't "wear out."
though the industry is moving toward component-based assembly, most software
 ues to be custom built.
the IEEE definition of software engineering . NOV/DEC 2017
)

Emp s worki
30 Write

1. Sof

2. Sof

3. Al contin
31 Write

According to IEEE's definition software engineering can be defined as the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software, and the study of these approaches; that is, the application of
engineering to software.

13

32	List two deficiencies in waterfall model . Which process model do you suggest to overcome each deficiency. APRIL/MAY 2017
Once an application is in the testing stage, it is very difficult to go back and change something that was not well-thought out in the concept stage.
 No working software is produced until late during the life cycle.

33 What is Agile?

The





In bu in it is under gililty’ mea
In soft ability

 (
word ‘agile’ means −
Able to move your body quickly and easily.
 Able to think quickly and clearly.
siness, ‘agile’
is used for describing ways of planning and doing work where
 stood that making changes as needed is an important part o
f the job. Business‘a
ns that a company is always in a position to take account of the market changes.
ware development, the term ‘agile’ is adapted to mean ‘the
to respond to changes − changes from Requirements, Technology and People.’
is
Agile Manifesto?
Agile Manifesto states that −
re uncovering better ways of developing software by doing it and helping others
ugh this work, we have come to value −

Individuals and interactions
over processes and tools.

Working software
over comprehensive documentation.
Customer collaboration
over contract negotiation.
)34 What

The

We a do it.
Thro







 Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

14

35 What are the Characteristics of Agility?

following are the characteristics of Agility −

	Agility in Agile Software Development focuses on the culture of the whole team with multi-discipline, cross-functional teams that are empowered and selforganizing.

 It fosters shared responsibility and accountability.

 Facilitates effective communication and continuous collaboration.



	Fr to the re
	C xes and ac

36 What
involve

 (
The whole-team approach avoids delays and wait times.
equent and continuous deliveries ensure quick feedback that in in turn enable the team align
 quirements.
ollaboration facilitates combining different perspectives timely in implementation, defect fi
 commodating changes.
are the principles of
of

agile

methods?

Customer
 ment
Customers

should

be

closely

involved

throughout

the

development

process.

Their

role
is

provide

and

prioritize

new

system

requirements

and

to

evaluate

the

iterations

of

the
System.
Incremental

delivery
The

software

is

developed

in

increments

with

the

customer

specifying

the

requirements

to

be

included
increment.
not

process
The

skills

of

the

development

team

should

be

recognized

and

exploited.

Team

members

should

be

left
 develop

their

own

ways

of

working

without

prescriptive

processes.
ce

change
Expect

the

system

requirements

to

change

and

so

design

the

system

to

accommodate

these

changes.
ain

simplicity
Focus

on

simplicity

in

both

the

software

being

developed

and

in

the

development

process.

Wherever
possible,

actively

work

to

eliminate

complexity

from

the

system.
)in each

People
to

Embra

Maint

37 What are the Problems with agile methods?

 It can be difficult to keep the interest of customers who are involved in the process.
 Team members may be unsuited to the intense involvement that characterizes agile methods.
 Prioritizing changes can be difficult where there are multiple stakeholders.
 Maintaining simplicity requires extra work.
 Contracts may be a problem as with other approaches to iterative development.

15

38 What is Extreme Programming?

XP is a lightweight, efficient, low-risk, flexible, predictable, scientific, and fun way to develop a software.

eXtreme Programming (XP) was conceived and developed to address the specific needs of software development by small teams in the face of vague and changing requirements.

 (
s and principles to guide the team behavior. The team is expected to self-or
me Programming provides specific core practices where
−
Each practice is simple and self-complete.
Combination of practices produces more complex and emergent behavior.
W
Embrace Change happens in Extreme programming?
y assumption of Extreme Programming is that the cost of changing a program can be
 y constant over time.
can be achieved with −
Emphasis on continuous feedback from the customer
Short iterations
Design and redesign
Coding and testing frequently
Eliminating defects early, thus reducing costs
Keeping the customer involved throughout the development
Delivering working product to the customer
)Extreme Programming is one of the Agile software development methodologies. It provides value ganize. Extre





39 HO

A ke held mostl

This















16

40 How Extreme Programming usedin a Nutshell?

Extreme Programming involves −

	Writing unit tests before programming and keeping all of the tests running at all times. The unit tests are automated and eliminate defects early, thus reducing the costs.

 (
ogramming in pairs (called pair programming), with two programmers at one
 king turns to use the keyboard. While one of them is at the keyboard, the other con
 views and provides inputs.
egrating and testing the whole system several times a day.
is it called “Extreme?
me Programming takes the effective principles and practices to extreme levels.
Code reviews are effective as the code is reviewed all the time.
 Testing is effective as there is continuous regression and testing.
 Design is effective as everybody needs to do refactoring daily.
Integration testing is important as integrate and test several times a day.
Short iterations are effective as the planning game for release planning and iteration planning.
)	Starting with a simple design just enough to code the features at hand and redesigning when required.

	Pr screen, ta stantly re

 Int

41 Why

Extre











17

42 What are the Extreme Programming Advantages?

Extreme Programming solves the following problems often faced
in the software development projects −

 Slipped schedules − and achievable development cycles ensure timely deliveries.

 Cancelled projects − Focus on continuous customer involvement ensures transparency with the
cu

 C eak the e	odating ch

 Pr

te

 (
stomer and immediate resolution of any issues.
osts incurred in changes
− Extensive and ongoing testing makes sure the changes do not br

xisting functionality. A running working system always ensures sufficient time for accomm
 anges such that the current operations are not affected.
oduction and post-delivery defects: Emphasis is on
− the
unit
 sts to detect and fix the defects early.
is Scrum ?
crum approach is a general agile method but its focus is on managing iterative
 opment rather than specific agile practices. There are three phases in Scrum:
The initial phase is an outline planning phase where you establish the general
 bjectives for the project and design the software architecture.
This is followed by a series of
sprint
cycles, where each cycle develops an
ncrement of the system.
The project closure phase wraps up the project, completes required documentatio
 uch as system help frames and user manuals and assesses the lessons learned from
project.
)43	What The S devel

1.
o
2.
i
3. n
s the

18

44 What are the Advantages of scrum ?

 The product is broken down into a set of manageable and understandable chunks.
 Unstable requirements do not hold up progress.
 The whole team has visibility of everything and consequently team
communication is improved.
		Customers see on-time delivery of increments and gain feedback on how the product works.
 (
eated in which everyone expects the project to succeed.
ion the Two perspectives on scaling of agile methods?
 Scaling up
Scaling out
is
Scaling up
agile methods for developing large software systems that cannot be develope
 team. For large systems development, it is not possible to focus only on the code
 m; you need to do more up- front design and system documentation. Cro
 unication mechanisms have to be designed and used, which should involve regula
 video conferences between team members and frequent, short electronic meetings
update each other on progress. Continuous integration, where the whole system
time any developer checks in a change, is practically impossible; however, it is e
 intain frequent system builds and regular releases of the
m.
is
Scaling out.
agile methods can be introduced across a large organization with many years of s
 opment experience. Project managers who do not have experience of agile metho
 uctant to accept the risk of a new approach. Large organizations often have
 dures and standards that all projects are expected to follow and, because o
 ucratic nature, these are likely to be incompatible with agile methods. Agile m
 to work best when team members have a relatively high skill level. However, withi
)		Trust between customers and developers is established and a positive culture is cr

45. Ment
1.
2.
46. What
Using d by a small of the syste ss-team comm r phone and where teams is built every ssential to ma
syste

47. What
How oftware devel ds may be rel quality proce f their burea ethods seem n large organizations,
there are likely to be a wide range of skills and abilities.

19

48. Draw the diagram of Extreme programming?

49 What
Spe om the oftware

 (
is a
gile development?
cification, design, implementation and testing are inter-leaved and the outputs fr
 development process are decided through a process of negotiation during the s
development process.
s include elements of plan-driven and agile processes. Deciding on the balance de
 ny technical, human, and organizational issues
.
is Scrum master?
ole of the Scrum Master is to protect the development team from external distracti
 d of the sprint the work done is reviewed and presented to
holders (including the product owner).
)project pends on ma

50. What
The r ons. At
the en stake

20

PART –B

1	Explain the following: (i) waterfall model (ii) Spiral model (iii)RAD model (iv) Prototyping model. NOV/DEC-12, NOV/DEC-15,
 A Project management methodology based on asequential design process

Fi S Li

Si

 (
nishes one phase before another phase can begin
DLC Model
near Sequential Model
mple to understand and easy to implement
all model phases
here are separate identified phases in the waterfall model:
Requirements analysis and definition
 System and software design
 Implementation and unittesting
 Integration and system testing
)Waterf

T

1.

2.

3.

4.

5. Operation and maintenance

The main drawback of the waterfall model is the difficulty of accommodating change after the

process is underway. In principle, a phase has to be complete before moving onto the next phase.
(ii)SPIRAL MODEL

The spiral model is divided into number of frame works. These frameworks are

21

denoted by task regions.

Usually there are six task regions. In spiral model project entry point axis is defined.
The task regions are:

1. Customer communication ,Planning Risk analysis., Engineering, Construct and release and

Customer evaluation.

 (
wbacks
It is based on customer communication.
It demands considerable risk assessment.
) Dra

1.

2.

It was originally proposed by Barry Boehm, the spiral model is anevolutionary software process model that couples the iterative nature of prototyping with the controlled and systematic aspects of the waterfallmodel.

22

 It provides the potential for rapid development of increasingly more complete versions of the software.

 The spiral model can be adopted to apply throughout the entire lifecycle of the application from concept development to maintenance.

 The spiral model is divided into set of framework activities defined bysoftware engineering team.

 The initial activity is shown from centre and developed inclockwise direction.

Advantages

 In r models.

 It oblem.

 Su

 Sc

 Ri

 C

 (
this approach, the project monitoring is easy and more effective compared to othe
 reduces the number of risk in softwaredevelopment before they become serious pr
 itable for very high risk.
hedule and cost is more realistic.
sk management is in-built in the spiralmodel.
 hanges can be accommodated in the later
ages
Model
Rapid Application Development process is an adoption of the waterfall model; it tar
 ng software in a short span of time. RAD follows the iterative
AD model has following phases
 usiness Modeling
Data Modeling
ocess Modeling
) st

(iii) RAD

RAD or gets at developi

SDLC R B

Pr
.		Application Generation viii. Testing and Turnover

23

iv) Prot
 (
otyping Model
ototype methodology is defined as a Software Development model in which a pr
 then reworked when needed until an acceptable prototype is achieved. It also
the final system.
prototyping model works best in scenarios where the project's requirements are
 ve, trial, and error method which take place between the developer and the client
ustomer defines a set of general objectives for software, but does not identify deta
 nts for functions and features.
case Prototyping is best suited
ping can be used together with other models for elicitation requirements
ototype can serve as “the first system.”
prototypes are “Throw Away”
while others also evolve become part of the actual
 system.
)Pr ototype is built, test, and creates a base to produce
Software not known. It is an iterati

Often, a c iled requireme

In this Prototy The pr
Some

Both customers and developers like the prototyping paradigm.
i. Customer/End user gets a feel for the actualsystem

24

ii.
2 Discuss

T software that ensures t
S tions. T
 (
Developer get to build something immediately.
the various life cycle models in software development? APR/MAY-16
he
Software Development Lifecycle (SDLC)
is a systematic process for building
 he quality and correctness of the software built.
DLC process aims to produce high-quality software which meets customer expecta
 he system development should be complete in the pre-defined time frame and cost.
 consists of a detailed plan which explains how to plan, build, and maintain specific
 of the SDLC lifecycle has its own process and deliverables that feed into the next

Phase 1: Requirement collection and analysis

Phase 2: Feasibility study:

Phase 3: Design:

Phase 4: Coding:
)DLC software. Every

phase phase.

 Phase 5: Testing:

 Phase 6: Installation/Deployment:

 Phase 7: Maintenance:

Phase 1: Requirement collection and analysis:

The requirement is the first stage in the SDLC process. It is conducted by the senior team members with inputs from all the stakeholders and domain experts in the industry. Planning for the quality assurance

25

requirements and recognization of the risks involved is also done at this stage.

This stage gives a clearer picture of the scope of the entire project and the anticipated issues, opportunities, and directives which triggered the project.

Requirements Gathering stage need teams to get detailed and precise requirements. This helps companies to finalize the necessary timeline to finish the work of that system.

Phase 2: Feasibility study:

Once the ftware needs. This proc known as 'SRS' document t life cycle.

There ar

 E
 L pliances.



 T re

 (
requirement analysis phase is completed the next step is to define and document so
 ess conducted with the help of 'Software Requirement Specification' document also
. It includes everything which should be designed and developed during the projec
e mainly five types of feasibilities checks:
conomic:
Can we complete the project within the budget or not?
egal:
Can we handle this project as cyber law and other regulatory framework/com
Operation feasibility:
Can we create operations which is expected by the client?

echnical:
Need to check whether the current computer system can support the softwa

hedule:
Decide that the project can be completed within the given schedule or not
Design:
rd phase, the system and software design documents are prepared as per the require
 ion document. This helps define overall system architecture.
gn phase serves as input for the next phase of the model.
 two kinds of design documents developed in this phase:
vel Design (HLD)
cription and name of each module
ne about the functionality of every module
) Sc .

Phase 3:

In this thi ment specificat

This desi There are High-Le
Brief des
An outli

Interface relationship and dependencies between modules Database tables identified along with their key elements Complete architecture diagrams along with technology details
Low-Level Design(LLD)

 Functional logic of the modules

26

 Database tables, which include type and size

 Complete detail of the interface

 Addresses all types of dependency issues

 Listing of error messages

 Complete input and outputs for every module

 (
Coding:
system design phase is over, the next phase is coding. In this phase, developers sta
 em by writing code using the chosen programming language. In the coding phase,
 to units or modules and assigned to the various developers. It is the longest phase
ment Life Cycle process.
ase, Developer needs to follow certain predefined coding guidelines. They also nee
 ming tools like compiler, interpreters, debugger to generate and implement the code
Testing:
software is complete, and it is deployed in the testing environment. The testing tea
 onality of the entire system. This is done to verify that the entire application works
 requirement.
his phase, QA and testing team may find some bugs/defects which they communica
 opment team fixes the bug and send back to QA for a re-test. This process continue
 s bug-free, stable, and working according to the business needs of that system.
Installation/Deployment:
software testing phase is over and no bugs or errors left in the system then the fina
 tarts. Based on the feedback given by the project manager, the final software is rel
 for deployment issues if any.
Maintenance:
system is deployed, and customers start using the developed system, following 3 a
)Phase 4:

Once the rt build the entire syst tasks are divided in of the Software Develop

In this ph d to use program .

Phase 5:

Once the m starts testing the functi according to the customer

During t te to developers. The devel s until the software i

Phase 6:

Once the l deployment process s eased and checked

Phase 7:

Once the ctivities occur

 Bug fixing - bugs are reported because of some scenarios which are not tested at all
 Upgrade - Upgrading the application to the newer versions of the Software

 Enhancement - Adding some new features into the existing software

3 What is the difference between information engineering & product engineering? Also explain the

product engineering hierarchy in detail. MAY/JUN-13

27

Product engineering

	It refers to the process of designing and developing a device, assembly, or system such that it is produced as an item for sale through some production manufacturing process.
	Product engineering usually entails activity dealing with issues of cost, producibility, quality, performance, reliability, serviceability, intended lifespan and user features.

 (
includes design, development and transitioning to manufacturing of the product. T
 compasses developing the concept of the product and the design and development
 echanical, electronics and software components.
After the initial design and development is done, transitioning the product to manufa
 lumes is considered part
of product engineering.
oduct engineers are the technical interface between the component development te
 oduction side (Front End and Back End), especially after the development phase an
when the high volume production is running.
oduct engineers improve the product quality and secure the product reliability by b
 st of tests and tests coverage that could impact the production fall-off. They suppo
 alysis request from customers.
r example, the engineering of a digital camera would include defining the feature
 tics, the mechanical and ergonomic design of the packaging, developing the electr
 ntrol the various component and developing the software that allows the user to se
tore them in memory and download them to a computer.
oduct engineering is an engineering discipline that deals with both design
 d manufacturing aspects of a product.
requires the product engineer to have a very good working knowledge of:
ical methods and tools
 facturing process
ware, hardware and systems implementation
)	These product characteristics are generally all sought in the attempt to make the resulting product attractive to its intended market and a successful contributor to the business of the organization that intends to offer the product to that market.

		It he term en of its
m

		cture it in vo

 Pr am and the
pr d qualifications

	Pr alancing the co rt failure
an

	Fo set, design of the op onics that
co e the pictures, s

	Pr an

The job

 Statist
 Manu

 Soft

 Product reliability and qualification

 Physical analysis methods

 Computer-aided design and simulation programs

 Specific technology

 Strong product Knowledge

28

 Strong analytic work methodology and problem solving skills

 Continuous Improvement Knowledge

Information engineering (IE)

	It also known as Information technology engineering (ITE), information engineering methodology (IEM) or data engineering, is a software engineering approach to designing and developing information systems.
 (
nformation technology engineering involves an architectural approach for planning,
signing, and implementing applications.
has been defined by Steven M Davis as: "An integrated and evolutionary set of tas
 chniques that enhance business communication throughout an enterprise enabling i
 ople, procedures and systems to achieve its vision
e two variants of information technology engineering. These are called the DP-driv
 ness-driven variant.
DP-driven:
The DP-driven variant of information technology engineering was desig
 Departments to develop information systems that satisfied the information needs of t
 which was largely a DP-driven development environment. Most of the CASE tools a
 upport this DP-driven variant of ITE.
usiness-driven:
ITE was extended into strategic business planning for the business
 ation technology engineering. This variant was designed for rapid change in the cli
 ented environment of the business-driven 1990's.
BTL6
t the principles of agile software development. NOV/DEC 2016
It describes a set of principles for software developmentwhere,
ments and solutions evolve through the collaborative effort of
self-
g + cross-functional teams
ates
)	I analyzing, de

 It ks and
te t to develop
pe

There ar en variant and the busi

	ned to enable IS he 1980s - vailable today
s
i. B -driven variant of inform ent/server, object-ori

4 (a) Lis

1.

Require organizin

It advoc

Adaptive planning

1. Evolutionary development

2. Early delivery

3. Continuous improvement
4. Encourages rapid and flexible response to change

These principles support the definition and continuing evolution of many software development methods

29

Every project needs to be handled differently

Existing methods need to be tailored to best suit the project requirements
Tasks are divided to time boxes (small time frames) to deliver specific features for a release
Iterative approach is taken & working software build is delivered after each iteration

Agile ModelPros andCons

 (
(k)
 Pros
(l)
 Cons
ealistic approach to software
ment
Not suitable for handling complex
teamwork and cross training.
dependencies.
lity can be developed rapidly
More risk of sustainability,

onstrated.
maintainability and extensibility.
requirements areminimum.
An overall plan, an agile leader and agile
PM practice is a
or fixed or changing
must without which it will not work.

ments
Strict delivery management dictates the

early partial workingsolutions.
scope, functionality to be delivered, and
del for environments that
adjustments to meet the deadlines.

teadily.
Depends heavily on customer interaction,

ules, documentation easily
so if customer is not clear, team can be
d.
driven in the wrongdirection.
oncurrent development and
There is very high individual dependency,

within an
since there is minimum documentation
 anned context.
generated.
o planningrequired
Transfer of technology to new team

anage
members may be quite challenging due
to lack of documentation.
xibility to developers
)It widely accepted in the software world recently, however, this method may not always be suitable for all products.

Is a very r develop
Promotes
Functiona anddem
Resource
Suitable f require
Delivers
Good mo change s

Minimal r employe
Enables c delivery overall pl
Little or n
Easy to m
Gives fle

)

30

Each buil
 (
d is incremental
in terms of features
ild holds all the features required by the customer
inciples
e Manifesto is based on twelve principles
Customer satisfaction by early and continuous delivery of valuable software
Welcome changing requirements, even in late development
Working software is delivered frequently (weeks rather than months)
 Close, daily cooperation between business people and developers
 Projects are built around motivated individuals, who should be trusted
Face-to-face conversation is the best form of communication (co-location)
 Working software is the principal measure of progress
Sustainable development, able to maintain a constant pace
)Final bu
Agile Pr
The Ag•il
1.

2.

3.

4.

5.

6.

7.

8.

9. Continuous attention to technical excellence and good design
10.Simplicity—the art of maximizing the amount of work not done—is essential
11.Best architectures, requirements, and designs emerge from self-organizing teams
12.Regularly, the team reflects on how to become more effective, and adjusts accordingly

31

5 Write note on business process engineering and product engineering? MAY/JUN-13 , APRIL/MAY-

15

Business Engineering

Business process engineering is a way in which organizations study their current business processes and develop new methods to improve productivity, efficiency, and operational costs.
 (
ance goals, and recommend ways it can work more seamlessly to achieve overall im
any business process engineers work as consultants contracted by companies seeki
 ments to their methodology and infrastructure.
engineering
rs to the process of designing and developing a device, assembly, or system such th
 tem for sale through some
production manufacturing process.
uct engineering usually entails activity dealing with issues of cost, reducibility, quali
 mance, reliability, serviceability, intended lifespan and user features.
product characteristics are generally all sought in the attempt to make the resulting
 ive to its intended market and a successful contributor to the business of the organi
 ds to offer the product to that market.
udes design, development and transitioning to manufacturing of the product. The t
 mpasses developing the concept of the product and the design and development of i
 onics and software components.
the initial design and development is done, transitioning the product to manufactur
 sidered part
of product engineering.
duct engineers are the technical interface between the component development team
 duction side (Front End and Back End), especially after the development phase and qua
the high volume production is running.
oduct engineers improve the product quality and secure the product reliability by b
 f tests and tests coverage that could impact the production fall-off. They support fa
 t from customers.
)As a business process engineer, you will examine the way an organization operates, its long-term perform provement.

.		M ng improve

Product

4. It refe at it is produced as an i
5. Prod ty, perfor

6. These product attract zation that inten

7. It incl erm
enco ts mechanical,
electr

8. After e it in volumes is con

9. Pro and the
pro lifications when

10.	Pr alancing the cost o ilure analysis reques

11.	For example, the engineering of a digital camera would include defining the feature set, design of the optics, the mechanical and ergonomic design of the packaging, developing the electronics that control the various component and developing the software that allows the user to see the pictures, store them in memory and download them to a computer.

12.	Product engineering is an engineering discipline that deals with both design and manufacturing aspects of a product.

The job requires the product engineer to have a very good working knowledge of:

ii. Statistical methods and tools
32

iii. Manufacturing process

iv. Software, hardware and systems implementation v. Product reliability and qualification
vi. Physical analysis methods

 (
trong product Knowledge
trong analytic work methodology and problem solving skills
 ontinuous Improvement Knowledge
in detail about spiral model with a neat sketch and describe why this mode
 volutionary and RAD models. APRIL/MAY-15, NOV/DEC 2017
R PART B Q1
rocess model is best suited for risk management? Discuss in detail with an ex
ages and disadvantages? NOV/DEC 2016,APRIL/MAY 2018
two characteristics of risk i.e. uncertainty and loss.
g are the categories of the risk:
risk
the project risk is real then it is probable that the project schedule will slip and the
 will increase.
identifies the potential schedule, resource, stakeholders and the requirements probl
 n a software project.
ical risk
echnical risk is real then the implementation becomes impossible.
ifies potential design, interface, verification and maintenance of the problem.
ss risk
ness risk is real then it harms the project or product.
)vii. Computer-aided design and simulation programs viii. Specific technology
ix. S

x. S

xi. C

6	Explain l comes under both e
REFE
7 Which p ample. Give its

advant

There are

Followin

1. Project
1.	If cost of the project
2.	It ems and their impact o
2. Techn
 If the t
 It ident
3. Busine
If the busi

There are five sub-categories of the business risk:

1. Market risk - Creating an excellent system that no one really wants.
2. Strategic risk - Creating a product which no longer fit into the overall business strategy for companies.
3. Sales risk - The sales force does not understand how to sell a creating product.
4. Management risk - Loose a support of senior management because of a change in focus.
5. Budget risk - losing a personal commitment.

33

Other risk categories

These categories suggested by Charette.

1. Known risks : These risk are unwrapped after the project plan is evaluated.
2. Predictable risks : These risks are estimated from previous project experience.
3. Unpredictable risks : These risks are unknown and are extremely tough to identify in advance.

 (
of risk management
a global perspective -
View software risks in the context of a system and the bus
 o solve.
rward looking view
–
Think about the risk which may occur in the future and cre
 ing the future events.
age open communication
–
Encourage all the stakeholders and users for suggesting
–
A consideration of risk should be integrated into the software process.
ze a continuous process
–
Modify the identified risk than the more information is
 as better insight is achieved.
a shared product vision
–
If all the stakeholders share the same vision of the softwa
 better risk identification.
age teamwork
–
While conducting risk management activities pool the skills and ex
 ders.
ntification
ematic attempt to specify threats to the project plans.
rent types of risk:
ic risks
)Principles

Maintain iness problem planned t

Take a fo ate future plans for manag

Encour risks at any time.

Integrate

Emphasi known and add new risks

Develop re then it is easier for

Encour perience of all stakehol

Risk Ide

It is a syst

Two diffe

1. Gener
o These risks are a potential threat to each software project.
2. Product-specific risks
- These risks are recognized by those with a clear understanding of the technology, the people and the environment which is specific to the software that is to be built.
- A method for recognizing risks is to create item checklist.

34

8	Consider 7 functions with their estimated lines of code. Average productivity based on historical data is 620 LOC/pm and labour rate is Rs. 8000 per mnth. Find the total estimates
project cost and effort? F1 – 2340 , F2 – 5380, F3 – 6800 , F4 –3350 , F5 -4950 , F6 -2140 , F7 – 8400

There are many techniques that can be used to rigorously estimate or measure effortand cost for a software project, such as:

 (
Lines of Code (SLOC).
uctive COst MOdel (COCOMO)
Technique(Source Line of Code Technique)-The SLOC technique is an objective
 of estimating or calculating the size of the project.
ject size helps determine the resources, effort, cost, and duration required to
 e the project.
o used to directly calculate the effort to be spent on a project.
n use it when the programming language and the technology to be used are
 ned.
hnique includes the calculation of lines of codes(LOC), documentation of pages,
 utputs, and components of a software program.
g SLOC-The use of SLOC techniques can be used in the case of the technology or
 remains unchanged throughout the project.
y, it can be used when you are using third-generation language, such as FORTRAN
 OL.
t the SLOC the following must be considered: The count includes:-
 OC delivered to client.
OC written only by the development team are counted-The declaration statements
 ted as source lines of code
unt excludes:-The code created by application generators.
)-Function Point (FP)

-Source

-COnstr

-Delphi

SLOC
method

-The pro complet

-It is als

-W e ca predefi

-This tec inputs, o

Countin language

Generall or COB

-To coun

The SL

-The SL
are coun

The co

-The comments inserted to improve the readability of program.

-Once, you get the numbers of line of code of SLOC, you can estimate or calculate the total effort and cost to complete the given project.

Example:-Assume estimated lines of code of a system is: 33,600 LOC -Average productivity for system of this type is: 620 LOC/person-month-

There are 7 developers-Labor rate is: $ 8000per person-month Calculate the total effort and cost required to complete the above project

Solution+Way1=>
35

Total Effort =Total LOC/Productivity = 33600/620=54.19 ≈ 54 person-months=>
7developers

Effort = Total Effort/6= 54/7= 7months=> Total Cost=Total Effort * Labor Rate = 54 *
8000≈ $43,2000+Way2=> Cost per LOC =Labor Rate/Productivity=8000/620=$12.9≈ $13

> Total Cost = Total LOC * Cost perLOC =33,600* 13=$436800
9 (i) What is the impact of reusability in software development process?

(ii) Explain the component based software development model with a neat sketch.

Compon

	It en ra

		It co

	T th s

 (
NOV/DEC 2017
ent-based software engineering
(
CBSE
)
also called
components-based development
(
CBD
), is a branch of software
 gineering that emphasizes the separation of concerns with respect to the wide-
 nging functionality available throughout a given software system.
is a reuse-based approach to defining, implementing and composing loosely
 upled independent components into systems.
his practice aims to bring about an equally wide-ranging degree of benefits in both
 e short-term and the long-term for the software itself and for organizations that
 ponsor such software.
ftware engineering practitioners regard components as part of the starting platform
 r service-orientation.
omponents play this role, for example, in web services, and more recently,
 service-oriented architectures (SOA), whereby a component is converted by the
web service into a
service
and subsequently inherits further characteristics beyond th
an ordinary component.
TS(CommercialOff TheShelf)software components, developed by vendors who offer them asproduc
 beusedwhensoftwareistobuilt.
ovides interfaces targeted functionality with well defined
corporates model many of the characteristics of Spiral model
ardlessof technologyto beused,it mustfollow the steps like
–
Available component
 ed productsare researched and evaluatedfor the current application
)	So fo

 C
in
at
of

•	CO ts can
• Pr

• In

•	Reg bas
Componentintegration issuesis to dealt
– A softwarearchitectureisdesignedto accommodatethe components.

– Componentsareintegratedintothe architecture

– Comprehensive testing is conductedto ensureproper functionality.

–	Component Based Software Engineering(CBSE) is a process that emphasis the design and construction of computer based system using reusable software “components”.

36

• It emerged from the failure of object-oriented development to support effective reuse. Single object classes are too detailed and specific.

 (
•
The process begins when a software team establish requirements for a system
 to be built using conventional requirements elicitation techniques. An
 architectural design is established , but rather than moving immediately into
 more detailed tasks , the team examines requirements to determine what
 subset is directly amenable to composition , rather than construction.
•
For those requirements that can be addressed with available components the
 following activities take place:
1. Component qualification
2. Component adaptation
3. Component composition
)• CBSE embodies the “buy , don’t built” philosophy.

4. Component update

COMPONENT CHARACTERISTICS

1. Standardised

2. Independent

3. Compassable

4. Deployable

37

5. Documented

10 (i) How function point analysis methodology is applied in estimation of software size

?Explain. Why FPA methodology is better than LOC methodology ?

 (
containing program header, declaration, and executable and non-executable
s”.
Count
brecht while working for IBM, recognized the problem in size measurement in th
 nd developed a technique (which he called Function Point Analysis), whic
 to be a solution to the size
ment problem.
functional units are divided in two categories:
function types
Logical Files (ILF): A user identifiable group of logical related data or contro
 on maintained within the system.
al Interface files (EIF): A user identifiable group of logically related data or contro
 ion referenced by the system, but maintained within another system. This means
 counted for one system, may be an ILF in another system.
The weighting factors are identified for all functional units and multiplied wit
 the functional units accordingly. The procedure for the calculation of Unadjuste
 Function Point (UFP) is given in table shown above.
he procedure for the calculation of UFP in mathematical
s given below:UFP = ∑∑ Z ij w ij
)If LOC is simply a count of the number of lines then figure shown below contains 18 LOC . (ii) A line of code is any line of program text that is not a comment or blank line, regardless of the number of statements or fragments of statements on the line. This specifically includes all lines
statement

Function

Alan Al e

1970s, a h appeared
measure The five (i) Data
Internal l informati
Extern l informat
that EIF
h d

(iii)form i

i = 1 J = 1

Where i indicate the row and j indicates the column of Table 1

W ij : It is the entry of the i th row and j th column of the table 1

Zij : It is the count of the number of functional units of Type i that have been classified as having the complexity corresponding to column j.
Organizations that use function point methods develop a criterion for

38

determining whether a particular entry is Low, Average or High. Nonetheless, the determination of complexity is somewhat subjective. FP = UFP * CAF
Where CAF is complexity adjustment factor and is equal to [0.65 +

0.01 x ΣF i]. The F i (i=1 to 14) are the degree of influence

 (
20 low internal logical files, 15 high external interface files, 12 average
inquiries and a value adjustment factor of 1.10 . What is the unadjusted an
 d function point count ? APRIL/MAY 2017
ed function point counts may be calculated using
∑ Z ij w ij
= 1 J = 1
+ 12 x 7 + 20 x 7 + 15 + 10 + 12 x 4
84 +140 + 150 + 48
CAF
1.10 = 497.2.
a process model ? Describe the process model that you would choose t
 acture a car. Explain giving suitable reasons. APRIL/MAY 2017
ured set of activities required to develop a software system.
ifferent software processes but all involve:
ation –
defining what the system should do;
nd implementation
–
defining the organization of the system and
 nting the system;
on
–
checking that it does what the customer wants;
n
–
changing the system in response to changing customer needs.
ware process model is an abstract representation of a process. It
a description of a process from some particular perspective
we describe and discuss processes, we usually talk about the activities
)(iv) An application has the following:10 low external inputs, 12 high external outputs,
external d adjuste
Solution Unadjust as:

UFP = ∑
i
FP
= 10 x 3
= 30 +
= 452
= UFP x
= 452 x
11	What is o manuf
A struct
• Many d
•Specific Design a impleme Validati Evolutio
• A soft presents When
in these processes such as specifying a data model, designing a user
interface, etc. and the ordering of these activities.
• Process descriptions may also include:
•Products, which are the outcomes of a process activity;
Roles, which reflect the responsibilities of the people involved in the process;
Pre- and post-conditions, which are statements that are true before and after a process
activity has been enacted or a product produced.
12 Explain how breakdown structure is used in software engineering .Discuss how

software project scheduling helps in timely release of a product. APRIL/MAY 2018

39

A Work Breakdown Structure includes dividing a large and complex project into simpler, manageable and independent tasks. The root of this tree (structure) is labelled by the Project name itself. For constructing a work breakdown structure, each node is recursively decomposed into smaller sub-activities, until at the leaf level, the activities becomes undividable and independent. It follows a Top-Down approach.
Steps:
3. Step-1: Identify the major activities of the project.
4. Step-2: Identify the sub-activities of the major activities.
5. Step-3: Repeat till undividable, simple and independent activities are created.

6.
Construct
Firstly, the t. After this i
this compl the project Generally t
 (
ion of Work Breakdown Structure:
project managers and top level management identifies the main deliverables of the projec
 mportant step, these main deliverables are broke down into smaller higher-level tasks and
ete process is done recursively to produce much smaller independent tasks. It depends on
 manager and team that upto which level of detail they want to break down their project.
 he lowest level tasks are the most simplest and independent tasks and takes less than two
th of work. Hence, there is no rule for upto which level we may build the work breakdown
 f the project as it totally depends upon the type of project we are working on and the
nt of the company. The efficiency and success of the whole project majorly depends on the
 he Work Breakdown Structure of the project and hence, it implies its importance.
allows doing a precise cost estimation of each activity.
allows estimating the time that each activity will take more precisely.
 allows easy management of the project.
helps in proper organization of the project by the top management.
ail explanation about agile process?
tion of iterative and incremental process models
 of adaptability and customer satisfaction
into small incremental builds
)weeks wor structure o manageme quality of t

Uses:
 It
 It
 It
 It

13	Give det Combina Focus Break
iteration typically lasts 1-3 weeks

Cross functional teams working

End of the iteration, a working product is displayed to the customer

Advantage

Realistic approach

Promotes teamwork and cross training. Functionality developed rapidly and demonstrated.
40

Resource requirements are minimum. Suitable for fixed or changing requirements Delivers early partial working solutions.
 (
to manage.
flexibility to developers.
uitable for handling complex dependencies.
delivery management dictates the scope, functionality to be
 d, and adjustments to meet the deadlines.
ds heavily on customer interaction, so if customer is not clear,
 be driven in the wrong direction.
er of technology to new team members may be quite
 ng due to lack of documentation.
amework
nal Unified Process (1994),
 (1995),
me Programming (1996),
ive Software Development,
 e Driven Development,
mic Systems Development Method (DSDM) (1995).
 nal Unified Process (1994),
(1995),
me Programming (1996),
)Good model for environments that change steadily. Minimal rules, documentation easily employed. Little or no planning required.
Easy Gives Not s Strict
delivere

Depen team can Transf challengi Agile Fr
Ratio

Scrum Extre Adapt Featur Dyna Ratio Scrum Extre
Adaptive Software Development, Feature Driven Development,
Dynamic Systems Development Method (DSDM) (1995).
14 Describe in detail about Extreme programming ?
ExtremeProgramming(XP)

41

 Management-Practices

On-SiteCustomer:Acentralcustomercontactmustalwaysbe accessiblein order to clarify requirements and questions directly.

PlanningGame:Projects,in accordancewith XP,runiteratively (repeatedly)andincrementally (graduallybuild on eachother). The contentsof the nextstepareplannedbeforeeach iteration. Allproject

 (
members(incl.the customer)participate.
ShortReleases:
Newdeliveriesshouldbemadeat short
 intervals. Consequently,customersreceivethe required
 functionsquickerandcanthereforegivefeedbackonthe
 developmentquicker.
Team-Practices
Metaphor:
Onlya few clear metaphors shoulddescribethe system
 beingdevelopedsothat thenitty-gritty of thesystemisclearto allof
 the projectmembers.
CollectiveOwnership:
Thewhole team is responsiblefor the system,not
 individuals.Eachdevelopermusthaveaccessto all linesof codesothat
 eachdeveloperisableto takeoverthetaskof anotherdeveloper.
ContinuousIntegration:
All changesto the systemareintegrated
Promptly sothat not too many dependenciesbetween changesoccur.
CodingStandards:
Regardingthecommonresponsibilityfor thecode,
 thereshouldbeagivencommonstandardfor writingthecode.
SustainablePace:
XPbuildson the creativity of the individual
 project members.Thiscreativity cannot be achievedif the project
 team constantlyworksovertime. Overtimeisto beavoided.
Design
Writing unit testsbeforeprogrammingandkeepingallofthetests
)





runningatalltimes.Theunit testsareautomatedandeliminates defectsearly,thusreducingthecosts.

Startingwith asimpledesignjust enoughtocodethe featuresat handand redesigningwhenrequired.

 Design:UserStories

42





 (
Development
Programmingin pairs(calledpair programming),with two programmersatonescreen,taking
 turns to usethe keyboard.Whileoneof them is at the keyboard,the other constantlyreview
 andprovidesinputs.
Integratingandtestingthe wholesystem severaltimes aday.
 PairProgramming
two programmerswork togetheratone workstation.
One,the
driver
,writes codewhilethe other,the
observer
or
navigator
,reviewseachlineof codeas i
 typedin.
Thetwo programmersswitchrolesfrequently.
Whilereviewing, the observeralsoconsidersthe "strategic" direction of the work, comingup
 with ideasfor improvementsandlikelyfutureproblemstoaddress.
Thisfreesthe driver to focusall of their attention onthe "tactical" aspectsof completingt
 current task,usingthe observerasasafetynet andguide
)s



t is

he

 PairProgramming

Pairprogrammingincreasesthe man-hoursrequiredto deliver codecomparedto programmers workingindividuallyfrom upto between15%and100%.

However,the resultingcodehasabout15%fewer defects.

 Production

43

Putting a minimalworking systeminto the productionquicklyandupgrading it whenever required.

Keepingthe customerinvolvedallthe timeandobtainingconstantfeedback.

Extreme Programming − A way to handle the common shortcomings
Software Engineering involves −

 Cr

 Le

 Ite

Extreme design act and refac

Extreme P

 C

 (
eativity
arning and improving through trials and errors
 rations
Programming builds on these activities and coding. It is the detailed (not the only)
ivity with multiple tight feedback loops through effective implementation, testing
 toring continuously.
rogramming is based on the following values −
ommunication
 mplicity
 edback
ourage
 spect
Extreme

Programming?
ghtweight, efficient, low-risk, flexible, predictable, scientific, and fun way to
 oftware.
P
rogramming (XP) was conceived and developed to address the specific needs of
) Si

 Fe

 C

 Re

What is XP is a li develop s

eXtreme
software development by small teams in the face of vague and changing requirements.

Extreme Programming is one of the Agile software development methodologies. It provides values and principles to guide the team behavior. The team is expected to self-organize. Extreme Programming provides specific core practices where −

 Each practice is simple and self-complete.

 Combination of practices produces more complex and emergent behavior.

44

Embrace Change
A key assumption of Extreme Programming is that the cost of changing a program can be held mostly constant over time.

This can be achieved with −

 Emphasis on continuous feedback from the customer

 (
Design and redesign
oding and testing frequently
iminating defects early, thus reducing costs
eping the customer involved throughout the development
Delivering working product to the customer
about Extreme Programming using nutshell.?
Programming involves −
riting unit tests before programming and keeping all of the tests running at all time
 e unit tests are automated and eliminates defects early, thus reducing the costs.
arting with a simple design just enough to code the features at hand and redesigning
 when required.
ogramming in pairs (called pair programming), with two programmers at one
 een, taking turns to use the keyboard. While one of them is at the keyboard, the
 her constantly reviews and provides inputs.
egrating and testing the whole system several times a day.
utting a minimal working system into the production quickly and upgrading it
) Short iterations



 C

 El

 Ke



15 Explain

Extreme
 W s.
Th

 St

 Pr scr ot

 Int

 P
whenever required.
 Keeping the customer involved all the time and obtaining constant feedback. Iterating facilitates the accommodating changes as the software evolves with the changing
requirements.

45

UNIT – 2 PART –A

S.NO QUESTIONS

1 What is Software Prototyping? NOV/DEC-10 , APR/MAY-11, MAY/JUNE-13

It is a rapid software development for validating the

 (
irements. It is to help customers & developers to understand the system requireme
ine functional and non- Functional requirements. NOV/DEC-10
Functional requirements describe all the functionality or system services. It
 lear how system should react to particular inputs and how particular systems be
 icular situation. Non functional requirements define the system properties and cons
 divided in to product, organizational &
rnal requirements.
at is meant by functional requirement? APR/MAY-11
Functional requirements
 ribe all the functionality or system services. It should be clear how system should
 icular
nputs and how particular systems behave in particular situation.
Name the metrics for specifying Non-functional requirements? NOV/DEC-11
Speed, size, ease of use, reliability, robustness, portability
aw the DFD for the following (i) External entity (ii) Data items NOV/DEC-
)requ nts.

2 Def

should

be c have in part traints. It is
exte

3 Wh

desc react to part
i

4

5 Dr 11

External entity

Data items

46

6 What do requirements processes involve? APR/MAY-12
It involves feasibility study, discovery, analysis &validation of system requirements.
7 Define non-functional requirements. APR/MAY-12

Non functional requirements define the system properties and constraints. It is divided in to product, organizational &
external requirements
8 Dist reference to

req

oblem. ent
tware function,

 (
inguish between the term inception, elicitation, &elaboration with
 uirements? NOV/DEC-12
Inception
–
set of questions are asked to establish basic understanding of pr
Elicitation - collaborative requirements gathering & quality function deploym
Elaboration
–
It focuses on developing a refined technical model of sof
 features &constraints.
SRS is traceable ?comment NOV/DEC-12,MAY/JUNE 2016
An SRS is correc
 every requirement stated therein is one that the software shall meet. Tra
 this procedure easier and less prone
to error.
at is data dictionary? MAY/JUN-13 , APR/MAY 2016 , NOV/DEC 2016, APRI

It is organized collection of all the data elements of the system with precis
 definition so that user & system analyst will have a common understanding of inp
 components of stores and intermediate calculations.
at are the benefits of prototyping?
)9	An t if, and only if, ceability makes

10 Wh L/MAY 2017
e and rigorous uts, outputs,

11 Wh

i. Prototype serves as a basis for deriving system specification. ii. Design quality

can be improved.

iii. System can be maintained easily.
iv. Development efforts may get reduced.

v. System usability can be improved.

47

12 What are the prototyping approaches in software process?MAY/JUNE 2016,APRIL/MAY 2018

i. Evolutionary prototyping – In this approach of system development, the initial prototype is prepared and it is then refined through number of stages to final stage.
 (
neering paradigm.
the characteristics of good SRS? APR/MAY 2016

Correct

Unambiguous

Complete

Consistent

Ranked for importance and/or stability

Verifiable

Modifiable

Traceable
assify the following as functional / non-functional requirements for
 em? NOV / DEC 2016
Verifying bank balance
–
functional requirements
Withdrawing money from bank
–
functionalrequirements
Completion of transaction in less than 1 sec
–
non
-functional requirements
Extending system by providing more tellers for customers -
)ii. Throw-away prototyping – Using this approach a rough practical implementation of the system is produced. The requirement problems can be identified from this implementation. It is then discarded.System is then developed using some different
engi

13 List

14	Cl a banking syst 	
(a) (b) (c) (d)

non-functional requirements

48

15 What is the linkage between Dataflow and ER diagram?APR/MAY 2016

An ER diagram is the Entity Relationship Diagram, showing the relationship between different entities in a process. A Data Flow diagram is a symbolic structure showing how the flow
of data is used in different process

16 List

Plac

Re

17		ve we got the r
In t engineering are exa e that the SRS refle
clea

18 Wh

syst repr
19 Wh

data out
20 Wh

 (
the steps in user interface design? Golden rules of UI design APR/MAY 2015,
NOV/DEC2015
e the User in Control
duce the User's Memory Load Make the Interface Consistent
How are requirements validated?APR/MAY 2015 Requirements validation:
Ha
 equirements right?
he validation phase, the work products produced as a consequence of requirements
 mined for consistency, omissions, and ambiguity. The basic objective is to ensur
 cts the actual requirements accurately and
rly.
at is a state transition diagram?
State transition diagram is basically a collection of states and events. The event
 em to change its state. It also
esents what actions are to be taken based on the transition.
at is DFD?
Data Flow Diagram depicts the information flow and the transforms that are appl
 as it moves from input to
put.
at is waterfall model?
)s cause the

ied on the
The Waterfall Model was first Process Model to be introduced. It is also referred to as a linear- sequential life cycle model.

49

It is very simple to understand and use.

In a waterfall model, each phase must be completed fully before the next phase can begin. This type of model is basically used for the for the project which is small and there are no uncertain requirements.
In this model the testing starts only after the development is complete.

In waterfall model phases do not overlap.

21 Wh

of t

22 Wh

data objects are

exa with one

 (
at is ERD?
Entity Relationship Diagram is the graphical representation
he object relationship pair. It is mainly used in database applications.
at is data modeling?
Data modeling is the basic step in the analysis modeling. In data modeling the
 mined independently of processing. The data model represents how data are related
 another.
at is requirement engineering?
Requirement engineering is the process of establishing the
vices that the customer requires from the system and the constraints under which it
 eloped.
at are the various Rapid prototyping techniques? April
 ay 2015
i. Dynamic high level language development.
ii. Database programming.
iii. Component and application assembly.
at is data modeling?
Data modeling is the basic step in the analysis modeling. In data modeling the
)23 Wh

ser operates and is dev
24 Wh

/M

25 Wh

data objects are
examined independently of processing. The data model represents how data are related with one another.

50

26 What are the various types of traceability in software engineering? April/may 2018

iv. Source traceability – These are basically the links from requirement to stakeholders v. Requirements traceability – These are links between dependant requirements.
vi. Design traceability – These are links from requirements

to design.

27 Wh

the ther object.

28 Wh

29

 (
at is cardinality in data modeling?
Cardinality in data modeling, cardinality specifies how
number of occurrences of one object is related to the number of occurrences of ano
at are the objectives of Analysis modeling?
i. To describe what the customer requires.
 ii. To establish a basis for the creation of software design.
iii. To devise a set of valid requirements after which the software can be built.
How the limitations of waterfall model overcome? April /May 2015
type of model is basically used for the for the project which is small and there a
 irements.Where no overlapping of phases.
he end of each phase, a review takes place to determine if the
ect is on the right path and whether or not to continue or discard the project.
at is feasibility study? NOV/DEC2015 , APR/MAY 2016
ware feasibility has four solid dimensions:
hnology
—
Is a project technically feasible? Is it within the state of the art? Can de
)This re no uncertain requ
At t

proj

30 Wh

soft

Tec fects be reduced

to a level matching the application’s needs?

Finance—Is it ﬁnancially feasible? Can development be completed

51

at a cost the software organization, its client, or the market can afford?

Time—Will the project’s time-to-market beat the competition? Resources—Does the organization have the resources needed to succeed?
Before starting any project the feasibility study team ought to carry initial architecture and design of the high-risk requirements to the point at which it can answer these questions. In some cases, when the team gets negative answers, a reduction in requirements may be
ne

31 Def

tomer needs or

requ ose needs. The

“voi

thes

 (
gotiated.
ine Quality function decelopment(QFD). NOV/DEC 2017
Quality Function
Deployment (
QFD
) is a structured approach to defining cus
irements and translating them into specific plans to produce products to meet th
ce of the customer”
is the term to describe
e stated and unstated customer needs or requirements.
erentiate between normal and exciting requirements ? APRIL/MAY 2017
 mal requirements

The objective and goal are stated for the system through the meetings with the cus

For the customer satisfaction these requirements should be there.
iting requirements

These features are beyond the expectation of the customer.

The developer adds some additional features or unexpected feature into the softwa
 the customer more satisfied.
For example,
the mobile phone with standard features, but the developer adds
 functionalities like voice searching, multi-touch screen etc. then the customer m
)32 Diff

Nor

tomer.

Exc

re to make

that feature.

few additional ore exited about

52

33 How do you design a software project for reuse? (Nov/Dec 2007)
 A clear and well-defined product vision is an essential foundation to an software project.
 An evolutionary implementation strategy would be a more pragmatic strategy for the company.
 There exist a need for continuous management support and leadership to ensure success.

34	Wh IEE This exec insp This used acti usa and

 (
at are the standards for documentation? Briefly explain (Nov/Dec 2007)
 E Std 1028-2008
standard defines five types of software reviews and procedures for their
ution. Review types include management reviews, technical reviews,
 ections, walk-throughs and audits. IEEE Std 1012-2004
standard describes software verification and validation processes that are
to determine if software products of an activity meets the requirements of the
vity and to determine if software satisfies the user's needs for the intended
 ge. The scope includes analysis, evaluation, review, inspection, assessment
 testing of both products and processes.
at are context free questions? How it differs from meta questions?
 Nov/Dec 2009)
text free questions are questions that can be used regardless of the project
der consideration. They are general questions about the nature of the project and
 environment in which the final product will be used.Meta questions are very
plex and detailed questions about the project model
)35	Wh (Con un the com

53

36 Define behaviouralmodelling(Nov/Dec 2012)
All behavioural models really do is describe the control structure of a system. This can be things like:
 Sequence of operations
 Object states
 and Object interactions
 (
odelling. As well as this, a system should also only have one behavioural
 odel
–
much like functional modelling.
what are the types of prototypes
olutionary prototyping
–
the initial prototype is prepared and it is then refined
ugh number of stages to final stage.
row-away prototyping
–
a rough practical implementation of the system is
duced. The requirement problems can be identified from
 implementation
ine behaviouralmodelling(Nov/Dec 2012)
behavioural models really do is describe the control structure of a system.
 is can be things like:
equence of operations
Object states
and Object interactions
thermore, this modelling layer can also be called Dynamic Modelling. The
 ivity of creating a behavioural model is commonly known as behavioural
odelling. As well as this, a system should also only have one behavioural
 odel
–
much like functional modelling.
at is the major distinction between user requirement and system
 uirement? (April/May 2008)
)Furthermore, this modelling layer can also be called Dynamic Modelling. The activity of creating a behavioural model is commonly known as behavioural
m
m

37
• Ev
thro
• Th
pro

this

38	Def All Th
 S

 Fur act m
m

39	Wh req
User requirements may be a set of statements or use case scenarios presented
by the client in layman’s terms of which the client can easily

elaborate and are
usually free of technical jargon. System requirements are built from the clients input
being what they have specified in the user requirements.

54

40	Which style of prototyping is most appropriate when the requirement are not well-understood? (April/May 2008)
User Interface prototyping is most appropriate.This prototyping is used to prespecify
the look and feel of user interface in an effective way.

41	Specify at least four questionnaire which supports to select the prototyping approach. (Nov/Dec 2009)
 Prototype serves as a basis for deriving system specification.
 (
stem can be maintained easily.
 Development efforts may get reduced.
stem usability can be improved.
at is the purpose of domain analysis. (April/May 2010)
main analysis, or product line analysis, is the process of analysing related
ware systems in a domain to find their common and variable parts. It is a model
ider business context for the system
what are the types of prototypes
olutionary prototyping
–
the initial prototype is prepared and it is then refined
ugh number of stages to final stage.
row-away prototyping
–
a rough practical implementation of the system is
duced. The requirement problems can be identified from
 implementation
wo advantage of employing prototyping in software process?
ototype serves as a basis for deriving system specification.
 Design quality can be improved.
stem can be maintained easily.
 Development efforts may get reduced.
stem usability can be improved.
) Design quality can be improved.
 Sy

 Sy

42 Wh

Do soft of w

43
• Ev
thro
• Th
pro

this

44 list t
 Pr

 Sy

 Sy

55

45	State the different criteria applied to evaluate an effective modular system. (May/June 2006)
 A system is considered modular if it consists of discreet components so that each component can be implemented separately, and a change to one component has minimal impact on other components.
 Modularity is a clearly a desirable property in a system. Modularity helps in system debugging. Isolating the system problem to a component is easier if the system is modular.

46	Wh The The dia
dia
47	Wh The x W be e othe
 (
at is meant by structural analysis?
structural analysis is mapping of problem domain to flows and transformations.
 system can be modeled by using Entity Relationship diagram, Data flow
gram and Control flow
grams.
at is the outcome of feasibility study?
outcome of feasibility study is the results obtained from the following questions:
 hich system contributes to organizational objectives? x Whether the system can
 ngineered? Is it within the budget? x Whether the system can be integrated with
 r
ing system?
at are nonfunctional requirements?
nfunctional requirements are constraints on the services or functions offered by
 system such as timing constraints,
traints on the development process, standards, etc…
at are the advantages of evolutionary prototyping?
ast delivery of the working system. ii. User is involved while developing the
 em. iii. More useful system can be delivered. iv. Specification, design and
)exist
48	Wh No the
cons
49 Wh

i. F

syst
implementation work in co-ordinate manner.
50 What are the various Rapid prototyping techniques?
i. Dynamic high level language development. ii. Database programming. iii. Component and application assembly.

56

PART –B

S.NO QUESTIONS
1	Discuss any four process models with suitable application. NOV/DEC-10 , APR/MAY-11, NOV/DEC-12, MAY/JUN-13

A

s

is

 (
software process model is a standardised format for
•
planning
•
organising, and
•
running a development project
Hundreds of different models exist and are used, but many are minor variation
 on a small number of basic models.
1.1. Planning with Models
(a)

SE projects usually live with a fixed financial budget. (An exception
 maintenance?) Additionally, time-to-market places a strong time
 constraint. There will be other project constraints such as staff.
Project planning is the art of scheduling/constraint solving the project
parameters, along various dimensions: time, money, staff … in order to opti
•
project risk [low]
•
profit [high]
•
customer satisfaction [high]
•
Worker satisfaction [high]
•
long/short-term company goals
Project parameters describe the whole project, but we must at least describe:
•
resources needed (people, money, equipment, etc)
)mize:

• dependency & timing of work (flow graph, work packages)

• rate of delivery (reports, code, etc)

In addition to project members, the following may need access to parts of the project plan:

• Management

• Customers

57

• Subcontractors (outsourcing)

• Suppliers (e.g. licenses, strategic partners)

• Investors (long term investment)

• Banks (short term cash)

1.2. Project Visibility

Unlike other engineers (e.g. civil, electronic, chemical … etc.) software

 (
engineers do not produce anything physical.
This means that SE projects must produce additional deliverables (artifacts)
which are visible, such as:
•
Design documents/ prototypes
•
Reports
•
Project/status meetings
•
Client surveys (e.g. satisfaction level)
A (software/system) process model is a description of the sequence of activi
 carried out in an SE project, and the relative order of these activities.
It provides a fixed generic framework that can be tailored to a specific proje
Project specific parameters will include:
•
Size, (person-years)
•
Budget,
Duration.
project plan = process model + project parameters
There are hundreds of different process models to choose from, e.g:
•
waterfall,
•
code-and-fix
•
spiral
•
rapid prototyping
)ties ct.

• unified process (UP)

• agile methods, extreme programming (XP)

• COTS …

But most are minor variations on a small number of basic models.

By changing the process model, we can improve and/or tradeoff:

• Development speed (time to market)

58

• Product quality

Project visibility

• Administrative overhead

• Risk exposure

• Customer relations, etc.

Normally, a process model covers the entire lifetime of a product.

 (
From birth of a commercial idea to final de-installation of last release i.e.
 The three main phases:
•
design,
•
build,
•
maintain
.
We can sometimes combine process models
e.g. 1. waterfall inside evolutionary
–
onboard shuttle software
2. Evolutionary inside waterfall
–
e.g. GUI prototyping
We can also evolve the process model together with the product to
account for product maturity, e.g. rapid prototyping → waterfall
plain the execution of seven distinct functions accomplished in requirem
 gineering process / Explain briefly the requirement engineering process with
 etch and describe each process with an example. APRIL/MAY-15 NOV/DEC
NOV/DEC 2017, APRIL/MAY 2017
oduction to requirement engineering
iv. The process of collecting the software requirement from the client then underst
 luate and document it is called as requirement engineering.
v. Requirement engineering constructs a bridge for design and construction.
uirement engineering consists of seven different tasks as follow:
)2	Ex ent en neat
sk -15,

Intr

eva

Req

and,

1. Inception
 Inception is a task where the requirement engineering asks a set of questions to establish a software process.
 In this task, it understands the problem and evaluates with the proper solution.
 It collaborates with the relationship between the customer and the developer.
 The developer and customer decide the overall scope and the nature of the question.
2. Elicitation

59

Elicitation means to find the requirements from anybody.
The requirements are difficult because the following problems occur in elicitation.

Problem of scope: The customer give the unnecessary technical detail rather than clarity of the overall system objective.

Problem of understanding: Poor understanding between the customer and the developer regarding various aspect of the project like capability, limitation of the

e

 are



 (
computing environment.
Problem of volatility:
In this problem, the requirements change from time to tim
 and it is difficult while developing the project.
3. Elaboration
In this task, the information taken from user during inception and elaboration and
 expanded and refined in elaboration.
Its main task is developing pure model of software using functions, feature and
 constraints of a software.
4. Negotiation
In negotiation task, a software engineer decides the how will the project be achie
 with limited business resources.
To create rough guesses of development and access the impact of the requirement
 the project cost and delivery time.
5. Specification
In this task, the requirement engineer constructs a final work product.
 The work product is in the form of software requirement specification.
In this task, formalize the requirement of the proposed software such as informati
 functional and behavioral.
The requirement are formalize in both graphical and textual formats.
6. Validation
The work product is built as an output of the requirement engineering and that is
 accessed for the quality through a validation step.
) ved

 on




 ve,





 The formal technical reviews from the software engineer, customer and other stakeholders helps for the primary requirements validation mechanism.
7. Requirement management
 It is a set of activities that help the project team to identify, control and track the requirements and changes can be made to the requirements at any time of the ongoing project.
 These tasks start with the identification and assign a unique identifier to each of the
requirement.

60

 After finalizing the requirement traceability table is developed.
 The examples of traceability table are the features, sources, dependencies, subsystems and interface of the requirement

 (
What is data dictionary? Explain. How to select the appropriate prototypin
approach?APR/MAY-11, APR/MAY-12, NOV/DEC2015
a reference work of data about data (metadata), one that is compiled by
 systems analyst to guide them through the analysis and design.
the information you see in the data dictionary.
is where the systems analyst goes to define or look up information about

ntities, attributes and relationships on the ERD (Entity Relationship Design).
 mportance of a Data Dictionary
oid duplication
llows better com
munication between organizations who shares the same
 database.
akes maintenance straightforward
is valuable for their capacity to cross
-referencing data items.
es of Data Dictionary
alidates the date flow diagram for completeness and accuracy
 rovides starting point for developing screen and reports.
Determine the contents of data stored files
Develop the logic for data flow diagram processes.
e Data Repository
How does the analysis modeling help to capture unambiguous & consis
 quirements? Discuss several methods for requirements validation? NOV/DEC
a modeling is a
process
used to define and analyze data
requirements
needed to supp

business processes
within the scope of corresponding information systems in
ganizations. Therefore, the process of data modeling involves professional data mode
 king closely with business stakeholders, as well as potential users of the informatio
em.
)3 g

Is the Is
• It
e I Av
• A

• M
• It Us V
• P
•
•
Th

4			tent re	-11

Dat ort the
or lers wor n
syst

There are three different types of data models produced while progressing from requirements to the actual database to be used for the information system.[2] The data requirements are initially recorded as a conceptual data model which is essentially a set of technology independent specifications about the data and is used to discuss initial requirements with the business stakeholders. The conceptual model is then translated into a logical data model, which documents structures of the data that can be implemented in
databases. Implementation of one conceptual data model may require multiple logical data
models. The last step in data modeling is transforming the logical data model to a physical
data model that organizes the data into tables, and accounts for access, performance and
61

storage details. Data modeling defines not just data elements, but also their structures and the relationships between them.[3]

Data modeling techniques and methodologies are used to model data in a standard, consistent, predictable manner in order to manage it as a resource. The use of data modeling standards is strongly recommended for all projects requiring a standard means of defining and analyzing data within an organization, e.g., using data modeling:

		to assist business analysts, programmers, testers, manual writers, IT package selectors, engineers, managers, related organizations and clients to understand and use
to





Dat es of proj r a busi hat will ed in a re

 ,

 eated

Data bases. It is
 (
an agreed semi-formal model the concepts of the organization and how they relate
one another
to manage data as a resource
for the integration of information systems
for designing databases/data warehouses (aka data repositories)
a modeling may be performed during various types of projects and in multiple phas
 ects. Data models are progressive; there is no such thing as the final data model fo
 ness or application. Instead a data model should be considered a living document t
 change in response to a changing business. The data models should ideally be stor
 pository so that they can be retrieved, expanded, and edited over time.
Strategic data modeling: This is part of the creation of an information systems strategy
 which defines an overall vision and architecture for information systems.
Information
 technology engineering
is a methodology that embraces this approach.
Data modeling during systems analysis: In
systems analysis
logical data models are cr
 as part of the development of new databases.
modeling is also used as a technique for detailing business
requirements
for specific
data

sometimes called
database modeling
because a
data model
is eventually implemented in a
 base.
plain prototyping in the software process.APRIL/MAY-15 MAY/JUNE 2016
The
prototyping model
is applied when detailed
information
related to input and output
 requirements of the system is not available. In this model, it is assumed that all the
 requirements may not be known at the start of the development of the system. It is usual
 used when a system does not exist or in case of a large and complex system where there
 manual process to determine the requirements. This model allows the users to interact an
 experiment with a working model of the system known as
prototype.
The prototype give
)data

5 Ex

user an actual feel of the system.

ly
is no d
s the

At any stage, if the user is not satisfied with the prototype, it can be discarded and an entirely new system can be developed. Generally, prototype can be prepared by the approaches listed below.

• By creating main user interfaces without any substantial coding so that users can get a feel of how the actual system will appear.
• By abbreviating a version of the system that will perform limited subsets of functions.
• By using system components to illustrate the functions that will be included in the system to be developed .

62

Using the prototype, the client can get an actual feel of the system. So, this case of model is beneficial in the case when requirements cannot be freezed initially.

This prototype is developed based on the currently known requirements. Development of the prototype obviously undergoes design, coding, and testing, but each of these phases is not done very formally or thoroughly.

By using this prototype, the client can get an actual feel of the system, because the interactions with the prototype can enable the client to better understand the requirements of the desired system.

 (
quirements process? NOV/DEC-12,
MAY/JUN-
 13,NOV/DEC 2013

ctional requirement
specifies something that the application or system should do
n, this is defined as a behavior of the system that takes input and provides output.
 mple, a traveler fills out a form in an airline's mobile application with his/her name
 port details (input), submits the form, and the application generates a boarding pas
the traveler's details (output).
-functional requirements
, sometimes also called quality requirements, describe h
 system should be, as opposed to what it should do. Non-functional requirements of
 em include performance (e.g., response time), maintainability and scalability, amo
 ny others. In the airline application example, the requirement that the application m
 lay the boarding pass after a maximum of five seconds from the time the traveler
ses the 'submit' button would be a non-functional requirement.
plain metrics for specifying non-functional requirements? IEEE stand
 tware requirement document? MAY/JUN- 13
ording to IEEE standard 729, a requirement is defined as follows:
A condition or capability needed by a user to solve a problem or achieve an objective
A condition or capability that must be met or possessed by a system or system compone
satisfy a contract, standard, specification or other formally imposed documents
A documented representation of a condition or capability as in 1 and 2.
software requirement can be of 3 types:
Functional requirements
Non-functional requirements
Domain requirements
ctional Requirements:
These are the requirements that the end user specifically demands
c facilities that the system should offer. All these functionalities need to be necessarily
)6		Explain the functional & behavioral model for software re
fun .
Ofte For exa and pass s with

Non ow the a syst ng ma ust disp
pres

7	Ex arad sof
Acc


 nt to


A



Fun as basi
incorporated into the system as a part of the contract. These are represented or stated in the form of input to be given to the system, the operation performed and the output expected. They are basically the requirements stated by the user which one can see directly in the final product, unlike the non- functional requirements.
For example, in a hospital management system, a doctor should be able to retrieve the information
of his patients. Each high-level functional requirement may involve several interactions or dialogues between the system and the outside world. In order to accurately describe the functional requirements, all scenarios must be enumerated.

There are many ways of expressing functional requirements e.g., natural language, a structured or

63

formatted language with no rigorous syntax and formal specification language with proper syntax.

Non-functional requirements: These are basically the quality constraints that the system must satisfy according to the project contract. The priority or extent to which these factors are implemented varies from one project to other. They are also called non-behavioral requirements. They basically deal with issues like:
 Portability
 Security
 Maintainability
 Reliability
 (
Performance
 Reusability
 Flexibility
’s are classified into following types:
Interface constraints
Performance constraints: response time, security, storage space, etc.
 Operating constraints
Life cycle constraints: maintainability, portability, etc.
 Economic constraints
process of specifying non-functional requirements requires the knowledge of the function
he system, as well as the knowledge of the context within which the system will operate.
main requirements:
Domain requirements are the requirements which are characteristic of
 cular category or domain of projects. The basic functions that a system of a specific doma
 necessarily exhibit come under this category. For instance, in academic software that ma
 rds of a school or college, the functionality of being able to access the list of faculty and li
udents of each grade is a domain requirement. These requirements are therefore identified from
 domain model and are not user specific.
What is requirements elicitation
?
Explain various activities performed in it
 watch system that facilitates to set time and alarm as an example? NOV/DEC 2016,
RIL/MAY 2017, APRIL/MAY 2018
uirements elicitation
is perhaps the most difficult, most error-prone and most communica
 nsive software development. It can be successful only through an effective customer-devel
 nership. It is needed to know what the users really need.
e are a number of requirements elicitation methods. Few of them are listed below
–
Interviews
) Scalability



NFR






The ality of t

Do a parti in must intains reco st of
st that

8 with

AP 	

Req tion inte oper part
Ther

1.
2. Brainstorming Sessions
3. Facilitated Application Specification Technique (FAST)
4. Quality Function Deployment (QFD)
5. Use Case Approach
The success of an elicitation technique used depends on the maturity of the analyst, developers, users and the customer involved.

1. Interviews:
Objective of conducting an interview is to understand the customer’s expectations from the
software.
It is impossible to interview every stakeholder hence representatives from groups are selected based
64

on their expertise and credibility.

Interviews maybe be open ended or structured.

1.		In open ended interviews there is no pre-set agenda. Context free questions may be asked to understand the problem.
2.		In structured interview, agenda of fairly open questions is prepared. Sometimes a proper questionnaire is designed for the interview.
2. Brainstorming Sessions:
 It is a group technique
 It is intended to generate lots of new ideas hence providing a platform to share views


 rity if

3. F
It’s hey
are A te Eac

1.
2.
3. Eac
elim draft
of sp

4. Q
In t ments whic
3 ty


em

 not

 and
 (
A highly trained facilitator is required to handle group bias and group conflicts.
Every idea is documented so that everyone can see it.
Finally a document is prepared which consists of the list of requirements and their prio
 possible.
acilitated Application Specification Technique:
objective is to bridge the expectation gap –
difference between what the developers think t
supposed to build and what customers think they are going to get.
 am oriented approach is developed for requirements gathering.
h attendee is asked to make a list of objects that are-
Part of the environment that surrounds the system
Produced by the system
Used by the system
h participant prepares his/her list, different lists are then combined, redundant entries are
 inated, team is divided into smaller sub-teams to develop mini-specifications and finally a
 ecifications is written down using all the inputs from the meeting.
uality Function Deployment:
his technique customer satisfaction is of prime concern, hence it emphasizes on the require
 h are valuable to the customer.
pes of requirements are identified
–
Normal requirements
–
In this the objective and goals of the proposed software are
 discussed with the customer. Example
–
normal requirements for a result management syst
 may be entry of marks, calculation of results etc
Expected requirements
–
These requirements are so obvious that the customer need
 explicitly state them. Example
–
protection from unauthorised access.
Exciting requirements
–
It includes features that are beyond customer’s expectations
prove to be very satisfying when present. Example
–
when an unauthorised access is dete
 should backup and shutdown all processes.
major steps involved in this procedure are
–
Identify all the stakeholders, eg. Users, developers, customers etc
List out all requirements from customer.
)cted, it

The

1.
2.
3. A value indicating degree of importance is assigned to each requirement.
4. In the end the final list of requirements is categorised as –
 It is possible to achieve
 It should be deferred and the reason for it
 It is impossible to achieve and should be dropped off
5. Use Case Approach:
This technique combines text and pictures to provide a better understanding of the requirements.
The use cases describe the ‘what’, of a system and not ‘how’. Hence they only give a functional
view of the system.
The components of the use case deign includes three major things – Actor, Use cases, use case

65

diagram.

1. Actor – It is the external agent that lies outside the system but interacts with it in some way.
An actor maybe a person, machine etc. It is represented as a stick figure. Actors can be primary
actors or secondary actors.
 Primary actors – It requires assistance from the system to achieve a goal.
 Secondary actor – It is an actor from which the system needs assistance.
2. Use cases – They describe the sequence of interactions between actors and the system. They
capture who(actors) do what(interaction) with the system. A complete set of use cases specifies all possible ways to use the system.
 (
actor interacts with a system. It captures the functional aspect of the system.

A stick figure is used to represent an actor.

An oval is used to represent a use case.

A line is used to represent a relationship between an actor and a use case
What is the purpose of data flow diagrams? What are the notations used for
 ame. Explain by constructing a context flow diagram level -0 DFD and level-1
a library management system? NOV/DEC 2016
oftware engineering DFD(data flow diagram) can be drawn to represent the system of diff
 s of abstraction. Higher level DFDs are partitioned into low levels-hacking more informa
 functional elements. Levels in DFD are numbered 0, 1, 2 or beyond. Here, we will see ma
 s in data flow diagram, which are: 0-level DFD, 1-level DFD, and 2-level DFD.
vel DFD:
also known as context diagram.It’s designed to be an abstraction view, showing the system
e process with its relationship to external entities. It represent the entire system as single bubbl
 input and output data indicated by incoming/outgoing arrows.
)3. Use case diagram – A use case diiagram graphically represents what happens when an

9			the s	DFD for
In S erent level tion and inly 3 level

0-le
It is as a
singl e with

1-level DFD:
In 1-level DFD, context diagram is decomposed into multiple bubbles/processes.in this level we
highlight the main functions of the system and breakdown the high level process of 0-level DFD
into subprocesses.

66

 (
2-level DFD:
2-level DFD goes one step deeper into parts of 1-level DFD.It can be used to plan or
the specific/necessary detail about the system’s functioning.
)record

67

 (
d also sketch the activity diagram representing each step of the process, from
oment you pick up the phone to the point where you start eating the pizza. Inc
 ivities that others need to perform. Add exception handling to the act
 iagram you developed. Consider at least two exceptions.(Ex : Delivery person wr
own wrong address, deliver person brings wrong pizza). NOV/DEC 2017
)10	Consider the process of ordering a pizza over the phone. Draw the use case diagram an	 the m	lude act ivity d	 ote
d

68

69

 (
plicit effects on software requirement
ollection. APRIL/MAY 2017
easibility study is carried out to select the best system that meets performance requirement
e main aim of the feasibility study activity is to determine whether it would be financially
 hnically feasible to develop the product. The feasibility study activity involves the analysi
 problem and collection of all relevant information relating to the product such as the diffe
a items which would be input to the system, the processing required to be carried out on the
 a, the output data required to be produced by the system as well as various constraints on t
 aviour of the system.
chnical Feasibility
s is concerned with specifying equipment and software that will successfully satisfy the use
uirement. The technical needs of the system may vary considerably, but might include :
he facility
to produce outputs in a given time.
esponse time under certain conditions.
bility to process a certain volume of transaction at a particular speed.
 acility to communicate data to distant locations.
examining technical feasibility, configuration of the system is given more importance than
ual make of hardware. The configuration should give the complete picture about the syste
uirements:
ow many workstations are required, how these units are interconnected so that they could o
communicate smoothly.
at speeds of input and output should be achieved at particular quality of printing.
onomic Feasibility
onomic analysis is the most frequently used technique for evaluating the effectiveness of a
 posed system. More commonly known as Cost / Benefit analysis, the procedure is to deter
benefits and savings that are expected from a proposed system and compare them with co
)11	Explain the feasibility studies. What are the outcomes? Does it have implicit or ex
c
A f s.
Th and tec s of the rent dat se dat he beh

Te
Thi r
req
• T
• R
• A
• F
In the
act m’s
req
H perate
and
Wh

Ec
Ec
pro mine
the sts. If benefits outweigh costs, a decision is taken to design and implement the system. Otherwise, further justification or alternative in the proposed system will have to be made if it is to have a chance of being approved. This is an outgoing effort that improves in accuracy at each phase of the system life cycle.

Operational Feasibility
This is mainly related to human organizational and political aspects. The points to be considered are:
• What changes will be brought with the system?
• What organizational structure are disturbed?
70

• What new skills will be required? Do the existing staff members have these skills? If not, can they be trained in due course of time?
This feasibility study is carried out by a small group of people who are familiar with information system technique and are skilled in system analysis and design process.
Proposed projects are beneficial only if they can be turned into information system that will meet the operating requirements of the organization. This test of feasibility asks if the system will work when it is developed and installed.

12
Th
Re nt lays a f licited and es
the s user
req

IEE ecisely desc quality attri ay that its a ection, dem of a writt on.

 (
What is SRS?Explain in detail about various component of an SRS.
e output of the requirements phase of the software development process is
Software
 quirements Specification (SRS)
(also known as
requirements document).
This docume
 oundation for software engineering activities and is created when entire requirements are e
analyzed. SRS is a formal document, which acts as a representation of software that enabl
 users to review whether it (SRS) is according to their requirements. In addition, it include
 uirements for a system as well as detailed specifications of the system requirements.
E
defines software requirements specification as, 'a document that clearly and pr
 ribes each of the essential requirements (functions, performance, design constraints and
 butes) of the software and the external interfaces. Each requirement is defined in such a w
 chievement can be objectively verified by a prescribed method, for example, insp
 onstration, analysis or test.' Note that requirements specification can be in the form
 en document, a mathematical model, a collection of graphical models, a prototype, and so
ntially, what passes from requirements analysis activity to the specification activity
 knowledge acquired about the system. The need for maintaining a requirements document is t
 odeling activity essentially focuses on the problem structure and not its structural behavior.
RS, performance constraints, design constraints, and standard compliance recovery are
ified. This
information
helps in developing a proper design of the system. Various
 poses served by SRS are listed below.
Feedback:
Provides a feedback, which ensures to the user that the organization
 lops the software) understands the issues or problems to be solved and the software be
 ssary to address those problems.
Decompose problem into components:
Organizes the information and divides the pr
 its component parts in an orderly manner.
Validation:
Uses validation strategies applied to the requirements to acknowledge
 uirements are stated properly.
Input to design:
Contains sufficient detail in the functional system requirements to de
)Esse		is the hat the
m While in S clearly spec other pur

(which deve havior nece

into req
design solution.

oblem that vise a
Basis for agreement between the user and the organization: Provides a complete description of the functions to be performed by the system. In addition, it helps the users to determine whether the specified requirements are accomplished.
Reduce the development effort: Enables developers to consider user requirements before the designing of the system commences. As a result, 'rework' and inconsistencies in the later stages can be reduced.
Estimating costs and schedules: Determines the requirements of the system and thus enables the developer to have a 'rough' estimate of the total cost and schedule of the project.

SRS is used by various individuals in the organization. System customers need SRS to specify and

71

verify whether requirements meet the desired needs. In addition, SRS enables the managers to plan for the system development processes. System engineers need a requirements document to understand what system is to be developed. These engineers also require this document to develop validation tests for the required system. Lastly, requirements document is needed by system maintenance engineers to use the requirement and the relationship between its parts.

Characteristics of SRS

 (
ussed below.
Correct:
SRS is correct when all user requirements are stated in the require
 ment. The stated requirements should be according to the desired system. This implies th
uirement is examined to ensure that it (SRS) represents user requirements. Note that ther
 ified tool or procedure to assure the correctness of SRS. Correctness ensures that all spe
 uirements are performed correctly.
Unambiguous:
SRS is unambiguous when every stated requirement has onl
 pretation. This implies that each requirement is uniquely interpreted. In case there is a term
 multiple meanings, the requirements document should specify the meanings in the SRS
 clear and easy to understand.
Complete:
SRS is complete when the requirements clearly define what the softw
 uired to do. This includes all the requirements related to performance, design and functiona

Ranked for importance/stability:
All requirements are not equally important, henc
 uirement is identified to make differences among other requirements. For this, it is essen
 ly identify each requirement. Stability implies the probability of changes in the requirem
e.
Modifiable:
The requirements of the user can change, hence requirements document
 reated in such a manner that those changes can be modified easily, consistently maintaini
ucture and style of the SRS.
Traceable:
SRS is traceable when the source of each requirement is clear and facilita
 ence of each requirement in future. For this, forward tracing and backward tracing are
 ward tracing implies that each requirement should be traceable to design and code ele
 kward tracing implies defining each requirement explicitly referencing its source.
Verifiable:
SRS is verifiable when the specified requirements can be verified with
 ctive process to check whether the final software meets those requirements. The require
 verified with the help of reviews. Note that unambiguity is essential for verifiability.
Consistent:
SRS is consistent when the subsets of individual requirements defined
 lict with each other. For example, there can be a case when different requirements c
 rent terms to refer to the same object. There can be logical or temporal conflicts betwe
 ified requirements and some requirements whose logical or temporal characteristics a
)Software requirements specification should be accurate, complete, efficient, and of high quality, so that it does not affect the entire project plan. An SRS is said to be of high quality when the developer and user easily understand the prepared document. Other characteristics of SRS are disc

ments docu at each req e is no spec cified req
y one inter used with so that it is
are is req lity.
e each req tial to
clear ent in futur
should be c ng the str
tes the refer used. For ments. Bac
a cost- effe ments are
do not conf an use diffe en the spec re not satisfied. For instance, a requirement states that an event 'a' is to occur before another event 'b'. But then another set of requirements states (directly or indirectly by transitivity) that event 'b' should occur before event 'a'.

Structure of SRS

The requirements document is devised in a manner that is easier to write, review, and maintain. It is organized into independent sections and each section is organized into modules or units. Note that the level of detail to be included in the SRS depends on the type of the system to be developed and the process model chosen for its development. For example, if a system is to be developed by an external contractor, then critical system specifications need to be precise and detailed. Similarly,

72

when flexibility is required in the requirements and where an in-house development takes place, requirements documents can be less detailed.

Since the requirements document serves as a foundation for subsequent software development phases, it is important to develop the document in the prescribed manner. For this, certain guidelines are followed while preparing SRS. These guidelines are listed below.

Functionality: It should be separate from implementation.
Analysis model: It should be developed according to the desired behavior of a system. This
should include data and functional response of a system to various inputs given to it.
Cognitive model: It should be developed independently of design or implementation
 (
odel. This model expresses a system as perceived by the users.
The content and structure
of the
specification:
It should be flexible enou
 ommodate changes.
Specification:
It should be robust. That is, it should be tolerant towards incompletene
 plexity.
information to be included in SRS depends on a number of factors, for example, the t
 ware being developed and the approach used in its development. If software is developed
 terative development process, the requirements document will be less detailed as compa
 of the software developed for critical systems. This is because specifications need to be
 led and accurate in these systems. A number of standards have been suggested to deve
uirements document. However, the most widely used standard is by IEEE, which act
ral framework. This general framework can be customized and adapted to meet the need
 cular organization.
h SRS fits a certain pattern; thus, it is essential to standardize the structure of the require
 ment to make it easier to understand. For this IEEE standard is used for SRS to or
uirements for different projects, which provides different ways of structuring SRS. Note
 equirements documents, the first two sections are the same.
document comprises the following sections.
Introduction:
This provides an overview of the entire information described in SRS
 olves purpose and the scope of SRS, which states the functions to be performed by the syst
 tion, it describes definitions, abbreviations, and the acronyms used. The references used i
 vide a list of documents that is referenced in the document.
Overall description:
It determines the factors which affect the requirements of the sy
 ovides a brief description of the requirements to be defined in the next section called 'sp
 uirement'. It comprises the following sub-sections.
Product perspective:
It determines whether the product is an independent product
 gral part of the larger product. It determines the interface with hardware, software, syste
 munication. It also defines memory constraints and operations utilized by the user.
Product functions:
It provides a summary of the functions to be performed by the sof
 functions are organized in a list so that they are easily understandable by the user:
)m acc
com

gh to ss and

The ype of soft using the i red to that very detai lop a req s as a gene s of a parti

Eac ments docu ganize req that in all r

This

. This inv em. In addi n SRS pro
stem. It pr ecific req
or an inte m, and com

The

User characteristics: It determines general characteristics of the users.

tware.
Constraints: It provides the genera1 description of the constraints such as regulatory policies, audit functions, reliability requirements, and so on.
Assumption and dependency: It provides a list of assumptions and factors that affect the requirements as stated in this document.
Apportioning of requirements: It determines the requirements that can be delayed until release of future versions of the system.
Specific requirements: These determine all requirements in detail so that the designers can
design the system in accordance with them. The requirements include description of every input and output of the system and functions performed in response to the input provided. It comprises the
73

following subsections.
External interface: It determines the interface of the software with other systems, which can include interface with operating system and so on. External interface also specifies the interaction of the software with users, hardware, or other software. The characteristics of each user interface of the software product are specified in SRS. For the hardware interface, SRS specifies the logical characteristics of each interface among the software and hardware components. If the software is to be executed on the existing hardware, then characteristics such as memory restrictions are also specified.
 (
udes validity checks on inputs, exact sequence of operations, relationship of inputs to output
on.
Performance requirements:
It determines the performance constraints of the so
 em. Performance requirement is of two types: static requirements and dyn
 uirements.
Static requirements
(also known as
capacity requirements)
do not i
 straints on the execution characteristics of the system. These include requirements like n
 erminals and users to be supported.
Dynamic requirements
determine the constraints
 ution of the behavior of the system, which includes response time (the time between the
 ending of an operation under specified conditions) and throughput (total amount of wor
 given time).
Logical
database
of requirements:
It determines logical requirements to be stored
 base. This includes type of information used, frequency of usage, data entities and relation
 ong them, and so on.
Design constraint:
It determines all design constraints that are imposed by stan
dware limitations, and so on. Standard compliance determines requirements for the sy
 h are in compliance with the specified standards. These standards can include acco
 edures and report format. Hardware limitations implies when the software can oper
 ing hardware or some pre-determined hardware. This can impose restrictions while deve
 software design. Hardware limitations include hardware configuration of the machine
 ating system to be used.
Software system attributes:
It provide attributes such as reliability, availa
ntainability and portability. It is essential to describe all these attributes to verify that th
 eved in the final system.
Organizing Specific Requirements:
It determines the requirements so that they
perly organized for optimal understanding. The requirements can be organized on the ba
 ode of operation, user classes, objects, feature, response, and functional hierarchy.
Change management process:
It determines the change management process in o
tify, evaluate, and update SRS to reflect changes in the project scope and requirements.
Document approvals:
These provide information about the approvers of the SRS doc
 the details such as approver's name, signature, date, and so on.
Supporting information:
It provides information such as table of contents, index,
)Functions: It determines the functional capabilities of the system. For each functional requirement, the accepting and processing of inputs in order to generate outputs are specified. This incl , and so
ftware syst amic req mpose con umber of t on the exec start and k done in a
in the data ships am
dards,
har stem, whic unting proc ate on exist loping the and oper
bility,
mai ey are achi
can be
pro sis of m

iden with
on. This is necessary especially when SRS is prepared for large and complex projects.

rder to

ument and so

13	What is requirement engineering? State its process and explain requirement elicitation problem. (April/May 2008)

Requirement Engineering

The process to gather the software requirements from client, analyze and document them is known
74

as requirement engineering.

The goal of requirement engineering is to develop and maintain sophisticated and descriptive
‘System Requirements Specification’ document.

Requirement Engineering Process

It is a four step process, which includes –

 Feasibility Study
 Requirement Gathering

Let

Fea

W es up wit es are exp

Ref sired syst

 (

Software Requirement Specification

Software Requirement Validation
 us see the process briefly -
sibility study
hen the client approaches the organization for getting the desired product developed, it com
 h rough idea about what all functions the software must perform and which all featur
 ected from the software.
erencing to this information, the analysts does a detailed study about whether the de
 em and its functionality are feasible to develop.
s feasibility study is focused towards goal of the organization. This study analyzes whethe
 ware product can be practically materialized in terms of implementation, contribution of pr
 rganization, cost constraints and as per values and objectives of the organization. It expl
 hnical aspects of the project and product such as usability, maintainability, productivit
 gration ability.
output of this phase should be a feasibility study report that should contain adequate com
 recommendations for management about whether or not the project should be undertaken
uirement Gathering
e feasibility report is positive towards undertaking the project, next phase starts with gat
 uirements from the user. Analysts and engineers communicate with the client and end-us
know their ideas on what the software should provide and which features they want the softw
 ude.
ware Requirement Specification
S is a document created by system analyst after the requirements are collected from v
 eholders.
)Thi r the soft oject to o ores tec y and inte

The ments and .

Req

If th hering req ers to are to
incl

Soft

SR arious stak

SRS defines how the intended software will interact with hardware, external interfaces, speed of operation, response time of system, portability of software across various platforms, maintainability, speed of recovery after crashing, Security, Quality, Limitations etc.

The requirements received from client are written in natural language. It is the responsibility of system analyst to document the requirements in technical language so that they can be comprehended and useful by the software development team.

SRS should come up with following features:

75

 User Requirements are expressed in natural language.
	Technical requirements are expressed in structured language, which is used inside the organization.
 Design description should be written in Pseudo code.
 Format of Forms and GUI screen prints.
 Conditional and mathematical notations for DFDs etc.

Software Requirement Validation

 (
er requirement specifications are developed, the requirements mentioned in this docume
dated. User might ask for illegal, impractical solution or experts may interpret the require
rrectly. This results in huge increase in cost if not nipped in the bud. Requirements c
 cked against following conditions -

If they can be practically implemented

If they are valid and as per functionality and domain of software

If there are any ambiguities

If they are complete

If they can be demonstrated
quirement Elicitation Process
uirement elicitation process can be depicted using the folloiwng diagram:

Requirements gathering -
The developers discuss with the client and end users and know
 their expectations from the software.

Organizing Requirements -
The developers prioritize and arrange the requirements i
 order of importance, urgency and convenience.

Negotiation & discussion -
If requirements are ambiguous or there are some confl
 requirements of various stakeholders, if they are, it is then negotiated and discussed
 stakeholders. Requirements may then be prioritized and reasonably compromised.
The requirements come from various stakeholders. To remove the ambiguity and conf
 they are discussed for clarity and correctness. Unrealistic requirements are comprom
 reasonably.
)Aft nt are vali ments inco an be che

Re

Req

n

icts in with

licts, ised

	Documentation - All formal & informal, functional and non-functional requirements are documented and made available for next phase processing.

Requirement Elicitation Techniques

Requirements Elicitation is the process to find out the requirements for an intended software system by communicating with client, end users, system users and others who have a stake in the software system development.

There are various ways to discover requirements

76

Interviews

Interviews are strong medium to collect requirements. Organization may conduct several types of interviews such as:

	Structured (closed) interviews, where every single information to gather is decided in advance, they follow pattern and matter of discussion firmly.
	Non-structured (open) interviews, where information to gather is not decided in advance, more flexible and less biased.
 Oral interviews

r any

14 wh

A pr duct
that .

Prot cust req

 (

Written interviews

One-to-one interviews which are held between two persons across the table.

Group interviews which are held between groups of participants. They help to uncove
 missing requirement as numerous people are involved.
at is prototyping .explain its types types.(Nov/Dec 2009)
ototype is a model version of a product.
It’s used as an early, inexpensive sample of a pro
helps to test its features or identify defects so improvements can be made to its final version
otypes provides the opportunity to gather valuable feedback from stakeholders, partners or
 omers about the product. This information can be used to build a product that meets their
 uirements.
owing are a few advantages of prototyping

Collect feedback from users/ stakeholders about the functionality of the product befor
 public release

Reveal areas for improvement and help identify faults and usability issues before the publ
 release. Help reduce unnecessary costs.

Improve team efficiency and collaboration

Allow the user to interact with a working model of their product

Help convert an abstract idea into a tangible product in a cost-effective way

Identify if your product idea is a weak one and cost you heavily before actually moving
 forward with it
otyping Types
otyping methods and prototyping techniques can be categorized as low-fidelity prototypes
-fidelity prototypes.
)Foll

e the ic

Prot

Prot and high

Based on the resources available to you and the purpose for prototyping, the prototyping method you choose can be either be low-fidelity or high-fidelity.

Low-Fidelity Prototypes

Low-fidelity prototypes represent a simple and incomplete version of the final product. In a low- fidelity prototype, not all visual features and content elements are conveyed.

77

While it doesn’t take much time or effort to translate a broad concept to a low-fidelity prototype, it can be used to gather user feedback during the early stage.

Low-fidelity prototyping methods

Wireframes

Wireframes are used to represent the basic structure of a website/ web page/ app. It serves as a blueprint, highlighting the layout of key elements on a page and its functionality.

 (
h Creately, you can
create clickable wireframes
by adding links to the wireframe elements,
allow your users to navigate from one interface to the other
)Wit that will

78

UNIT – 3PART –A

S.NO QUESTIONS

1 What are the primary interaction styles and state their advantages? NOV/DEC-10

pr

ce

 (
1.
Direct manipulation - Easiest to grasp with immediate feedback , Difficult to
ogram
2.
Menu selection - User effort and errors minimized, large numbers and
 combinations of choices a problem
3.
Form fill-in - Ease of use, simple data entry, Tedious, takes a lot of screen spa
4.
Command language - Easy to program and process, Difficult to master for
 casual users
5.
Natural language - Great for casual users, Tedious for
 expert users.
ist the architectural models that can be developed. NOV/DEC-10
Data-centered architectures, Data flow architectures, Call and return
 architectures
Object-oriented architectures, Layered architectures.
What is meant by real time system design? APR/MAY-11
real-time system is a software system where the correct functioning of the system
)2 L

3

A

depends on the results produced by the system and the time at which these

results are produced.

4 List four design principles of a good design? APR/MAY-

11APRIL/MAY 2018

79

o Process should not suffer from tunnel vision.
o It should be traceable to the analysis model

o It should not reinvent the wheel
o It should exhibit uniformity & integration.

5 List out design methods. APR/MAY-12

Architectural design , data design , modular design.

6 Defin

7 How

M ode ba , but de ased m hich ma
 (
e data acquisition APR/MAY-12,MAY/JUN-13
Collect data from sensors for subsequent processing and analysis.
do you apply modularization criteria for a monolithic software NOV/DEC-12

odularity is achieved to various extents by different modularization approaches. C
 sed modularity allows developers to reuse and repair parts of the application
 velopment tools are required to perform these maintenance functions .Object b
 odularity provides the application as a collection of separate executable files w
 y be independently maintained and replaced without redeploying the
ire application.
is the design quality attributes ‘FURPS’ meant?
NOV/DEC-12, NOV/DEC2015, NOV/DEC2017
FURPS is an acronym representing a model for classifying software qua
 ttributes (
functional
and
non- functional requirements
)
)ent

8 What

a 	

Functionality, Usability, Reliability, Performance and Supportability model.

lity

80

9 Define data abstraction? MAY/JUN-13
Data abstraction is a named collection of data that describes the data object. Eg:- Door attribute – door type, swing direction, weight

10 What are the elements of design model?

 (
Architectural design
 Interface design
 Component-level design
is the benefit of modular design?
Changes made during testing and maintenance becomes manageable and they do
 other modules.
e the commonly used architectural styles.
i. Data centered architecture. ii. Data flow architecture.
iii. Call and return architecture. iv. Object-oriented architecture. v. Laye
 ecture.
is a cohesive module?
A cohesive module performs only “one task” in software
dure with little interaction with other modules. In other words cohesive module
 rms only one thing.
)i. Data design ii.
iii.

iv.

11 What

affect

12 Nam

not

archit

13 What

proce perfo

red

81

14 What are the different types of Cohesion?

i. Coincidentally cohesive –The modules in which the set I\of tasks are related with each other loosely then such modules are called coincidentally cohesive.
ii. Logically cohesive – A module that performs the tasks that are logically related with each other is called logically cohesive.
iii. Temporal cohesion – The module in which the tasks need to be executed in some

specif proce
the

com

with hare

15 What
Co e. It depen

intera

 (
ic time span is called temporal cohesive.
iv.
 Procedural cohesion
–
When processing elements of a module are related
 dural cohesive.
v.
 Communicational cohesion
–
When the processing elements of a module s
 data then such module is called
municational cohesive.
is Coupling?What are the various types of coupling APRIL/MAY-15,
upling is the measure of interconnection among modules in a program structur
 ds on the interface complexity between modules.
i.
 Data coupling
–
The data coupling is possible by parameter passing or
 ction.
ii.
 Control coupling
–
The modules share related control data in control coupling.

iii.
 Common coupling
–
The common data or a global data is shared among modu
ontent coupling
–
Content coupling occurs when one module makes use of da
ol information
)data

les. iv. C ta or contr
maintained in another module.

82

16 What are the common activities in design process?

i. System structuring – The system is subdivided into principle subsystems components and communications between these subsystems are identified.
ii. Control modeling – A model of control relationships between different parts of the system is established.
iii. Modular decomposition – The identified subsystems are

deco

17 What

18 What

be dis

 (
mposed into modules
are the benefits of horizontal partitioning?
i. Software that is easy to test.
ii. Software that is easier to maintain.
iii. Propagation of fewer sideeffects. iv. Software that is easier to extend.
is vertical partitioning? What are the advantages?
Vertical partitioning often called factoring suggests that the control and work sh
 tributed top-down in program structure.
i. These are easy to maintain changes.
ii. They reduce the change impact and error propagation
module has logical cohesion, what kind of coupling is this module likely to have
R/MAY 2016
If a module has logical cohesion, then content coupling can be done. In content
)ould

19 If a ?

AP

coupling one module can make use of data or

control information maintained in another

83

20 Write the best practices for "coding”? APR/MAY 2015, NOV/DEC2015

 (
gement needed.
architectural styles are preferred for the following system? Why?
 NOV/DEC2016
Networking
–
Data centered Architecture
eb based systems
–
Call and return architecture
 anking system - Data centered Architecture.
is DFD?
Data Flow Diagram depicts the information flow and the
orms that are applied on the data as it moves from input to output.
e the commonly used architectural styles
.
i. Data centered architecture. ii. Data flow architecture.
all and return architecture. iv. Object-oriented architecture. v. Layered architecture
)Best coding practices are a set of informal rules that the software development community has learned over time which can help improve the quality of software. "The first 90% of the code accounts for the first 90% of the development time. The remaining 10% of the code accounts for the other 90% of the development time." The size of a project or program has a significant effect on error rates, programmer productivity, and the amount of
mana

21 What

(a)

(b) W (c) B

22 What

transf

23 Nam

iii. C .

24 What is ERD?

Entity Relationship Diagram is the graphical representation

of the object relationship pair. It is mainly used in database applications.

84

25 What UI design patters are used for the following? NOV/DEC 2016, APRIL/MAY

2017, APRIL/MAY 2018

(a) Page layout – interface design

(b) Tables - Design

(c) Navigation through menus and web pages – design

(d) Shopping cart – interface design, task analysis

26	What object struct infor

 (
are the various elements of data design?
i.
 Data object
–
The data objects are identified and relationship among various
 s can be represented using ERD or data dictionaries.
ii.
 Databases
–
Using software design model, the data models are translated into
 ures and data bases at the application level.
iii.
 Data warehouses
–
At the business level useful
mation is identified from various databases and the data warehouses are created.
he guidelines for data design.
i. Apply systematic analysis on data.
ii. Identify data structures and related operations.
 iii. Establish data dictionary.
iv. Use information hiding in the design of data structure.
 pply a library of useful data structures and operations.
is a Real time system?
)27 List t

v. A

28 What

data data

Real time system is a software system in which the correct functionalities of the

system are dependent upon results produced by the system and the time at which these results are produced

29 How do you describe software interface? April /May 2015

85

Software interface - the languages and codes that the applications use to communicate with each other and also with the hardware.
Three types of interface may have to be defined

• Procedural interfaces;

• Data structures that are exchanged;

• Data representations.
 (
interface describes the behavior of a software component that is obtained
dering only the interactions of that interface and by hiding all other interactions.
ain the qualitative criteria for measuring independence? NOV/DEC-11
 ohesion:
Cohesion is a qualitative indication of the degree to which a module focuse
ne thing.
Coupling:
Coupling is the measure of interconnection among
les in a program structure. It depends on the interface complexity between module
is the purpose of a petrinet ? APRIL/MAY 2017
etri net, also known as a place/transition (PT) net, is one of se

ematicalmodeling languages
for the description of
distributed systems.
It is a cla

te event dynamic system.
Petri nets offer a
graphical notation
for stepwise proc
ude choice,
iteration,
and
concurrent execution
is vertical partitioning?
)The by consi

30 Expl

1.C s on just o
2.

modu s

31 What

A P veral math ss of discre esses that
incl 	

32 What
Vertical partitioning often called factoring suggests that the control and work should be distributed top-down in program structure.

86

33 What are the benefits of horizontal partitioning?
i. Software that is easy to test. ii. Software that is easier to maintain. iii. Propagation of fewer side effects. iv. Software that is easier to extend.

34 What are data acquisition systems?

 (
acquisition systems. Data collection processes and processing processes may
 ent
ds and deadlines.
is interface design?
nterface design describes how the software communicates
n itself, with systems that interoperate with it, and with humans who use it.
are the elements of design model?
Data design
ii. Architectural design
 iii. Interface design
iv. Component-level design
is coupling?
upling is the measure of interconnection among modules in a program structur
 ds on the interface complexity between modules.
)Systems that collect data from sensors for subsequent processing and analysis are termed as data have differ
perio

35	What The i withi

36 What

37 What

Co e. It depen

38 Define design process.
Design process is a sequence of steps carried through which the requirements are translated into a system or software model.

87

39 What is Transform mapping?

The transform mapping is a set of design steps applied on the DFD

in order to map the transformed flow characteristics into specific architectural style.

40 What is component level design?

The component level design transforms structural elements of the soft

41 What

i. To

for th requir

42	What par The
The

 (
ware architecture into a procedural description of software components.
are the objectives of Analysis modeling?
describe what the customer requires. ii. To establish a basis
e creation of software design. iii. To devise a set of valid
 ements after which the software can be built.
are the various types of coupling?
i
Data coupling
–
The data coupling is possibl
 ameter passing or data interaction.
ii.

Control coupling
–
modules share related control data in control coupling.
iii.

Common coupling
–
common data or a global data is shared among modules.
iv.

Content coupling
–
Content coupling o
en one module makes use of data or control information maintained in another modu
)e by

ccurs

wh le.

43 What does modality in data modeling indicates?
Modality indicates whether or not a particular data object must participate in the relationship.

88

44 What does Level0 DFD represent?

Level 0 DFD is called as „fundamental system model‟ or „context model‟. In the context model the entire software system is represented by a single bubble with input and output indicated by
incoming and outgoing arrows.

 (
a design ii. Architectural design iii. Interface design iv. Component-level design
is data modeling?
modeling is the basic step in the analysis modeling. In data modeling the data obj
 xamined independently of processing. The data model represents how data are re
nother.
is a data object?
object is a collection of attributes that act as an aspect,
 cteristic,quality, or descriptor of the object
are attributes?
utes are the one, which defines the properties of data object.
is cardinality in data modeling?
inality in data modeling, cardinality specifies how the number of occurrences of on
 is related to the number of
rences of another object.
is ERD?
)45 What are the elements of design model?

i. Dat

46 What

Data ects are e lated with
one a

47 What

Data chara
48 What

Attrib

49 What

Card e object
occur

50 What
Entity Relationship Diagram is the graphical representation of the object relationship pair. It is mainly used in database applications

89

PART –B

S.NO QUESTIONS
1	Explain the core activities involved in User Interface design process with necessary block diagramsMAY/JUNE 2016 ,NOV/DEC2015, NOV/DEC 2017

Us tware. Us erface. To t from c

Us user in

UI re and sof

Th

 (
er interface is the front-end application view to which user interacts in order to use the sof
 er can manipulate and control the software as well as hardware by means of user int
 day, user interface is found at almost every place where digital technology exists, righ
omputers, mobile phones, cars, music players, airplanes, ships etc.
er interface is part of software and is designed such a way that it is expected to provide the
 sight of the software. UI provides fundamental platform for human-computer interaction.
can be graphical, text-based, audio-video based, depending upon the underlying hardwa
 tware combination. UI can be hardware or software or a combination of both.
e software becomes more popular if its user interface is:

Attractive

Simple to use

Responsive in short time

Clear to understand

Consistent on all interfacing screens
 is broadly divided into two categories:

Command Line Interface

Graphical User Interface
ommand Line Interface (CLI)
LI has been a great tool of interaction with computers until the video display monitors cam
 stence. CLI is first choice of many technical users and programmers. CLI is minimum in
 software can provide to its users.
LI provides a command prompt, the place where the user types the command and feeds
 stem. The user needs to remember the syntax of command and its use. Earlier CLI we
)UI

C

C e into exi terface a

C to the sy re not programmed to handle the user errors effectively.

A command is a text-based reference to set of instructions, which are expected to be executed by the system. There are methods like macros, scripts that make it easy for the user to operate.

CLI uses less amount of computer resource as compared to GUI.

CLI Elements

90

A t

 (
ext-based command line interface can have the following elements:

Command Prompt
- It is text-based notifier that is mostly shows the context in whi
 user is working. It is generated by the software system.

Cursor
- It is a small horizontal line or a vertical bar of the height of line, to repr
 position of character while typing. Cursor is mostly found in blinking state. It moves
 user writes or deletes something.

Command
- A command is an executable instruction. It may have one or more param
 Output on command execution is shown inline on the screen. When output is pro
 command prompt is displayed on the next line.
raphical User Interface
aphical User Interface provides the user graphical means to interact with the system. GUI
ombination of both hardware and software. Using GUI, user interprets the software.
pically, GUI is more resource consuming than that of CLI. With advancing technology
 grammers and designers create complex GUI designs that work with more efficiency, ac
)ch the

esent as the

eters. duced,

G

Gr can be c

Ty , the pro curacy and speed.

GUI Elements

GUI provides a set of components to interact with software or hardware.

Every graphical component provides a way to work with the system. A GUI system has following elements such as:

91

can easier an be re on child

 (

Window
- An area where contents of application are displayed. Contents in a window
 be displayed in the form of icons or lists, if the window represents file structure. It is
 for a user to navigate in the file system in an exploring window. Windows c
 minimized, resized or maximized to the size of screen. They can be moved anywhe
 the screen. A window may contain another window of the same application, called
 window.

Tabs
- If an application allows executing multiple instances of itself, they appear
 screen as separate windows.
Tabbed Document Interface
has come up to open m
 documents in the same window. This interface also helps in viewing preference pa
 application. All modern web-browsers use this feature.

Menu
- Menu is an array of standard commands, grouped together and placed at a
 place (usually top) inside the application window. The menu can be programmed to
 or hide on mouse clicks.

Icon
- An icon is small picture representing an associated application. When these
 are clicked or double clicked, the application window is opened. Icon displays appl
 and programs installed on a system in the form of small pictures.

Cursor
- Interacting devices such as mouse, touch pad, digital pen are represented i
 as cursors. On screen cursor follows the instructions from hardware in almost rea
 Cursors are also named pointers in GUI systems. They are used to select menus, wi
)on the ultiple nel in

visible appear

icons ication

and other application features.

n GUI l-time. ndows

Application specific GUI components

A GUI of an application contains one or more of the listed GUI elements:

	Application Window - Most application windows uses the constructs supplied by operating systems but many use their own customer created windows to contain the contents of application.

	Dialogue Box - It is a child window that contains message for the user and request for some action to be taken. For Example: Application generate a dialogue to get confirmation
92

from user to delete a file.

 ext-Box - Provides an area for user to type and enter text-based data.

 Buttons - They imitate real life buttons and are used to submit inputs to the software.

among arked
 (

Radio-button
- Displays available options for selection. Only one can be selected
 all offered.

Check-box
- Functions similar to list-box. When an option is selected, the box is m
 as checked. Multiple options represented by check boxes can be selected.

List-box
- Provides list of available items for selection. More than one item c
 selected.
her impressive GUI components are:

Sliders

Combo-box

Data-grid
)an be

Ot

 Drop-down list



93

 (
xplain the various modular decomposition and control styles commonly used in
 ganizational model.MAY/JUNE 2016
odular decomposition
nother structural level where sub-
systems are decomposed into modules. ● Two modular

composition
models covered • An object model where the system is decomposed into inte
 ject; • A pipeline or data
-flow model where the system is decomposed into functional mod

hich transform inputs to outputs. ● If possible, decisions about concurrency sh
ould be dela
 til modules are implemented
odular decomposition styles
yles of decomposing sub-
systems into modules. ● No rigid distinction between system
ganisation and modular decomposition.
)2	E any or
M

A

de racting ob ules
w yed un
M St or
Sub-systems and modules

A sub-system is a system in its own right whose operation is independent of the services provided by other sub-systems. ● A module is a system component that provides services to other components but would not normally be considered as a separate system
Control styles
Are concerned with the control flow between sub-systems. Distinct from the system decomposition model.
94

● Centralised control • One sub-system has overall responsibility for control and starts and stops other sub-systems.
● Event-based control • Each sub-system can respond to externally generated events from other sub-systems or the system’s environment.
Centralised control

A control sub-system takes responsibility for managing the execution of other sub-systems.

● Call-return model

• oves

●

•

m

ontrol

 (
Top
-down subroutine model where control starts at the top of a subroutine hierarchy and m
 downwards. Applicable to sequential systems.
Manager model
Applicable to concurrent systems.

One system component controls the stopping, starting and coordination of other syste
 processes. Can be implemented in sequential systems as a case statement.
Event-driven systems
Driven by externally generated events where the timing of the event is outwith the c
 of the subsystems which process the event.
● Two principal event
-driven models
• B
roadcast models. An event is broadcast to all subsystems. Any sub-system which
 handle the event may do so;
• Interrupt
-driven models. Used in real-time systems where interrupts are detected b
 interrupt handler and passed to some other component for processing
. ● Other event driven models include spreadsheets and production systems.
scuss the process of translating the analysis model in to a software design, List the gol
 les of user interface designNOV/DEC2015
e process of implementation of a software may be define as a process of translation old so
 new software with a new developed software who have extra functions and maki
 erational without any interruption in an organization functioning system. The time period
 rts from the acceptance of the tested design to its satisfactory operated it covers all the
 iod. The software implementation is a very big operation and for the implementation
 tware better planning is must require. The planning of implementation of software sho
)can y an

3 Di den

ru

Th ftware to ng it op which sta time per of a sof uld be implemented from a short point and after the success it implemented on whole area. For the implementation of a new software a good knowledge is must require and some requirement of a system are hardware, file conversion actions and some personal needs of software.

Activities involved in software implementation

When old software and new software is modified and implemented then it contains three basic actions.

1. Personal training - For the implementation of new software, the training of users and operators is necessary part. The training activity plays a major part in operating and maintaining the software by user. Thus we can say that operators and user both require
95

training.

o Software operator training - Most software run smoothly depends on the computer user. The training of computer operator gives the satisfaction that he can do every action and data entry. In the process of training a list of problem can be figured out and solution can be provided to then so that they can solve their problems on their base and build the knowledge about this. If they get unusual problem they can contact the concerned person. With the help of training they become friendly with software and solve can their problem easily.

 (
way. During the training a manual is given to every user so that the
 understand the problem and solved it. The content of training is about the
 data that how they can edit, add, query and delete the records. If a user ha
 sufficient capability of working on system then many kind of errors and pro
 can occur.
2.
Conversion
- With the help of conversion process a old software can be replaced wi
 software. The process of conversion is useful in only that case where new software i
 tested and report is positive. It involves many kinds of actions which are:
o
From old to new software system all files and data base converted.
o
Providing the user training of the each staff of the organization which has the
 of using new software.
o
Conversion of forms. This may involve discarding old data.
o
Converting administration. In the process of converting administration proc
 role of each member is divided according the needs and the responsibility
 divided according to their job regarding new software.
3.
Post implementation Review
- After the process of implementation and conversi
 software some reviews are taken by the user and the experts. This is the normal proc
 getting the following points:
o
What is the working of a software system?
o
How it has been accepted by the user?
o
Area of updating
Performance of a software measured with the help of a post implementation revi
 helps in deciding that software gets the specification with how much efficiency.
pes of implementation
)o User training - User training helps the user in operating the system in efficient y can use of ve not blems

th new s fully

right

ess the is also

on of ess of

ew. It

Ty

We have three types of implementation method which are given below:

1. Fresh implementation - Fresh implementation of software may be defined as a process where a manual record are replaced with new software. During the process of fresh implementation some problems come in the form of conversion of files, user training, accurate system of files etc.

2. Replacement implementation - When an old software is replaced with a new software implementation that the name of this process is Replacement implementation. This process is very difficult and a proper planning is needed for this, otherwise many problems can arise.

96

3. Modified implementation - When an old software is replaced by new software with some alteration then this process is called modified implementation. We can easily handle this type of implementation because area of modification is not so large in files.

User Interface Golden rules

The following rules are mentioned to be the golden rules for GUI design, described by
Shneiderman and Plaisant in their book (Designing the User Interface).

similar reens.

ber of
hidden

ystem le for

groups group ef, the hat the

ill not offer

s that miliar group

se that gn the

 (

Strive for consistency
- Consistent sequences of actions should be required in
situations. Identical terminology should be used in prompts, menus, and help sc
Consistent commands should be employed throughout.

Enable frequent users to use short-cuts
-
The user’s desire to reduce the num

interactions increases with the frequency of use. Abbreviations, function keys,
 commands, and macro facilities are very helpful to an expert user.

Offer informative feedback
- For every operator action, there should be some s
 feedback. For frequent and minor actions, the response must be modest, whi
 infrequent and major actions, the response must be more substantial.

Design dialog to yield closure
- Sequences of actions should be organized into
 with a beginning, middle, and end. The informative feedback at the completion of a
 of actions gives the operators the satisfaction of accomplishment, a sense of reli
 signal to drop contingency plans and options from their minds, and this indicates t
 way ahead is clear to prepare for the next group of actions.

Offer simple error handling
- As much as possible, design the system so the user w
 make a serious error. If an error is made, the system should be able to detect it and
 simple, comprehensible mechanisms for handling the error.

Permit easy reversal of actions
- This feature relieves anxiety, since the user know
 errors can be undone. Easy reversal of actions encourages exploration of unfa
 options. The units of reversibility may be a single action, a data entry, or a complete
 of actions.

Support internal locus of control
- Experienced operators strongly desire the sen
 they are in charge of the system and that the system responds to their actions. Desi
 system to make users the initiators of actions rather than the responders.

Reduce short-term memory load
- The limitation of human information process
 short-term memory requires the displays to be kept simple, multiple page displ
 consolidated, window-motion frequency be reduced, and sufficient training ti
)allotted for codes, mnemonics, and sequences of actions.

ing in ays be me be

4 Explain the basic concepts of software design APR/MAY-11 , NOV/DEC 2017

Software design is a process to transform user requirements into some suitable form, which helps the programmer in software coding and implementation.

For assessing user requirements, an SRS (Software Requirement Specification) document is created whereas for coding and implementation, there is a need of more specific and detailed requirements in software terms. The output of this process can directly be used
97

into implementation in programming languages.

Software design is the first step in SDLC (Software Design Life Cycle), which moves the concentration from problem domain to solution domain. It tries to specify how to fulfill the requirements mentioned in SRS.

Software Design Levels

Software design yields three levels of results:

 Architectural Design - The architectural design is the highest abstract version of the

each

nt’ and along ular

as a odules aces to

M

 (
system. It identifies the software as a system with many components interacting with
 other. At this level, the designers get the idea of proposed solution domain.

High-level Design-
The high-
level design breaks the ‘single entity
-
multiple compone

concept of architectural design into less-abstracted view of sub-systems and modules
 depicts their interaction with each other. High-level design focuses on how the system
 with all of its components can be implemented in forms of modules. It recognizes mod
 structure of each sub-system and their relation and interaction among each other.

Detailed Design-
Detailed design deals with the implementation part of what is seen
 system and its sub-systems in the previous two designs. It is more detailed towards m
 and their implementations. It defines logical structure of each module and their interf
 communicate with other modules.
odularization
Modularization is a technique to divide a software system into multiple discrete and indep
 odules, which are expected to be capable of carrying out task(s) independently. These m
 y work as basic constructs for the entire software. Designers tend to design modules suc
y can be executed and/or compiled separately and independently.
Modular design unintentionally follows the rules of ‘divide and conquer’ problem
-solving st
 s is because there are many other benefits attached with the modular design of a software.
dvantage of modularization:

Smaller components are easier to maintain

Program can be divided based on functional aspects

Desired level of abstraction can be brought in the program

Components with high cohesion can be re-used again

Concurrent execution can be made possible

Desired from security aspect
)endent
m odules ma h that the

thi

A

rategy

Concurrency

Back in time, all software are meant to be executed sequentially. By sequential execution we mean that the coded instruction will be executed one after another implying only one portion of program being activated at any given time. Say, a software has multiple modules, then only one of all the modules can be found active at any time of execution.

In software design, concurrency is implemented by splitting the software into multiple independent units of execution, like modules and executing them in parallel. In other words, concurrency provides capability to the software to execute more than one part of code in parallel to each other.

98

It is necessary for the programmers and designers to recognize those modules, which can be made parallel execution.

Example

The spell check feature in word processor is a module of software, which runs along side the word processor itself.

Design Verification

 (
grams, process diagrams, and detailed description of all functional or non-func
uirements.
e next phase, which is the implementation of software, depends on all outputs mentioned a
 s then becomes necessary to verify the output before proceeding to the next phase. Th
y mistake is detected, the better it is or it might not be detected until testing of the product
puts of design phase are in formal notation form, then their associated tools for verif
uld be used otherwise a thorough design review can be used for verification and validation
structured verification approach, reviewers can detect defects that might be cause
 overlooking some conditions. A good design review is important for good software de
uracy and quality.
xplain clearly the concept of coupling & cohesion? For each type of coupling gi
 ample of two components coupled in that way?
PRIL/MAY 2015, APRIL/MAY 2017, APRIL/MAY 2018
Describe the concept of cohesion and coupling. State the difference b/w cohesion
 oupling with a suitable example.
April/May Apr/May 2008)
oupling and Cohesion
hen a software program is modularized, its tasks are divided into several modules based on
 racteristics. As we know, modules are set of instructions put together in order to achieve
 sks. They are though, considered as single entity but may refer to each other to work toge
 ere are measures by which the quality of a design of modules and their interaction among
be measured. These measures are called coupling and cohesion.
ohesion
)The output of software design process is design documentation, pseudo codes, detailed logic dia tional req
Th bove. It i e early
an . If the
out ication
sho .

By d by sign,
acc

5	E ve an ex
A

and c
(

C

W some cha some ta ther. Th them can

C

Cohesion is a measure that defines the degree of intra-dependability within elements of a module. The greater the cohesion, the better is the program design.

There are seven types of cohesion, namely –

	Co-incidental cohesion - It is unplanned and random cohesion, which might be the result of breaking the program into smaller modules for the sake of modularization. Because it is unplanned, it may serve confusion to the programmers and is generally not-accepted.
	Logical cohesion - When logically categorized elements are put together into a module, it is called logical cohesion.

99

	Temporal Cohesion - When elements of module are organized such that they are processed at a similar point in time, it is called temporal cohesion.
	Procedural cohesion - When elements of module are grouped together, which are executed sequentially in order to perform a task, it is called procedural cohesion.
	Communicational cohesion - When elements of module are grouped together, which are executed sequentially and work on same data (information), it is called communicational cohesion.
	Sequential cohesion - When elements of module are grouped because the output of one element serves as input to another and so on, it is called sequential cohesion.
highly

C

Co ram. It tell ng, the bet

Th

 (

Functional cohesion -
It is considered to be the highest degree of cohesion, and it is
expected. Elements of module in functional cohesion are grouped because they all
 contribute to a single well-defined function. It can also be reused.
oupling
upling is a measure that defines the level of inter-dependability among modules of a prog
 s at what level the modules interfere and interact with each other. The lower the coupli
 ter the program.
ere are five levels of coupling, namely -

Content coupling -
When a module can directly access or modify or refer to the cont
 another module, it is called content level coupling.

Common coupling-
When multiple modules have read and write access to some globa
 data, it is called common or global coupling.

Control coupling-
Two modules are called control-coupled if one of them decides the
 function of the other module or changes its flow of execution.

Stamp coupling-
When multiple modules share common data structure and work on
 different part of it, it is called stamp coupling.

Data coupling-
Data coupling is when two modules interact with each other by mean
 passing data (as parameter). If a module passes data structure as parameter, then the
 receiving module should use all its components.
ally, no coupling is considered to be the best.
Write short notes on Architectural & component design. MAY/JUN-15,NOV/DEC2015
e architecture of a system describes its major components, their relationships (structure
 how they interact with each other. Software architecture and design includes several contri
tors such as Business strategy, quality attributes, human dynamics, design, and IT environm
)ent of l

s of

Ide

6

Th s), and butory
fac ent.

10

W ftware Ar rated by

 (
e can segregate Software Architecture and Design into two distinct phases: So
 chitecture and Software Design. In
Architecture
, nonfunctional decisions are cast and sepa
 the functional requirements. In Design, functional requirements are accomplished.
ware Architecture
chitecture serves as a
blueprint for a system
. It provides an abstraction to manage the
 omplexity and establish a communication and coordination mechanism among components.

It defines a
structured solution
to meet all the technical and operational require
 while optimizing the common quality attributes like performance and security.

Further, it involves a set of significant decisions about the organization related to so
 development and each of these decisions can have a considerable impact on q
 maintainability, performance, and the overall success of the final product. These dec

comprise of −
o
Selection of structural elements and their interfaces by which the syst
 composed.
o
Behavior as specified in collaborations among those elements.
o
Composition of these structural and behavioral elements into large subsystem
)Soft

Ar system c

ments,

ftware uality, isions

em is

.

o Architectural decisions align with business objectives.

o Architectural styles guide the organization.

Software Design

Software design provides a design plan that describes the elements of a system, how they fit, and work together to fulfill the requirement of the system. The objectives of having a design plan are as follows −

 To negotiate system requirements, and to set expectations with customers, marketing, and

10

management personnel.

 Act as a blueprint during the development process.
 Guide the implementation tasks, including detailed design, coding, integration, and testing. It comes before the detailed design, coding, integration, and testing and after the domain analysis,
requirements analysis, and risk analysis.

Goals of Architecture

 (
pplication. A well-laid architecture reduces the business risks associated with building a tec
 ution and builds a bridge between business and technical requirements.
ome of the other goals ar
e as follows −

Expose the structure of the system, but hide its implementation details.

Realize all the use-cases and scenarios.

Try to address the requirements of various stakeholders.

Handle both functional and quality requirements.

Reduce the goal of ow
nership and improve the organization’s market position.

Improve quality and functionality offered by the system.

Improve external confidence in either the organization or system.
Limitations
tware architecture is still an emerging discipline within software engineering. It h
owing limitations −

Lack of tools and standardized ways to represent architecture.

Lack of analysis methods to predict whether architecture will result in an implement
 that meets the requirements.

Lack of awareness of the importance of architectural design to software development

Lack of understanding of the role of software architect and poor communication
 stakeholders.

Lack of understanding of the design process, design experience and evaluation of des
Role of Software Architect
)The primary goal of the architecture is to identify requirements that affect the structure of the a hnical sol

S

Sof as the
foll

ation

. among

ign.

A Software Architect provides a solution that the technical team can create and design for the entire application. A software architect should have expertise in the following areas −

Design Expertise

	Expert in software design, including diverse methods and approaches such as object- oriented design, event-driven design, etc.

	Lead the development team and coordinate the development efforts for the integrity of the design.

10

 Should be able to review design proposals and tradeoff among themselves.

Component-based architecture

Component-based architecture focuses on the decomposition of the design into individual functional or logical components that represent well-defined communication interfaces containing methods, events, and properties. It provides a higher level of abstraction and divides the problem into sub-problems, each associated with component partitions.

 (
ployable binary unit. There are many standard component frameworks such as COM/D
aBean, EJB, CORBA, .NET, web services, and grid services. These technologies are
d in local desktop GUI application design such as graphic JavaBean components, MS A
omponents, and COM components which can be reused by simply drag and drop operation.
omponent-oriented software design has many advantages over the traditional object-o
roaches such as −

Reduced time in market and the development cost by reusing existing components.

Increased reliability with the reuse of the existing components.
hat is a Component?
component is a modular, portable, replaceable, and reusable set of well-defined functi
 t encapsulates its implementation and exporting it as a higher-level interface.
component is a software object, intended to interact with other components, encapsul
 tain functionality or a set of functionalities. It has an obviously defined interface and conf
 a recommended behavior common to all components within an architecture.
software component can be defined as a unit of composition with a contractually sp
 erface and explicit context dependencies only. That is, a software component can be de
ndependently and is subject to composition by third parties.
ws of a Component
component can have three different views − object
-oriented view, conventional view
 cess-related view.
ject-oriented view
component is viewed as a set of one or more cooperating classes. Each problem domain
 alysis) and infrastructure class (design) are explained to identify all attributes and ope
t apply to its implementation. It also involves defining the interfaces that enable class
)The primary objective of component-based architecture is to ensure component reusability. A component encapsulates functionality and behaviors of a software element into a reusable and self- de COM, Jav widely use ctiveX c

C riented
app

W

A onality tha

A ating cer orms to

A ecified int ployed i

Vie

A , and pro

Ob

A class (an rations tha es to communicate and cooperate.

Conventional view

It is viewed as a functional element or a module of a program that integrates the processing logic, the internal data structures that are required to implement the processing logic and an interface that enables the component to be invoked and data to be passed to it.

Process-related view

In this view, instead of creating each component from scratch, the system is building from existing components maintained in a library. As the software architecture is formulated, components are

10

selected from the library and used to populate the architecture.

	A user interface (UI) component includes grids, buttons referred as controls, and utility components expose a specific subset of functions used in other components.

	Other common types of components are those that are resource intensive, not frequently accessed, and must be activated using the just-in-time (JIT) approach.

	Many components are invisible which are distributed in enterprise business applications and internet web applications such as Enterprise JavaBean (EJB), .NET components, and CORBA components.

Cha

ons in
sk.

s and new
use its riables

other

 (
racteristics of Components

Reusability
− Components are usually designed to be reused in different situati
different applications. However, some components may be designed for a specific ta

Replaceable
− Components may be freely substituted with other similar components.

Not context specific
− Components are designed to operate in different environment
contexts.

Extensible
− A component can be extended from existing components to provide
behavior.

Encapsulated
− A A component depicts the interfaces, which allow the caller to

functionality, and do not expose details of the internal processes or any internal va
 or state.

Independent
− Components are designed to have minimal dependencies on
components.
nciples of Component−Based Design
component-level design can be represented by using some intermediary representation
 phical, tabular, or text-based) that can be translated into source code. The design of
 uctures, interfaces, and algorithms should conform to well-established guidelines to he
 oid the introduction of errors.

The software system is decomposed into reusable, cohesive, and encapsulated com
 units.

Each component has its own interface that specifies required ports and provided port
 component hides its detailed implementation.

A component should be extended without the need to make internal code or
 modifications to the existing parts of the component.
)Pri

A (e.g. gra data str lp us av

ponent s; each design
	Depend on abstractions component do not depend on other concrete components, which increase difficulty in expendability.

	Connectors connected components, specifying and ruling the interaction among components. The interaction type is specified by the interfaces of the components.

	Components interaction can take the form of method invocations, asynchronous invocations, broadcasting, message driven interactions, data stream communications, and other protocol specific interactions.

 For a server class, specialized interfaces should be created to serve major categories of

10

clients. Only those operations that are relevant to a particular category of clients should be specified in the interface.

	A component can extend to other components and still offer its own extension points. It is the concept of plug-in based architecture. This allows a plugin to offer another plugin API.

7 Bring out the necessity of Real-time system design process with appropriate

example?APR/MAY-12, MAY/JUNE-13, APRIL/MAY-15

Sys

It m by de nning, yo n best be

Sy

Sy

 (
tems Design
is a process of planning a new business system or replacing an existing syste
 fining its components or modules to satisfy the specific requirements. Before pla
 u need to understand the old system thoroughly and determine how computers ca
 used in order to operate efficiently.
stem Design focuses on
how to accomplish the objective of the system
.
stem Analysis and Design (SAD) mainly focuses on −

Systems

Processes

Technology
hat is a System?
e word System is derived from Greek word Systema, which means an orga
 ationship between any set of components to achieve some common cause or objec
ystem is “an orderly grouping of interdependent components linked together acc
 a plan to achieve a specific goal.”
nstraints of a System
ystem must have three basic constraints −

A system must have some
structure and behavior
which is designed to achi
 predefined objective.

Interconnectivity
and
interdependence
must exist among the system compo

The
objectives of the organization
have a
higher priority
than the objecti
)W

Th nized rel tive.

A s ording to

Co

A s

its subsystems.

eve a nents.

ves of

For example, traffic management system, payroll system, automatic library system, human resources information system.

Properties of a System

A system has the following properties −

Organization

10

Organization implies structure and order. It is the arrangement of components that helps to achieve predetermined objectives.

Interaction

It is defined by the manner in which the components operate with each other.

For example, in an organization, purchasing department must interact with production department and payroll with personnel department.

 (
erdependence
erdependence means how the components of a system depend on one anothe
 oper functioning, the components are coordinated and linked together according
 pecified plan. The output of one subsystem is the required by other subsystem as input
egration
egration is concerned with how a system components are connected together. It
t the parts of the system work together within the system even if each part perfo
 que function.
ntral Objective
e objective of system must be central. It may be real or stated. It is not uncomm
 organization to state an objective and operate to achieve another.
e users must know the main objective of a computer application early in the analy
 uccessful design and conversion.
lements of a System
e following diagram shows the elements of a system −
)Int

Int r. For pr to a s .

Int

Int means tha rms a uni

Ce

Th on for an

Th sis for a s

E

Th

10

Outputs and Inputs

 The main aim of a system is to produce an output which is useful for its user.

 Inputs are the information that enters into the system for processing.

 Output is the outcome of processing.

Processor(s)

The processor is the element of a system that involves the actual transformation of either put is

Co

rning and
 (

input into output.

It is the operational component of a system. Processors may modify the input
 totally or partially, depending on the output specification.

As the output specifications change, so does the processing. In some cases, in
 also modified to enable the processor for handling the transformation.
ntrol

The control element guides the system.

It is the decision
–
making subsystem that controls the pattern of activities gove
 input, processing, and output.

The behavior of a computer System is controlled by the Operating System
 software. In order to keep system in balance, what and how much input is n
is determined by Output Specifications.
dback

Feedback provides the control in a dynamic system.

Positive feedback is routine in nature that encourages the performance
 system.

Negative feedback is informational in nature that provides the controller
 information for action.
nvironment

The environment is the “supersystem” within which an organization operates.
)eeded

Fee

of the with

E

 It is the source of external elements that strike on the system.

	It determines how a system must function. For example, vendors and competitors of organization’s environment, may provide constraints that affect the actual performance of the business.

Boundaries and Interface

	A system should be defined by its boundaries. Boundaries are the limits that identify its components, processes, and interrelationship when it interfaces with another system.

10

 Each system has boundaries that determine its sphere of influence and control.

	The knowledge of the boundaries of a given system is crucial in determining the nature of its interface with other systems for successful design.

Types of Systems

The systems can be divided into the following types −

Physical or Abstract Systems

chairs puter hange

ulas,

and ystem

 (

Physical systems are tangible entities. We can touch and feel them.

Physical System may be static or dynamic in nature. For example, desks and
 are the physical parts of computer center which are static. A programmed com
 is a dynamic system in which programs, data, and applications can c
 according to the user's needs.

Abstract systems are non-physical entities or conceptual that may be form
 representation or model of a real system.
Open or Closed Systems

An open system must interact with its environment. It receives inputs from
 delivers outputs to the outside of the system. For example, an information s
 which must adapt to the changing environmental conditions.

A closed system does not interact with its environment. It is isolated
 environmental influences. A completely closed system is rare in reality.
daptive and Non Adaptive System

Adaptive System responds to the change in the environment in a way to im
 their performance and to survive. For example, human beings, animals.

Non Adaptive System is the system which does not respond to the environm
For example, machines.
manent or Temporary System

Permanent System persists for long time. For example, business policies.

Temporary System is made for specified time and after that they are demol
For example, A DJ system is set up for a program and it is dissembled aft
)from

A

Per

program.

prove ent.

ished. er the

Natural and Manufactured System

	Natural systems are created by the nature. For example, Solar system, seasonal system.

 Manufactured System is the man-made system. For example, Rockets, dams, trains.

Deterministic or Probabilistic System

 Deterministic system operates in a predictable manner and the interaction between
10

system components is known with certainty. For example, two molecules of hydrogen and one molecule of oxygen makes water.

	Probabilistic System shows uncertain behavior. The exact output is not known. For example, Weather forecasting, mail delivery.

Social, Human-Machine, Machine System

 Social System is made up of people. For example, social clubs, societies.

 In Human-Machine System, both human and machines are involved to perform a

are

Ma

icular on for
 (
particular task. For example, Computer programming.

Machine System is where human interference is neglected. All the tasks
 performed by the machine. For example, an autonomous robot.
n
–
Made Information Systems

It is an interconnected set of information resources to manage data for part
 organization, under Direct Management Control (DMC).

This system includes hardware, software, communication, data, and applicati
 producing information according to the need of an organization.
Man-made
information systems are divided into three types −

Formal Information System
− It is based on the flow of information in the
of memos, instructions, etc., from top level to lower levels of management.

Informal Information System
− This is employee ba
sed system which solv
 day to day work related problems.

Computer Based System
− This system is directly dependent on the comput

managing business applications. For example, automatic library system, ra
 reservation system, banking system, etc.
What is structured design? Illustrate the structured design process from DFD to struc
 art with a case study.NOV/DEC 2016,
uctured Analysis is a development method that allows the analyst to understand the syste
 activities in a logical way.
s a systematic approach, which uses graphical tools that analyze and refine the objectives
)form es the er for
ilway

8 tured

ch

Str m and its

It i of an existing system and develop a new system specification which can be easily understandable by user.

It has following attributes −

 It is graphic which specifies the presentation of application.

 It divides the processes so that it gives a clear picture of system flow.

	It is logical rather than physical i.e., the elements of system do not depend on vendor or hardware.

10

 It is an approach that works from high-level overviews to lower-level details.

Structured Analysis Tools

During Structured Analysis, various tools and techniques are used for system development. They
are −

 Data Flow Diagrams
 Data Dictionary
 (

Decision Tables

Structured English

Pseudocode
a Flow Diagrams (DFD) or Bubble Chart
s a technique developed by Larry Constantine to express the requirements of system
 phical form.

It shows the flow of data between various functions of system and specifies how
) Decision Trees

Dat

It i in a gra

current system is implemented.

the

	It is an initial stage of design phase that functionally divides the requirement specifications down to the lowest level of detail.

	Its graphical nature makes it a good communication tool between user and analyst or analyst and system designer.

	It gives an overview of what data a system processes, what transformations are performed, what data are stored, what results are produced and where they flow.

11

Basic Elements of DFD

DFD is easy to understand and quite effective when the required design is not clear and the user wants a notational language for communication. However, it requires a large number of iterations for obtaining the most accurate and complete solution.

The following table shows the symbols used in designing a DFD and their significance −

Symbol Name Symbol

 (
Square
 Arrow
 Circle
Open Rectangle
pes of DFD
Ds are of two types: Physical DFD and Logical DFD. The following table lists the poin
 ferentiate a physical DFD from a logical DFD.
Physical DFD
is implementation dependent. It shows which functions are performed. It is i
 proce
)Ty

DF ts that dif

It mplem sses.

It provides low level details of hardware, software, files, and people. It explains e

It depicts how the current system operates and how a system will be implemented. It shows ho

11

Context Diagram

A context diagram helps in understanding the entire system by one DFD which gives the overview of a system. It starts with mentioning major processes with little details and then goes onto giving more details of the processes with the top-down approach.

The context diagram of mess management is shown below.

 (
a Dictionary
data dictionary is a structured repository of data elements in the system. It stores the descr
 all DFD data elements that is, details and definitions of data flows, data stores, data sto
 a stores, and the processes.
data dictionary improves the communication between the analyst and the user. It pl
 portant role in building a database. Most DBMSs have a data dictionary as a standard f
example, refer the following table −
Sr.No. Data Name Descrip
1 ISBN ISBN Nu
)Dat

A iptions of red in dat

A ays an im eature. For

tion

mber

2 TITLE title

3 SUB Book Subjects

11

4 ANAME Author Name

Decision Trees

Decision trees are a method for defining complex relationships by describing decisions and avoiding the problems in communication. A decision tree is a diagram that shows alternative actions and conditions within horizontal tree framework. Thus, it depicts which conditions to consider first, second, and so on.

De square r the
seq

 (
cision trees depict the relationship of each condition and their permissible actions. A
node indicates an action and a circle indicates a condition. It forces analysts to conside
uence of decisions and identifies the actual decision that must be made.
e major limitation of a decision tree is that it lacks information in its format to describ
 her combinations of conditions you can take for testing. It is a single representation
 ationships between conditions and actions.
example, refer the following decision tree −
)Th e what ot of the rel

For

11

Decision Tables

Decision tables are a method of describing the complex logical relationship in a precise manner which is easily understandable.

	It is useful in situations where the resulting actions depend on the occurrence of one or several combinations of independent conditions.

 It is a matrix containing row or columns for defining a problem and the actions.

Components of a Decision Table

to be ied out asked
action

 (

Condition Stub
− It is in the upper left quadrant which lists all the condition
checked.

Action Stub
− It is in the lower left quadrant which outlines all the action to be carr
to meet such condition.

Condition Entry
− It is in upper right quadrant which pro
vides answers to questions
 in condition stub quadrant.

Action Entry
− It is in lower right quadrant which indicates the appropriate
resulting from the answers to the conditions in the condition entry quadrant.
e entries in decision table are given by Decision Rules which define the relationships be
 ombinations of conditions and courses of action. In rules section,

Y shows the existence of a condition.

N represents the condition, which is not satisfied.

A blank - against action states it is to be ignored.

X (or a check mark will do) against action states it is to be carried out.
)Th tween c

11

9 (a) Describe golden rules for interface design NOV/DEC 2016

User Interface Golden rules

The following rules are mentioned to be the golden rules for GUI design, described by
Shneiderman and Plaisant in their book (Designing the User Interface).

	Strive for consistency - Consistent sequences of actions should be required in similar situations. Identical terminology should be used in prompts, menus, and help screens. Consistent commands should be employed throughout.

ber of
hidden

ystem le for

groups group ef, the hat the

ill not offer

s that miliar group

se that gn the

(short- ated,

Re
 (

Enable frequent users to use short-cuts
-
The user’s desire to reduce the num
interactions increases with the frequency of use. Abbreviations, function keys,
 commands, and macro facilities are very helpful to an expert user.

Offer informative feedback
- For every operator action, there should be some s
 feedback. For frequent and minor actions, the response must be modest, whi
 infrequent and major actions, the response must be more substantial.

Design dialog to yield closure
- Sequences of actions should be organized into
 with a beginning, middle, and end. The informative feedback at the completion of a
 of actions gives the operators the satisfaction of accomplishment, a sense of reli
 signal to drop contingency plans and options from their minds, and this indicates t
 way ahead is clear to prepare for the next group of actions.

Offer simple error handling
- As much as possible, design the system so the user w
 make a serious error. If an error is made, the system should be able to detect it and
 simple, comprehensible mechanisms for handling the error.

Permit easy reversal of actions
- This feature relieves anxiety, since the user know
 errors can be undone. Easy reversal of actions encourages exploration of unfa
 options. The units of reversibility may be a single action, a data entry, or a complete
 of actions.

Support internal locus of control
- Experienced operators strongly desire the sen
 they are in charge of the system and that the system responds to their actions. Desi
 system to make users the initiators of actions rather than the responders.
b)

Reduce short-term memory load
- The limitation of human information processing in
 term memory requires the displays to be kept simple, multiple page displays be consolid
 window-motion frequency be reduced, and sufficient training time be allotted for codes,
 mnemonics, and sequences of actions
fer class notes
What is software architecture ? Describe in detail different types of software architec
)10 tural

styles with illustrations. APRIL/MAY 2017, APRIL/MAY 2018

The architecture of a system describes its major components, their relationships (structures), and how they interact with each other. Software architecture and design includes several contributory factors such as Business strategy, quality attributes, human dynamics, design, and IT environment.

11

W ftware Ar rated by

 (
e can segregate Software Architecture and Design into two distinct phases: So
 chitecture and Software Design. In
Architecture
, nonfunctional decisions are cast and sepa
 the functional requirements. In Design, functional requirements are accomplished.
ware Architecture
chitecture serves as a
blueprint for a system
. It provides an abstraction to manage the
 omplexity and establish a communication and coordination mechanism among components.

It defines a
structured solution
to meet all the technical and operational require
 while optimizing the common quality attributes like performance and security.

Further, it involves a set of significant decisions about the organization related to so
 development and each of these decisions can have a considerable impact on q
 maintainability, performance, and the overall success of the final product. These dec

comprise of −
o
Selection of structural elements and their interfaces by which the syst
 composed.
o
Behavior as specified in collaborations among those elements.
o
Composition of these structural and behavioral elements into large subsystem
)Soft

Ar system c

ments,

ftware uality, isions

em is

.

o Architectural decisions align with business objectives.

o Architectural styles guide the organization.

Software Design

Software design provides a design plan that describes the elements of a system, how they fit, and work together to fulfill the requirement of the system. The objectives of having a design plan are as follows −

 To negotiate system requirements, and to set expectations with customers, marketing, and

11

management personnel.

 Act as a blueprint during the development process.
 Guide the implementation tasks, including detailed design, coding, integration, and testing. It comes before the detailed design, coding, integration, and testing and after the domain analysis,
requirements analysis, and risk analysis.

G

 (
oals of Architecture
e primary goal of the architecture is to identify requirements that affect the structure
 pplication. A well-laid architecture reduces the business risks associated with building a tec
ution and builds a bridge between business and technical requirements.
ome of the other goals are as follows −

Expose the structure of the system, but hide its implementation details.

Realize all the use-cases and scenarios.

Try to address the requirements of various stakeholders.

Handle both functional and quality requirements.

Reduce the goal of ownership and improve the organization’s market position.

Improve quality and functionality offered by the system.

Improve external confidence in either the organization or system.
Limitations
)Th of the a hnical sol

S

Software architecture is still an emerging discipline within software engineering. It has the
following limitations −

 Lack of tools and standardized ways to represent architecture.

	Lack of analysis methods to predict whether architecture will result in an implementation that meets the requirements.

 Lack of awareness of the importance of architectural design to software development.

 Lack of understanding of the role of software architect and poor communication among

11

stakeholders.

 Lack of understanding of the design process, design experience and evaluation of design.

11	What is the purpose of DFD ?What are the compoenets of DFD? Construct DFD for the following system..
A

be

str detail tha tions an

Str ask is per

He

 (
n online shopping system for xyz provides many services and
nefits to its members and staffs. APRIL/MAY 2018
ucture chart is a chart derived from Data Flow Diagram. It represents the system in more
n DFD. It breaks down the entire system into lowest functional modules, describes func
 d sub-functions of each module of the system to a greater detail than DFD.
ucture chart represents hierarchical structure of modules. At each layer a specific t
 formed.
re are the symbols used in construction of structure charts -

Module
- It represents process or subroutine or task. A control module branches to m
 than one sub-module. Library Modules are re-usable and invokable from any
module.

Condition
- It is represented by small diamond at the base of module. It depicts that
 module can select any of sub-routine based on some
)ore

control

condition.
 Jump - An arrow is shown pointing inside the module to depict that the control will jump

11

 (
in the middle of the sub-module.

Loop
- A curved arrow represents loop in the module. All sub-modules covered by loo
 repeat execution of
module.

Data flow
- A directed arrow with empty circle at the end represents data
flow.

Control flow
- A directed arrow with filled circle at the end represents control
)p

flow.

11

HIPO Diagram

HIPO (Hierarchical Input Process Output) diagram is a combination of two organized method to analyze the system and provide the means of documentation. HIPO model was developed by IBM in year 1970.

HIPO diagram represents the hierarchy of modules in the software system. Analyst uses HIPO diagram in order to obtain high-level view of system functions. It decomposes functions into sub- functions in a hierarchical manner. It depicts the functions performed by system.

 (
designers and managers to get the pictorial idea of the system structure.
contrast to IPO (Input Process Output) diagram, which depicts the flow of control and da
 odule, HIPO does not provide any information about data flow or control flow.
)HIPO diagrams are good for documentation purpose. Their graphical representation makes it easier for

In ta in a m

12

12

Ar

 (
Describe in detail about architectural styles?
chitectural styles define the components and connectors (
‘what?’)
 Less domain specific
Good architecture makes use of design patterns (on a more finegranular level)
 Usually domain independent
n architectural style is a named collection of architectural design decisions that
are applicable in a give
n development context
constrain architectural design decisions that are specific to a particular system within that
ontext
elicit beneficial qualities in each resulting system
Reflect less domain specificity than architectural patterns
Useful
in determining everything from subroutine structure to top-level application structu
Many styles exist and we will discuss them in detail in the next lecture
)•

•

•

A

−

−
c

−

•

• re

•

Benefits of Using Styles

Reuse

• Design: Well-understood solutions applied to new problems

• Code: Shared implementations of invariant aspects of a style

Understandability of system organization

• A phrase such as “client-server” conveys a lot of information

Interoperability
12

• Supported by style standardization

• Style-specificity

• Analyses: enabled by the constrained design space

• Visualizations: depictions matching engineers’ mental models

Basic Properties of Styles

A vocabulary of design elements

 (
Component and connector types; data elements
e.g., pipes, filters, objects, serve
rs
rchitectural styles define the components and connectors”
A software connector is an architectural building block tasked with effecting and regulating
eractions among components (Taylor, Medvidovic, Dashofy)
Procedure call connectors
 Share
d memory connectors

Message passing connectors
 treaming connectors
 Distribution connectors
 Wrapper/adaptor connectors
set of configuration rules
Topological constraints that determine allowed compositions of elements
 e.g., a component may be connected to at most two other components

semantic interpretation
Compositions of design elements have well
-defined meanings
Possible analyses of systems built in a style
)•

− “A
•
int

•

•

•

• S

•

•

A

•

−

A

•

•

13	Explain transform mapping with suitable example and design steps involved in it.(Nov/Dec 2012)

Transform mapping is a set of design steps that allows a DFD with transform flow characteristics to be mapped into a specific architectural style. In this section transform mapping is described by applying design steps to an example system—a portion of the SafeHome security software.

An Example

The SafeHome security system is representative of many computer-based products and systems in
12

use today. The product monitors the real world and reacts to changes that it encounters. It also interacts with a user through a series of typed inputs and alphanumeric displays. The level 0 data flow diagram for SafeHome, is shown in figure

Dur e. In ad would also

De

 (
ing requirements analysis, more detailed flow models would be created for SafeHom
 dition, control and process specifications, a data dictionary, and various behavioral models
be created.
sign Steps
preceding example will be used to illustrate each step in transform mapping. The steps
 h a re-evaluation of work done during requirements analysis and then move to the design
 ware architecture.
p 1. Review the fundamental system model.
The fundamental system model encompass
 vel 0 DFD and supporting information. In actuality, the design step begins with an evalua
h the System Specification and the Software Requirements Specification. Both doc
scribe information flow and structure at the software interface. Figure 1 and 2 depict leve
 vel 1 data flow for the SafeHome so
)The begin wit of the soft

Ste es the le tion of bot uments de l 0 and le ftware.

12

 (
p 2. Review and refine data flow diagrams for the software.
Information obtaine
 lysis models contained in the Software Requirements Specification is refined to produce
 ail. For example, the level 2 DFD for monitor sensors is examined, and a level 3 da
 gram is derived . At level 3, each transform in the data flow diagram exhibits relative
ohesion. That is, the process implied by a transform performs a single, distinct function that
 lemented as a module9 in the SafeHome software. Therefore, the DFD in figure c
 icient detail for a "first cut" at the design of architecture for the monitor sensors subsyste
proceed without further refine
)Ste d from ana greater det ta flow dia ly high c can be imp ontains suff m, and we ment.

12

 (
p 3. Determine whether the DFD has transform or transaction flow characterist

neral, information flow within a system can always be represented as transform. However
 obvious transaction characteristic is encountered, a different design mapping is recomm
 his step, the designer selects global (softwarewide) flow characteristics based on the pre
 ure of the DFD. In addition, local regions of transform or transaction flow are isolated.
subflows can be used to refine program architecture derived from a global characteristic de
 viously. For now, we focus our attention only on the monitor sensors subsystem dat
 icted in
)Ste ics. In ge , when an ended. In t vailing nat These scribed
pre a flow dep figure.

Evaluating the DFD , we see data entering the software along one incoming path and exiting along three outgoing paths. No distinct transaction center is implied (although the transform establishes
12

alarm conditions that could be perceived as such). Therefore, an overall transform characteristic will be assumed for information flow.

 (
he final program structure.
ow boundaries for the example are illustrated as shaded curves running vertically through
 ow in the above figure. The transforms (bubbles) that constitute the transform center lie wit
shaded boundaries that run from top to bottom in the figure. An argument can be m
 djust a boundary (e.g, an incoming flow boundary separating read sensors and acquire re
could be proposed). The emphasis in this design step should be on selecting reaso
 ndaries, rather than lengthy iteration on placement of divisions.
p 5. Perform "first-level factoring." Program structure represents a top-down distri
 control.
Factoring results in a program structure in which top-level modules perform de
 king and low-level modules perform most input, computation, and output work. Middl
 odules perform some control and do moderate amounts of work.
hen transform flow is encountered, a DFD is mapped to a specific structure (a call and
 hitecture) that provides control for incoming, transform, and outgoing information proc
s first-level factoring for the monitor sensors subsystem is illustrated in figure below. A
 troller (called monitor sensors executive) resides at the top of the program structu
 rdinates the following subordinate control functions:
n incoming information processing controller, called sensor input controller, coordinates
 all incoming
transform flow controller, called alarm conditions controller, supervises all operations on
rnalized form (e.g., a module that invokes various data transformation procedures).
An outgoing information processing controller, called alarm output con
 rdinates production of output infor
)Step 4. Isolate the transform center by specifying incoming and outgoing flow boundaries. In the preceding section incoming flow was described as a path in which information is converted from external to internal form; outgoing flow converts from internal to external form. Incoming and outgoing flow boundaries are open to interpretation. That is, different designers may select slightly different points in the flow as boundary locations. In fact, alternative design solutions can be derived by varying the placement of flow boundaries. Although care should be taken when boundaries are selected, a variance of one bubble along a flow path will generally have little impact on t

Fl the fl hin the two ade to rea sponse info nable bou

Ste bution of cision ma e-level m

W return arc essing. Thi main con re and coo

• A receipt of data.
• A data in
inte
• troller, coo mation.

12

 (
hough a three-pronged structure is implied by figure complex flows in large systems may
 or more control modules for each of the generic control functions described previousl
mber of modules at the first level should be limited to the minimum that can accomplish
 ctions and still maintain good coupling and cohesion characte
p 6. Perform "second-level factoring." Second-level factoring is accomplished by m
 ividual transforms (bubbles) of a DFD into appropriate modules withi
 hitecture.
Beginning at the transform center boundary and moving outward along incomi
 n outgoing paths, transforms are mapped into subordinate levels of the software structu
neral approach to second-level factoring for the SafeHome data flow is illustrated in
)Alt dictate two y. The nu control fun ristics.

Ste apping ind n the arc ng and the re. The ge figure.

12

 (
hough the figure illustrates a one-to-one mapping between DFD transforms and sof
 odules, different mappings frequently occur. Two or even three bubbles can be combine
 esented as one module (recalling potential problems with cohesion) or a single bubble m
xpanded to two or more modules. Practical considerations and measures of design quality
outcome of secondlevel factoring. Review and refinement may lead to changes in this str
 it can serve as a "first-iteration"
ond-level factoring for incoming flow follows in the same manner. Factoring is
 omplished by moving outward from the transform center boundary on the incoming flow
 transform center of monitor sensors subsystem software is mapped somewhat differently
he data conversion or calculation transforms of the transform portion of the DFD is mappe
odule subordinate to the transform controller. A completed first-iteration architecture is
)Alt tware m d and repr ay be e dictate the ucture, but design.

Sec again acc side. The . Each of t d into a m shown in figure.

12

The sign of soft a brief pro written for scribes
• In iption).
• In ucture.
• A tasks.
• A endent cha
 (
modules mapped in the preceding manner and shown in figure represent an initial de
 ware architecture. Although modules are named in a manner that implies function,
 cessing narrative (adapted from the PSPEC created during analysis modeling) should be
each. The narrative de
formation that passes into and out of the module (an interface descr
 formation that is retained by a module, such as data stored in a local data str
 procedural narrative that indicates major decision points and
brief discussion of restrictions and special features (e.g., file I/O, hardwaredep
 racteristics, special timing requirements).
narrative serves as a first-generation Design Specification. However, further refineme
 ditions occur regularly during this period of
p 7. Refine the first-iteration architecture using design heuristics for improved so
 ality.
A first-iteration architecture can always be refined by applying concepts of
ndependence . Modules are exploded or imploded to produce sensible factoring, good cohe
 imal coupling, and most important, a structure that can be implemented without dif
ed without confusion, and maintained without
inements are dictated by the analysis and assessment methods described briefly , as
 ctical considerations and common sense. There are times, for example, when the contro
 oming data flow is totally unnecessary, when some input processing is required in a modul
 subordinate to the transform controller, when high coupling due to global data cannot be a
mal structural characteristics cannot be achieved. Software requirements coupled with
 gment is the final arbiter. Many modifications can be made to the first iteration archi
 veloped for the SafeHome monitor sensors subsystem. Among many possi
)The nt and ad design.

Ste ftware qu module i sion, min ficulty, test grief.

Ref well as pra ller for inc e that is voided, or when opti human jud tecture de bilities,

1. The incoming controller can be removed because it is unnecessary when a single incoming flow path is to be managed.

2. The substructure generated from the transform flow can be imploded into the module establish alarm conditions (which will now include the processing implied by select phone number). The transform controller will not be needed and the small decrease in cohesion is tolerable.

3. The modules format display and generate display can be imploded (we assume that display formatting is quite simple) into a new module called produce display.

12

The refined software structure for the monitor sensors subsystem is shown in figure.

The ftware. Tha it as a w ofound im quality.

 (
objective of the preceding seven steps is to develop an architectural representation of so
t is, once structure is defined, we can evaluate and refine software architecture by viewing
 hole. Modifications made at this time require little additional work, yet can have a pr
 pact on software
reader should pause for a moment and consider the difference between the design appr
 scribed and the process of "writing programs." If code is the only representation of softwa
 veloper will have great difficulty evaluating or refining at a global or holistic level and
, have difficulty "seeing the forest for the trees."
xplain the design principles in detail
esign principles are widely applicable laws, guidelines, biases and design considerations w
 signers apply with discretion. Professionals from many disciplines
—
e.g., behavioral scienc
 ciology, physics and ergonomics
—
provided the foundation for design principles via their
 cumulated knowledge and experience.
pes of Design Principles
igners use principles such as
visibility
,
findability
and
learnability
to address basic hum
 aviors. We
use some design principles to guide actions
.
Perceived affordances
such as
 ons are an example. That way, we
put users in control in seamless experiences
.
)The oach de re, the de will, in fact

14 E

D hich de e, so
ac

Ty

Des an beh
butt

Usability kingpin Jakob Nielsen identified ten “commandments”:

Keep users informed of system status with constant feedback.
Set information in a logical, natural order.
Ensure users can easily undo/redo actions.
Maintain consistent standards so users know what to do next without having to learn new
toolsets.
Prevent errors if possible; wherever you can’t do this, warn users before they commit to actions.

13

Don’t make users remember information – keep options, etc. visible.
Make systems flexible so novices and experts can choose to do more or less on them.
Design with aesthetics and minimalism in mind – don’t clutter with unnecessary items.
Provide plain-language error messages to pinpoint problems and likely solutions.
Offer easy-to-search troubleshooting resources, if needed. Empathy expert Whitney Hess adds:

1. Don’t interrupt or give users obstacles – make obvious pathways which offer an easy ride.

2. Offer few options – don’t hinder users with nice-to-haves; give them needed alternatives instead.

3.

4.

5. tems ha

6.

7. S

8.

9.

 (
Reduce distractions
–
let users perform tasks consecutively, not simultaneously.
Cluster related objects together.
Have an easy-to-
scan visual hierarchy that reflects users’ needs
, with commonly used i
 ndily available.
Make things easy to find.
how users
where they’ve come from
and where they’re headed with signposts/cues.
Provide context
–
show how everything interconnects.
Avoid jargon
.
Make designs efficient and streamlined.
Use defaults wisely
–
when you offer predetermined, well-considered options, you help
nimize users’ decisions and increase efficiency.
Don’t delay users
–
ensure quick interface responses.
Focus on emotion
– pleasure of use is as vital as ease of use; arouse users’ passion to inc
agement.
Use “less is more”
–
make everything count in the design. If functional and aesthetic elem
’t add to the user experience, forget them.
Be consistent with navigational mechanisms
, organizational structure, etc., to make a st
 able and predictable design.
Create a good first impression
.
)10.

11.
mi

12.

13. rease
eng

14. ents
don

15. able, reli

16.

17. Be trustworthy and credible – identify yourself through your design to assure users and eliminate uncertainty.

13

. UNIT – 4 PART –A

S.NO QUESTIONS

1 What are the characteristics of good tester? NOV/DEC- 10,MAY/JUN-13

All tests should be traceable to customer requirements. Tests should be planned

2 De
So ultimate re

3

i. good test
 (
long before testing begins.
The Pareto principle applies to software testing.
fine software testing?
ftware testing is a critical element of software quality assurance and represents the
 view of specification, design, and coding.
What are the objectives of testing?
Testing is a process of executing a program with the intend of finding an error. ii. A
case is one that has high probability of finding
undiscovered error. iii. A successful test is one that uncovers as an-
 undiscovered error.
What is integration testing?and What are the approaches of integration
 ting?APR/MAY-11
his testing the individual software modules are combined and tested as a group. It
 er unit testing & before system testing.
1. The non-incremental testing.
2. Incremental testing.
What is regression testing? APR/MAY-15 , NOV/DEC- 11,NOV/DE
)an yet
4

tes 	

In t occurs aft

5 C

2013,

It tends to verify the software application after a change has been made. It seeks to uncover software errors by partially retesting a modified
program.

13

6 Distinguish between stress and load testing

Stress testing is subjecting a system to an unreasonable load while denying it the resources (e.g., RAM, disc, mips, interrupts, etc.) needed to process that load.
Load testing is subjecting a system to a statistically representative (usually) load. The two main reasons for using such loads is in support of software reliability testing and in
performance testing. The term "load testing" by itself is too

7 De

onal, that tegrity of

8

 (
vague and imprecise to warrant use.
fine black box testing? APR/MAY-12,MAY/JUN-13
A black-box tests are used to demonstrate that software functions are operati
 input is properly accepted and output is correctly produced, and that the in
 external
information.
What is boundary condition testing? APR/MAY-12
It is tested using boundary value analysis. (check BVA
–
16 mark question)
How is software testing results related to the reliability of software? NOV/DEC-
Applying fault avoidance, fault tolerance and fault detection for
 the project helps to achieve reliability of software.
What is big-bang approach? NOV/DEC-12
Big bang approach talks about testing as the last phase of
development. All the defects are found in the last phase and cost of rework ca
)9 12

10

n be huge.

13

11 Why does software fail after it has passed from acceptance testing?APR/MAY 2016

 (
velopment team will
 port zero progress.
What are the objectives of testing?
xii. Testing is a process of executing a program with the intend of finding a
 xiii. A good test case is one that has high probability of finding an undiscove
 xiv.A successful test is one that uncovers as an-yet undiscovered
or.
What are the testing principles the software engineer must apply while per
 the software testing? MAY/JUNE 2016,
RIL/MAY 2018
i. All tests should be traceable to customer requirements.
 ii. Tests should be planned long before testing begins.
iii. The pareto principle can be applied to software testing-80%
all
errors uncovered during testing will likely be traceable to 20% of all program
)Each acceptance test represents some expected result from the system. Customers are responsible for verifying the correctness of the acceptance tests and reviewing test scores to decide which failed tests are of highest priority. Acceptance tests are also used as regression tests prior to a production release. A user story is not considered complete until it has passed its acceptance tests. This means that new acceptance tests must be created for each iteration or the de
re

12
n error. red error.

err

13 forming

AP

of

modules.

iv. Testing should begin “in the small” and progress toward testing “in the large”.

v. Exhaustive testing is not possible.

vi. To be most effective, an independent third party should conduct testing.

13

14 What are the two levels of testing?

i. Component testing Individual components are tested. Tests are

derived from developer‟s experience.
ii. System Testing The group of components are integrated to create a system or sub- system is done.These tests are based on the system specification.

15

16

main into cla ts a set of va
 (
What are the various testing activities?
iii. Test planning
 iv. Test case design
v. Test execution
 vi. Data collection
vii. Effective evaluation
What is equivalence partitioning?
Equivalence partitioning is a black box technique that divides the input do
 sses of data. From this data test cases can be derived. Equivalence class represen
 lid or invalid states for
nput conditions.
What methods are used for breaking very long expression and statements?
 NOV/DEC2016
factoring is done to break long expression and ststements.
What are the various testing strategies for conventional software?
i. Unit testing ii. Integration testing. iii. Validation testing. iv. System testing.
How can refactoring be made more effective? APR/MAY 2016
factoring improves
nonfunctional
attributes of the
software
. Advantages include
)i

17

Re

16

18

Re improved code readability and reduced complexity; these can improve source-codemaintainability and create a more
expressive internal architecture or object model to improve extensibility

13

19 How will you test a simple loop NOV/DEC 2015

 A simple loop is tested in the following way:

 Skip the entire loop.

 Make 1 pass through the loop.

 Make 2 passes through the loop.

 (
the loop.

Make "y","y-1","y+1" passes through the loop where "y" is the maximum numbe
 allowable passes through the loop.
What are the conditions exists after performing validation testing?
After performing the validation testing there exists two conditions.

The function or performance characteristics are according to the specification
 accepted.

The requirement specifications are derived and the deficiency list is created. T
deficiencies then can be resolved by establishing
 the proper communication with the customer.
Distinguish between alpha and beta testing. MAY/JUNE 2016

Alpha and beta testing are the types of acceptance testing.

Alpha test: The alpha testing is attesting in which the version of complete s
 tested by the customer under the supervision of developer. This testing is per

developer’s
site.

Beta test: The beta testing is a testing in which the version of the software is te
) Make x passes through the loop where x<y, n is the maximum number of passes through

r of

20

s and are

he

21

oftware is

formed at

the customer without the developer being

present. This testing is performed at customer’s site.

sted by

13

22 What are the various types of system testing?
to check whether it meets the check whether it meets the specific

 (
re
)3. Recovery testing – is intended to check the system‟ s ability to quirements ofthe business needs.

recover from failures. particular phase
4. Security testing – verifies that system protection mechanism prevent improper penetration or data alteration.
5. Stress testing – Determines breakpoint of a system to establish maximum service

lev

the

23 De

suc

quence of

Br am with wri
Ba ptom to

 (
el.
6. Performance testing
–
evaluates the run time performance of
 software, especially real-time software.
fine debugging
and
What are the common approaches in debugging?
Debugging is defined as the process of removal of defect. It occurs as a conse
 cessful testing
ute force method: The memory dumps and run-time tracks are examined and progr
 te statements is loaded to obtain clues to error causes.
ck tracking method: The source code is examined by looking backwards from sym
ential causes of errors.
use elimination method: This method uses binary partitioning to reduce the numbe
 ations where errors can exists.
Distinguish between verification and validation. NOV/DEC2016, NOV/DEC 2017,
 RIL/MAY 2018
Verification Validation
)pot
Ca r of loc

24

AP

Evaluates the intermediary products Evaluates the final product to

13

Checks whether the product is built It determines whether the as per the specified requirement and software is fit for use and design specification.satisfy the business
need.

 (
Checks “Are we building
the product
Checks “Are we building the
 product”?
) (
This is done without executing the Is done with executing the sof
)right”? right

re

 (
testing techniques.
Examples includes reviews, Example includes all types of
)I

25
 (
tware softwa
 nvolves all the static testing Includes all the dynamic techniques
inspection and
 walkthrough testing like smoke, regression,
functional, systems and UAT
What is meant by structural testing?
In structural testing derivation of test cases is according to pr
 structure. Hence knowledge of the program is used to identify additional test c
What is the need for regression testing? APR/MAY 2015
e purpose of regression testing is to confirm that a recent program or code chan
 adversely affected existing features. Regression testing is nothing but full or
ection of already executed test
es which are re-executed to ensure existing functionalities work fine.
ite about drivers and stubs
.
NOV/DEC 2017
)ogram ases.

26

Th ge has not partial sel
cas

27 Wr

Drivers and stub software need to be developed to test incompatible software.

The “driver” is a program that accepts the test data and prints the relevant results.
The “stub” is a subprogram that uses the module interfaces and performs the minimal data manipulation if

required.

13

28 What is cyclomatic complexity?

Cyclomatic complexity is software metric that gives the quantitative

Measure of logical complexity of the program.

29 How to compute the cyclomatic complexity?

The cyclomatic complexity can be computed by any one of the following ways. 1.

 (
umbers of regions of the flow graph correspond to the cyclomatic complexity.
2.
 Cyclomatic complexity (G), for the flow graph G, is defined as: V(G)=E-N+2,
 umber of flow graph edges, N -- number of flow graph nodes
3.
 V(G) = P+1 Where P is the number of predicate nodes
 ined in the flow graph.
out the applications of GUI? April /May 2015
Graphical User Interface- is a type of
interface
that allows
users
to
inte
 with electronic devices
through graphical
ic
visual indicators such as
secondary notation
, as opposed to
text-based interfaces,
ty
 mand labels or text navigation
ddition to computers, GUIs can be found in
hand-held devices
such as
MP3
play
 ble media players, gaming devices and smaller household,
smartphones
office
 try equipment.
cket booking, Inventory tool, Billing Machine, Windows OS
at is flow graph notation and how it is important. April /May 2015
)The n

E

-- n

conta

30 List

GUI- ract ons
and ped

com

In a

 ers,

porta and indus
Eg:Ti

31 Wh

A control flow graph (CFG) in computer science is a representation, Using graph notation, of all paths that might be traversed through aprogram during its execution.

13

32 What is smoke testing ? APRIL /MAY 2017

Smoke Testing, also known as “Build Verification Testing”, is a type of software testing that comprises of a non-exhaustive set of tests that aim at ensuring that the most important functions work. The results of this testing is used to decide if a build is stable enough to proceed with
further testing.

 (
testing strategies that address verification. Which types of testing addr
ation ? APRIL/MAY 2017
ication involves all the static testing techniques. Examples includes revie
 ction and walkthrough
dation includes all the dynamic testing techniques. Example includes all types
 g like smoke, regression, functional, systems and UAT
at are the types of static testing tools?
e are three types of static testing tools.
Code based testing tools
: These tools take source code as input and generate test
 ases.
pecialized testing tools :
Using this language the detailed test specification can be
 written for each test case.
Requirement-based testing tools
: These tools help in designing the as per user
 quirements.
)33	List ess valid
Verif ws, inspe
Vali of

testin

33
Wh

Ther



c

 S



re

34
What is done in test design step?

The details of the layout, tooling and standards required for test development are designed in this stage.

14

35 Distinguish between verification and validation?

Verification refers to the set of activities that ensure that software correctly implements a specific function. Validation refers to a different set of activities that ensure that the software that has been built is
traceable to the customer requirements.

36 Write about drivers and stubs?

 (
rs and stub software need to be developed to test incompatible software. The “drive
prog
ram that accepts the test data and prints the relevant results. The “stub”
ogram that uses the module
aces and performs the minimal data manipulation if required.
e debugging
.
ugging is defined as the process of removal of defect. It occurs as a consequence of
 ssful testing.
Define the terms:
a)
 Graph Matrices.
b)
 Connection Matrices.
ph Matrices:
To develop software tool the data structure used is graph Matrix.
 Square Matrix
Size equals number of nodes on the Flow graph
Connection Matrices:
)Drive r” is a is a subpr
interf

37 Defin
Deb succe

38

Gra

It Link Weight = 1= > Connection Exists

It Link Weight=1=>Connection Does not Exists.

14

39
What errors are commonly found during Unit Testing?

Errors commonly found during Unit Testing are:

 Misunderstood or incorrect arithmetic precedence

 Mixed Mode Operations

 In

 P

 In

40
Wh

Follo



 (
correct Initializations
 recision Accuracy
correct Symbolic representation of expression.
at problems may be encountered when Top-Down Integration is chosen?
wing problems may be encountered when Top Down Integration is chosen:
 Develop stubs that perform limited functions that simulate the actual module.
grate the software from the bottom of the hierarchy upward
at are the Steps in Bottom-Up Integration?
ps in Bottom-Up Integration are:
ow level components are combined into clusters perform specific software sub
 nction.
)Inte

41
Wh

Ste

 L

fu

 Driver is written to coordinate test case input and output.

 Cluster is tested.

14

42
What is Flow Graph Notation?

Flow Graph Notation means Simple notation for representing Control Flow. It is drawn only when Logical Structure of component is complex.

43
What is acceptance testing

Acce ta

44
Wh

 (
ptance testing :
This type of testing involves testing of the system with customer da
 if the system behaves as per customer need then it is accepted.
at are the various testing strategies for conventional software?
arious testing strategies are:
(i) Unit testing (ii) Integration testing
(iii) Validation testing (iv) System testing
.
ome of the testing done during SDLC.
e box testing, black box testing, integration testing, system testing, installation testi
Regression testing, Acceptance testing
.
)The v

45
List s

Whit ng.

46
What is functionality testing?

It is a black box testing which exercises the basic functionality of the product from an external; perspective.

14

47
What are the steps carried out in installation testing?

Ans. The steps carried out in installation testing are:

• Packaging • Documenting

• Installing • Verifying

48
Wh

of Fo

		of s

 S



 (
at are the objective of Formal Technical Reviews. Ans.
The Objective
 rmal Technical Reviews are:
Uncover errors in function, logic and implementation for representation
 oftware.
oftware represented according to predefined standard.
 Verify software under review meets requirements
chieve software developed in Uniform Manner.
 Make projects more manageable.
ain Integrated testing team model?
There in one project manage who manages both the development and the testing
 functions
at are the common approaches in debugging? Ans.
The
) A



49
Expl

Ans.

50
Wh

common approaches tin debugging are:

 Brute force method: The memory dumps and run- time tracks are examined and program with write statements in loaded to obtain clues to error causes.

 Back tracking method: The source code is examined by looking

14

backwards from symptom to potential causes or errors.

	Causes eliminations method: This method uses binary partitioning to reduce the number of location where errors can exists.

S.NO
1		test ca EC

Cri

 (
PART
–
B
 QUESTIONS
What is black box & white-box
testing
? Explain how basis path testing helps to derive
 ses to test every statement of a program.NOV/DEC-12, APRIL/MAY 2015, NOV/D
2017, APRIL/MAY 2017
teria Black Box Testing White Box Testing
Black Box Testing is a software testing
White Box Testing is a software

testing method in which the intern
inition
method in which the internal structure/
structure/ design/ implementation
 design/ implementation of the item being
tested is NOT known to the tester
the item being tested is known to t
tester.
Mainly applicable to higher levels of Mainly applicable to lower levels
els
testing:
Acceptance Testing
testing:
Unit Testing
Applicable To
System Testing Integration Testing
sponsibility
Generally, independent Software Testers Generally, Software Developers
rogramming
nowledge
Not Required Required
plementation
Not Required Required
)al Def of he

of
Lev

Re

P K

Im
Knowledge

Basis for Test
Cases Requirement Specifications Detail Design
2	Define: Regression testing. Distinguish: top-down and bottom-up integration. How is testing different from debugging? JustifyNOV/DEC-10, APRIL/MAY 2018
Regression testing (rarely non-regression testing[1]) is re-running functional and non- functional tests to ensure that previously developed and tested software still performs after a change.[2] If not, that would be called a regression. Changes that may require regression testing include bug fixes, software enhancements, configuration changes, and
14

even substitution of electronic components.[3] As regression test suites tend to grow with each found defect, test automation is frequently involved. Sometimes a change impact analysis is performed to determine an appropriate subset of test

 (
sic Uses stubs as the momentary Use test drivers to initiate
 replacements for the invoked modules and pass the required data
 and simulates the behaviour of the to the lower-level of
 separated lower-level modules. modules.
neficial If the significant defect occurs toward If the crucial flaws
the top of the program. encounters towards the
 bottom of the program.
pproach Main function is written at first then the Modules are created first
 subroutines are called from it. then are integrated with the
main function.
plemented on Structure/procedure-oriented Object-oriented
)BASIS FOR COMPARISON

TOP-DOWN INTEGRATION TESTING

BOTTOM-UP INTEGRATION
TESTING

Ba

Be

A

Im

programming languages. programming languages.

14

Risk analysation Collaborating the impact of internal

operational failures.

Models are used to analyze

the individual process.

Complexity Simple Complex and highly data

intensive.

W

ith e

 (
orks on Big to small components. Small to big components.
Testing
and
Debugging
are significant activities during software development and
 maintenance.
Testing
aims at finding a problem while
Debugging
aims at solving the
 problem. Only after the testing team reports the
defect
,
debugging
can take place. W
 debugging, the developer identifies the problem in the system/application/code. Onc
 the developer has fixed the bug, tester re-tests to ensure that the error/bug no longer
 exists. The figure given below demonstrates the fact very well
Write a note on equivalence partitioning & boundary value analysis of black bo
 stingAPR/MAY-16 , NOV/DEC-15
Equivalence partitioning (EP) is a specification-based or black-box technique. It can
 applied at any level of testing and is often a good technique to use first.

The idea behind this technique is to divide (i.e. to partition) a set of test conditions
 groups or sets that can be considered the same (i.e. the system should handle t

equivalently), hence ‘equivalence partitioning’.
Equivalence partitions
are also know
 as equivalence classes
–
the two terms mean exactly the same thing.

In equivalence-partitioning technique we need to test only one condition from
partition. This is because we are assuming that all the conditions in one partition wi
 treated in the same way by the software. If one condition in a partition works, we ass
 all of the conditions in that partition will work, and so there is little point in testing any
 these others. Similarly, if one of the conditions in a partition does not work, then
)3 x

te 	

be

into hem n

each ll be ume of
we assume that none of the conditions in that partition will work so again there is little point in testing any more in that partition.

4	What is unit testing? Why is it important? Explain the unit test consideration and test procedure.APR/MAY- 11,MAY/JUN-13 NOV/DEC2015
A unit test is the smallest testable part of an application like functions,
classes, procedures, interfaces. Unit testing is a method by which individual units of source code are tested to determine if they are fit for use.
14

	Unit tests are basically written and executed by software developers to make sure that code meets its design and requirements and behaves as expected.
	The goal of unit testing is to segregate each part of the program and test that the individual parts are working correctly.
	This means that for any function or procedure when a set of inputs are given then it should return the proper values. It should handle the failures gracefully during the course of execution when any invalid input is given.
 (

Unit testing is basically done before integration as shown in the image below.
hod Used for unit testing:
White Box Testing method is used for executing the unit test.
en Unit testing should be done?
t testing should be done before Integration testing.
whom unit testing should be done?
t testing should be done by the developers.
vantages of Unit testing:
ssues are found at early stage. Since unit testing are carried out by developers where they t
 r individual code before the integration. Hence the issues can be found very early and can
solved then and there without impacting the other piece of codes.
)	A unit test provides a written contract that the piece of code must assure. Hence it has several benefits.

Met Wh Uni By Uni Ad
1. I est thei be re

2. Unit testing helps in maintaining and changing the code. This is possible by making the codes less interdependent so that unit testing can be executed. Hence chances of impact of changes to any other code gets reduced.

3. Since the bugs are found early in unit testing hence it also helps in reducing the cost of bug fixes. Just imagine the cost of bug found during the later stages of development like during system testing or during acceptance testing.

4. Unit testing helps in simplifying the debugging process. If suppose a test fails then only latest
14

changes made in code needs to be debugged.

5 Explain Integration & debugging activities? MAY/JUN-15

 (
focus on determining the correctness of the interface. The purpose of the integra
tion testing
xpose faults in the interaction between integrated units. Once all the modules have been uni
ed, integration testing is performed.
gration test approaches
–
re are four types of integration testing approaches. Those approaches are the following:
ig-Bang Integration Testing
–
the simplest integration testing approach, where all the modules are combining and verify
 functionality after the completion of individual module testing. In simple words, all the
odules of the system are simply put together and tested. This approach is practicable only fo
 y small systems. If once an error is found during the integration testing, it is very difficult t
 lize the error as the error may potentially belong to any of the modules being integrated. S
bugging errors reported during big bang integration testing are very expensive to fix.
Advantages
It is convenient for small systems.
advantages:
There will be quite a lot of delay because you would have to wait for all the modules
 be integrated.
High risk critical modules are not isolated and tested on priority since all modules are
 tested at once.
ottom-Up Integration Testing
–
bottom-up testing, each module at lower levels is tested with higher modules until all modul
tested. The primary purpose of this integration testing is, each subsystem is to test the
 rfaces among various modules making up the subsystem. This integration testing uses test
 vers to drive and pass appropriate data to the lower level modules.
vantages:
In bottom-up testing, no stubs are required.
A principle advantage of this integration testing is that several disjoint subsystems can
tested simultaneously.
advantages:
Driver modules must be produced.
)Integration testing is the process of testing the interface between two software units or module. It’s is to e t test

Inte
The
1. B
It is ing the
m r ver o loca o,
de


Dis
 to



2. B
In es
are inte dri Ad

 be

Dis

		In this testing, the complexity that occurs when the system is made up of a large number of small subsystem.
3. Top-Down Integration Testing –
Top-down integration testing technique used in order to simulate the behaviour of the lower-level
modules that are not yet integrated.In this integration testing, testing takes place from top to bottom. First high-level modules are tested and then low-level modules and finally integrating the low-level modules to a high level to ensure the system is working as intended.
Advantages:
 Separately debugged module.
 Few or no drivers needed.

14

 It is more stable and accurate at the aggregate level.
Disadvantages:
 Needs many Stubs.
 Modules at lower level are tested inadequately.
4. Mixed Integration Testing –
A mixed integration testing is also called sandwiched integration testing. A mixed integration
testing follows a combination of top down and bottom-up testing approaches. In top-down approach, testing can start only after the top-level module have been coded and unit tested. In bottom-up approach, testing can start only after the bottom level modules are ready. This sandwich or mixed approach overcomes this shortcoming of the top-down and bottom-up
 (
roaches. A mixed integration testing is also called sandwiched integration testing.
vantages:
Mixed approach is useful for very large projects having several sub projects.
This Sandwich approach overcomes this shortcoming of the top-down and bottom-up
 approaches.
advantages:
For mixed integration testing, require very high cost because one part has Top-down
approach while another part has bottom-up approach.
This integration testing cannot be used for smaller system with huge interdependence
between different modules.
DEBUGGING
s a systematic process of spotting and fixing the number of bugs, or defects, in a piec
 ware so that the software is behaving as expected. Debugging is harder for complex syst
 particular when various subsystems are tightly coupled as changes in one system or inter
 y cause bugs to emerge in another.
bugging is a developer activity and effective debugging is very important before test
 gins to increase the quality of the system. Debugging will not give confidence that the syst
 ets its requirements completely but testing gives confidence.
xplain software testing types?APR/MAY-16, NOV/DEC 2015
Press-Pg-no- 384
Write elaborately on unit testing and regression testing. How do you develop tes
 ites.APRIL/MAY-15, APRIL/MAY 2018
t testing, a testing technique using which individual modules are tested to determine if t
 any issues by the developer himself. It is concerned with functional correctness of
 ndalone modules.
)app
Ad



Dis




It i e of soft ems in face ma

De ing be em me

6 E

7 t

su 	

Uni here are the sta

The main aim is to isolate each unit of the system to identify, analyze and fix the defects.

Unit Testing - Advantages:

	Reduces Defects in the Newly developed features or reduces bugs when changing the existing functionality.

 Reduces Cost of Testing as defects are captured in very early phase.

 Improves design and allows better refactoring of code.

 Unit Tests, when integrated with build gives the quality of the build as well.

15

Unit Testing LifeCyle:

 (
t Testing Techniques:

Black Box Testing -
Using which the user interface, input and output are tested.

White Box Testing -
used to test each one of those functions behaviour is tested.

Gray Box Testing -
Used to execute tests, risks and assessment methods.
gression testing a black box testing technique that consists of re-executing those tests that
 pacted by the code changes. These tests should be executed as often as possible througho
 software development life cycle.
)Uni

Re are im ut the

Types of Regression Tests:

	Final Regression Tests: - A "final regression testing" is performed to validate the build that hasn't changed for a period of time. This build is deployed or shipped to customers.

	Regression Tests: - A normal regression testing is performed to verify if the build has NOT broken any other parts of the application by the recent code changes for defect fixing or for enhancement.

Selecting Regression Tests:

 Requires knowledge about the system and how it affects by the existing functionalities.

15

 Tests are selected based on the area of frequent defects.

 Tests are selected to include the area, which has undergone code changes many a times.

 Tests are selected based on the criticality of the features.

Regression Testing Steps:

Regression tests are the ideal cases of automation which results in better Return On Investment
(ROI).

 Select the Tests for Regression.

 (

Choose the apt tool and automate the Regression Tests

Verify applications with Checkpoints

Manage Regression Tests/update when required

Schedule the tests

Integrate with the builds

Analyze the results
What is cyclomatic complexity? How to compute cyclomatic complexity
APRIL/MAY-15, NOV/DEC 2017
clomatic complexity is a source code complexity measurement that is being correlated
 mber of coding errors. It is calculated by developing a Control Flow Graph of the code
 asures the number of linearly-independent paths through a program module.
Lower the Program's cyclomatic complexity, lower the risk to modify and easier to underst
 an be represented using the below formula:
lomatic
complexity
=
E
-
N
+
2
*
P
re
,
=
number
of
edges
in
the flow graph
.
=
number
of
nodes
in
the flow graph
.
=
number
of
nodes that have
exit
points
ample :
A
=
10
THEN
)8 i.

Cy to a nu that me

It c

Cyc whe E
N P

and.

Ex
IF
IF B > C THEN A = B
ELSE
A = C ENDIF ENDIF Print A Print B Print C

15

FlowGraph:

 (
e Cyclomatic complexity is calculated using the above control flow diagram that shows se
 des(shapes) and eight edges (lines), hence the cyclomatic complexity is 8 - 7 + 2 = 3
)Th ven no

9 Explain integration testing in detail.MAY/JUN-13, APRIL/MAY

2017, APRIL/MAY 2018

Upon completion of unit testing, the units or modules are to be integrated which gives raise to integration testing. The purpose of integration testing is to verify the functional, performance, and reliability between the modules that are integrated.

Integration Strategies:

15

 Big-Bang Integration

Big Bang Integration Testing is an integration testing strategy wherein all units are linked at once, resulting in a complete system. When this type of testing strategy is adopted, it is difficult to isolate any errors found, because attention is not paid to verifying the interfaces across individual units.

Big Bang Integration - WorkFlow Diagram

Big Bang Testing is represented by the following workflow diagram:

Di

all

the

 (
sadvantages of Big-Bang Testing

Defects present at the interfaces of components are identified at very late stage as
 components are integrated in one shot.

It is very difficult to isolate the defects found.

There is high probability of missing some critical defects, which might pop up in
 production environment.
It is very difficult to cover all the cases for integration testing without missing eve
)		n a single scenario.

Top Down Integration

Top-down integration testing is an integration testing technique used in order to simulate the behaviour of the lower-level modules that are not yet integrated. Stubs are the modules that act as temporary replacement for a called module and give the same output as that of the actual product.

The replacement for the 'called' modules is known as 'Stubs' and is also used when the software needs to interact with an external system.

15

Stub - Flow Diagram:

Th eas, bel nce, St

1,2
1,3
2,St
2,St
3,St
3,St

 (
e above diagrams clearly states that Modules 1, 2 and 3 are available for integration, wher
 ow modules are still under development that cannot be integrated at this point of time. He
 ubs are used to test the modules. The order of Integration will be:
ub
1

ub
2

ub
3

ub
4
ing Approach:
rstly
,
the integration between the modules
1
,
2
and
3
est
the integration between the
module
2
and
stub
1
,
stub
2

est
the integration between the
module
3
and
stub
3
,
stub
4
Bottom Up Integration
h component at lower hierarchy is tested individually and then the components that rely up
 se components are tested.
om Up Integration - Flow Diagram
)Test

+ Fi
+ T
+ T

Eac on the

Bott

The order of Integration by Bottom-down approach will be:
15

4,2
5,2
6,3
7,3
2,1
3,1

Testing Approach :
+ Firstly, Test 4,5,6,7 individually using drivers.
 (
he modules
.
est
1
such that it calls
3
and
If
an error occurs we know that the problem
is in
3
or in
Hybrid Integration
egration Testing is a phase in software testing in which standalone modules are combined
 ed as a single entity. During that phase, the interface and the communication between e
 of those modules are tested. There are two popular approaches for Integration testing whi
Top down Integration Testing and Bottom up Integration Testing.
Hybrid Integration Testing, we exploit the advantages of Top-down and Bottom
 roaches. As the name suggests, we make use of both the Integration techniques.
brid Integration Testing - Features

It is viewed as three layers; viz - The Main Target Layer, a layer above the target la
 and a layer below the target layer.

Testing is mainly focussed for the middle level target layer and is selected on the basi
 system characteristics and the structure of the code.

Hybrid Integration testing can be adopted if the customer wants to work on a work
 version of the application as soon as possible aimed at producing a basic worki
)+ Test 2 such that it calls 4 and 5 separately. If an error occurs we know that the problem is in one of t
+ T

Int and test ach one ch is

In -up app

Hy

system in the earlier stages of the development cycle.

yer s of
ing ng

10 What is black box testing? Explain the different types of black box testing

strategies with example?NOV/DEC 2016

Black-box testing is a method of software testing that examines the functionality of an application based on the specifications. It is also known as Specifications based testing. Independent Testing Team usually performs this type of testing during the software testing life
15

cycle.

This method of test can be applied to each and every level of software testing such as unit, integration, system and acceptance testing.

Behavioural Testing Techniques:

There are different techniques involved in Black Box testing.

 Equivalence Class

 (
s a software testing technique that divides the input test data of the application under test
 h partition at least once of equivalent data from which test cases can be derived.
advantage of this approach is it reduces the time required for performing testing of
 ware due to less number of test cases.
ample:
e Below example best describes the equivalence class Partitioning:
ume
that the application accepts an integer
in
the range
100
to
999

d Equivalence Class
partition
:
100
to
999
inclusive
.
-
valid
Equivalence Class
partitions
:
less than
100
,
more than
999
,
decimal
numbers
and

abets
/
non
-
numeric characters
.

Boundary Value Analysis
undary value analysis is a type of black box or specification based testing technique in w
 s are performed using the boundary values.
ample:
exam has a pass boundary at 50 percent, merit at 75 percent and distinction at 85 perc
 e Valid Boundary values for this scenario will be as follows:
50
-
for pass
75
-
for
merit
85
-
for
distinction
undary values are validated against both the valid boundaries and invalid boundaries.
 e Invalid Boundary Cases for the above example can be given as follows:
)Equivalence Partitioning also called as equivalence class partitioning. It is abbreviated as ECP. It i into eac

An a soft

Ex

Th

Ass Vali Non alph

Bo hich test

Ex

An ent. Th

49,
74,
84, Bo Th
0 - for lower limit boundary value
101 - for upper limit boundary value

 Domain Tests

Domain testing is a software testing technique in which selecting a small number of test cases from a nearly infinite group of test cases. For testing few applications, Domain specific knowledge plays a very crucial role.

Domain testing is a type of functional testing and tests the application by feeding interesting

15

inputs and evaluating its outputs.

Domain - Equivalence Class Testing

Equivalence class carries its own significance when performing domain testing. Different ways of equivalence class are:

 Intuitive equivalence

 Specified equivalence

 Subjective equivalence

Ort ed w ive test

Ort

 (

Risk-based equivalence:

Orthogonal Arrays
hogonal array testing is a systematic and statistical way of a black box testing technique us
 hen number of inputs to the application under test is small but too complex for an exhaust
ing.
hogonal Array Testing Characteristics:

OAT, is a systematic and statistical approach to pairwise interactions.

Executing a well-defined and a precise test is likely to uncover most of the defects.

100% Orthogonal Array Testing implies 100% pairwise testing.
ample:
e have
3
parameters
,
each can have
3
values
then
the possible
Number
of
tests
using

onventional method
is
3
^
3
=
27
le
the same
using
OAT
,
it boils down to
9
test cases
.

Decision Tables

State Models

Exploratory Testing
All-pairs testing
)Ex

If w c Whi



15

11	1. (a) Consider the pseudo code for simple subtraction given below: NOV/DEC 2016, APRIL/MAY 2018
(1) program ‘simple subtraction’

(2) input (x,y) (3) output (x) (4) output (y)

 (
(5) if x> y then DO
(6) x-y = z
(7) else y
–
x = z
(8) endif
(9) output (z)
(10)
output “end program”
Perform basis path testing and generate test cases.
(b) What is refactoring? When is it needed? Explain with ex?
Refer class notes.
plain in detail about system testing
em Testing is the testing of a complete and fully integrated software product. Usually,
 ware is only one element of a larger computer-based system. Ultimately, software is
rfaced with other software/hardware systems. System Testing is actually a series of differe
s whose sole purpose is to exercise the full computer-based system.
 o Category of Software Testing

Black Box Testing

White Box Testing
em test falls under the
black box testing
category of software testing.
)12 Ex

Syst soft
inte nt
test

Tw

Syst

White box testing is the testing of the internal workings or code of a software application. In contrast, black box or System Testing is the opposite. System test involves the external workings of the software from the user's perspective.

13 Explain about the software testing strategies

Software testing is an investigation conducted to provide stakeholders with information about the quality of the software product or service under test.[1] Software testing can also provide an
15

objective, independent view of the software to allow the business to appreciate and understand the risks of software implementation. Test techniques include the process of executing a program or application with the intent of finding software bugs (errors or other defects), and verifying that the software product is fit for use.

Software testing involves the execution of a software component or system component to evaluate one or more properties of interest. In general, these properties indicate the extent to which the component or system under test:

 meets the requirements that guided its design and development,
 (
responds correctly to all kinds of inputs,
performs its functions within an acceptable time,
 it is sufficiently usable,
can be installed and run in its intended
environments
, and
 achieves the general result its stakeholders desire.
he number of possible tests for even simple software components is practically infinite, al
 ware testing uses some strategy to select tests that are feasible for the available time and
 urces. As a result, software testing typically (but not exclusively) attempts to execute a
 gram or application with the intent of finding
software bugs
(errors or other defects). The j
 esting is an iterative process as when one bug is fixed, it can illuminate other, deeper bugs,
 even create new ones.
ware testing can provide objective, independent information about the quality of software
 of its failure to users or sponsors.
[1]
ware testing can be conducted as soon as executable software (even if partially complete)
 sts. The
overall approach to software development
often determines when and how testing
 onducted. For example, in a phased process, most testing occurs after system requirements h
 n defined and then implemented in testable programs. In contrast, under an
agile approach
uirements, programming, and testing are often done concurrently.
Discuss in detail about test strategies for conventional
 oftware(May/June 2011)
fer class notes
xplain in detail about basic path testing.(May/Jun 2014)
h Testing is a structural testing method based on the source code or algorithm and NOT ba
 he specifications. It can be applied at different levels of granularity.
h Testing Assumptions:

The Specifications are Accurate
)





As t l soft
reso
pro ob
of t or can

Soft and risk

Soft
exi is
c ave
bee , req

14
s
Re
15 E

Pat sed on t

Pat

 The Data is defined and accessed properly

 There are no defects that exist in the system other than those that affect control flow

Path Testing Techniques:

	Control Flow Graph (CFG) - The Program is converted into Flow graphs by representing the code into nodes, regions and edges.

 Decision to Decision path (D-D) - The CFG can be broken into various Decision to
Decision paths and then collapsed into individual nodes.
16

	Independent (basis) paths - Independent path is a path through a DD-path graph which cannot be reproduced from other paths by other methods.

S.NO

1 Wh

 (
UNIT
–
5
PART
–
A
 QUESTIONS
at are the processes of
risk management
? NOV/DEC-10, NOV/DEC- 12,
 NOV/DEC 2013,NOV/DEC2015
identification
Risk projection (estimation)
Risk mitigation, monitoring, and management
e the need for software configuration review. NOV/DEC-11
)Risk

2 Stat

The intent of the review is to ensure that all elements of the software

configuration

have been properly developed, cataloged & have necessary detail to bolster

the

supportpfase of the software lifecycle.

16

3 List any five CASE tools classified by function in the taxonomy of CASE tools

NOV/DEC-11

1. project planning tools

2. metrics & management tools

3. prototyping tools

4. Re- engineering tools

5.

4 Def

the

r.

does

 (
documentation tools.
ine error, fault and failure. NOV/DEC-10
Error
–
it is a state that can lead to a system behavior that is unexpected by
System user.
Fault- it is a characteristic of a software system that can lead to system erro
Failure
–
it is an event that occurs at some point in time when the system
 not
Deliver a service as per user’s expectation.
at is project planning? APR/MAY-12, APR/MAY-15
The various types of plan is developed to support main software project pl
 which is concerned with schedule & budget. Types of project plan
Quality plan, Validation plan, Configuration mgmt plan, Maintenance
 plan, Staff development plan.
the various types of software errors? APR/MAY-11, NOV/DEC-12
Reports detailing bugs in a program are commonly known as bug repo
 defect reports, fault reports, problem reports, trouble reports, change requests.
)5 Wh

an

6 List

rts,

16

7 Differentiate between size oriented and function oriented metrics?

MAY/JUN-13 MAY/JUNE 2016,NOV/DEC 2015
Size oriented metrics – it considers the size of the software that has been produced. The software organization maintains simple records in tabular form. Table entries are LOC, effort, defects, and project name. Function oriented metrics – it measures the functionality delivered by software. Function point

8 Def

9 How

 (
based on software information domain and
Complexity.
ine measure.(APRIL/MAY-2008)
Measure is defined as a quantitative indication of the extent,
 amount, dimension, or size of some attribute of a product or process.
is productivity and cost related to function points? NOV/DEC2016
Software Productivity = Function Points / Inputs (persons/mnth) Cost = $ /
 Function Points (FP)
at are the types of metrics? MAY/JUNE 2016
Direct metrics
–
It refers to immediately measurable attributes. Example
–
Lines of code,execution speed.
Indirect metrics
–
It refers to the aspects that are not immediately quantifiable or
 measurable.
Example
–
functionality of a program.
)10 Wh

16

11 What are the advantages and disadvantages of size measure? Advantages:

 Artifact of software development which is easily counted.

 Many existing methods use LOC as a key input.

 A large body of literature and data based on LOC already exists

Disadvantages:

This method is dependent upon the programming language.

12 Writ

ed.

 (

This method is well designed but shorter program may get suffer

It does not accommodate non procedural languages.

In early stage of development it is difficult to estimate LOC.
e short note on the various estimation techniques.
Algorithmic cost modeling
–
the cost estimation is based on the size of t
 software.
Expert judgement
–
The experts from software development
 and the application domain use their exoerience to predict software
 costs.
Estimation by analogy
–
The cost of a project is computed by compar
the project to a similar project in the same application domain and then cost can
 computed.
Parkinson’s
law
–
The cost is determined by available resources rat
than by objective assessment.
)he

ing be

her

Pricing to win – The project costs whatever the customer ready to spend it.
13 What is COCOMO model?
COnstructiveCOstMOdel is a cost model, which gives the estimate of number of man- months it will take to develop the software product.

16

14 Give the procedure of the Delphi method.

1. The co-ordinator presents a specification and estimation form to each expert.

2. Co-ordinator calls a group meeting in which the experts discuss estimation issues with the coordinator and each other.
3. Experts fill out forms anonymously.

4. Co-ordinator prepares and distributes a summary of the estimates.

ly

disc

 (
5.
 The Co-ordinator then calls a group meeting.In this meeting the experts main
uss the points where their estimates vary widely.
6.
 The experts again fill out forms anonymously.
7.
 Again co-ordinator edits and summarizes the forms,repeating steps5 and 6 un
 co-ordinator is satisfied with the overallprediction synthesized
experts.
at are the metrics computed during error tracking activity?
Errors per requirement specification page. Errors per
 component-design level
Errors per component-code level DRE-
 requirement analysis
DRE-architectural analysis
 DRE-component level design
 DRE-coding.
at is risk management? NOV/DEC2016
management
is the identification, assessment, and prioritization of
ri

wed by coordinated and economical application of resources to minimize, moni
 control the probability and/or impact of unfortunate eventsor to maximize
)the from

til

15 Wh

16 Wh

Risk sks follo tor, and the realization of opportunities. Risk management’s objective is to assure uncertainty does not deflect the endeavor from the
business goals.

17 What is software maintenance?
Software maintenance is an activity in which program is modified after it has been put into use.

16

18 Will exhaustive testing guarantee that the program is 100% correct? APR/MAY

2016

No, even exhaustive testing will not guarantee that the program is

100 percent correct. There are too many variables to consider.

 (

Corrective maintenance
–
Means the maintenance for correcting the
 software faults.

Adaptive maintenance
–
Means maintenance for adapting the change in
 environment.

Perfective maintenance
–
Means modifying or enhancing the system to
 meet the new requirements.

Preventive maintenance
–
Means changes made to improve
 future maintainability
the CASE tools are classified?

CASE tools can be classified by
 a. By function or use
b. By user type(e.g. manager,tester),or
c. By stage in software engineering process (e.g.requirements,test).
guish between direct & indirect measures of metrics.
Direct metrics is directly measurable attribute(lines of code execution speed,siz
 emory.
Indirect metrics: these are the aspects that are not immediately
 urable.(functionality,reliabblity,maintainability)
)19 What are the types of software maintenance?

20 How

21 Din

e of m

meas

22 List down few process and product metrics. MAY/JUNE 2016

1.size metrics-It is used for measuring the size of the software.(local based metric,FP based metric)
2.complexity metric- A software module can be described by a control flow graph.(cyclomatic complexity, McCabe complexity)
3.quality metric- (Defects,reliabilitymetric,Maintainability)

16

23 Define software measure.

It is a numeric value for a attribute of a software product or process.

Types:

1.Direct measure 2.indirect measure

24 List out the different approaches to size of the software.

25	An com

 (
1.
LOC-computing the line of code
2.
FP-computing function point of the program.
organic software occupies 15000 LOC.how many programmers are needed to
 plete?(NOV/DEC-12)
System=organic Lines of
 coding=15k LOC
E=a
b
(KLOC)b
b
=2.4(15)
1.05
=41 persons per month
D=c
b
(e)d
b
=2.5(41)
0.38
=10 months P=41/10
P=4 persons.
4 persons are needed.
at is error tracking?(APRIL/MAY-14)
It is a process of finding out and correcting the errors that may oc
 ng the software development process at various stages such as software design,codi
 cumenting.
)26 Wh

cur

duri ng or do

16

27 What are the types of static testing tools?

There are three types of static testing tools.

	Code based testing tools – These tools take source code as input and generate test cases.
	Specialized testing tools – Using this language the detailed test specification can be written for each test case.
 s

requi

28 Wh

ce.

Mor to acco ay also put (labo to incre
 (
Requirement-based testing tools
–
These tools help in designing the test cases a
per user
 rements.
at are the productivity measures and list its type. APRIL/MAY 2017
Productivity is an overall measure of the ability to produce a good or servi
 e specifically, productivity is the measure of how specified resources are managed
 mplish timely objectives as stated in terms of quantity and quality. Productivity m
 be defined as an index that measures output (goods and services) relative to the in
r, materials, energy, etc., used to produce the output). there are two major ways
 ase productivity: increase the numerator (output) or decrease the denominator
put).
ine ZIPF’s law.
The probability of occurrence of words or other items starts high and tapers
, a few occur very often while many others occur rarely. Formal Definition: Pn
 where Pn is the frequency of occurrence of the
anked item and a is close to 1.
out the principles of project scheduling. NOV/DEC2017
)(in

29 Def

off.

Thus ~

1/na, nth r
30 List

Software project scheduling is an activity that distributes estimated effort

16

across the planed project duration by allocating the effort to specific software engineering tasks.

First, a macroscopic schedule is developed. a detailed schedule is redefined for each entry in the macroscopic schedule.

 (
c principles guide software project scheduling:
mpartmentalization
 erdependency
me allocation
 ort allocation
 ort validation
fined responsibilities
 fined outcomes
fined milestones
e a note on Risk information sheet. NOV/DEC 2017
sk information sheet is a means of capturing information about a risk. R
mation sheets are used to document new risks as they are identified. They are a
)A schedule evolves over time. Basi
- Co

- Int

- Ti

- Eff

- Eff

- De

- De

- De

31 Writ

A ri isk infor lso used to modify information as risks are managed. It is a form that can be submitted to the appropriate person or included in a database with other project risks. In the absence of a database, this becomes a primary means of
documenting and retaining information about a risk.

32 List two customer related and technology related risks. APRIL/MAY 2017

16

customer related risks

Customer relationship management may be fragmented.
New methods with which to improve customer service and reduce related costs are not utilized.
Lack of knowledge on the part of one section of an enterprise regarding interactions with a customer on the part of another can lead to customer frustration and embarrassment.
 (
systems or, even worse, due to infrastructure.
ck of visibility of the order status along the whole supply chain.
hnology related risk :
Architecture risk
Artificial intelligence risk
Audit risk
Availability
at is EVA ? APRIL/MAY 2018
ed Value Analysis (
EVA
) is an industry standard method of measuring a proje
 ress at any given point in time, forecasting its completion date and final cost,
 lyzing variances in the schedule
budget as the project proceeds.
tify The Types Of Maintenance for each of the followingAPRIL/MAY 2018
recting the Software Faults . Adapting the
 ge in environment
e are four
types of maintenance
, namely,
corrective
, adaptive, perfective, and
ventive
. ...
rectivemaintenance
dealswiththe
repair
of
faults
or
defects
found in day-today
)Inability to respond to market demands caused by lack of integrationamong order- entry
 La

Tec






33 Wh

Earn ct's prog and ana
and

34 Iden

Cor chan
Ther pre Cor
system functions. ...
In the event of a system failure due to an error, actions are taken to restore the operation of the software system.

17

35
What is cost schedule?

Cost schedule shows the planned cumulative expenditure cost by the use of resource overtime
36
What is RMMM?

Ans.

37
Wh

Ans.

38
Wh

 (
RMMM stands for Risk Mitigation, Monitoring and Management Plan. It is also
 called Risk Aversion.
at Is Risk mitigation?
Mitigation is a possible means if minimizing or even avoiding the Impact of risk.
at are the factors that lead to Risk? Ans.
The
 rs that lead to Risk are:
Estimation errors.
 lanning assumptions.
Business risks.
t are the test points?
points allow data to be inspected or modified at various points in the system
at is refactoring?
)facto



 P



39
Wha

Test

40
Wh

A small change to a database schema which improves its design

41
Explain the common risk tools and techniques.

Ans. There are at least six different ways of identifying the potential risks.

These are:

17

• Examining organizational history

• Preparing checklists

• Information buying

• Framework based risk categorization

• Si

• De

42
Wh

Ans.

43
 (
mulation
 cision trees.
at is called support risk?
Support risk is the degree of uncertainty fiat the resultant software will be easy to
 correct, adapt and enhance
at Is Risk?
Risk
s are events that are usually beyond the planner’s control.
at are the Dimensions of Risk quantification? Ans.
ability and the impact of Risk.
at is meant by Delphi method?
)Wh

Ans.

44
Wh

Prob

45
Wh

The Delphi technique is an estimation technique intended to active a common agreement for estimation efforts.
46
What is meant by CASE tools?

The computer aided software engineering tools automatic the project

17

management activities, manage all the work products. The CASE tools assist to perform various activities such as analysis, design, coding and
testing.

47
What are the three phases of Risk management? Ans. The

three phases of risk management are:

48
Wh

facto



 (
Risk identification, Risk Quantification, and Risk mitigation.
at are the factors that lead to Risk? Ans.
The
 rs that lead to Risk are:
Estimation errors.
 lanning assumptions.
Business risks.
at is meant by software project scheduling?
ware project scheduling is an activity that distributes estimated effort across
 planned project duration by allocating the effort to specified software engineer
 tasks.
at are the various steps under risk analysis? Ans.
The
) P



49
Wh

Soft the ing

50
Wh

various steps under risk analysis are:

 Risk Estimation.

 Risk identification.

 Risk evaluation.

17

PART –B

 (
Elaborate on the series of tasks of a software configuration management
 ocess.
g)
Describe function point analysis with a neat
 ampleNOV/DEC 2013
ware configuration management, SCM is an activity which is used at every level and
 y part of the process of software Engineering. Every improvement takes the shape of
 er control. This is a discipline which controls betters and according to client need in
 ware Engineering. With the help of this many types are changes which play an important
 in software Engineering and development process.
he simple way if we define the term configuration of management, this is the tool which
 kes better control, easy maintenance during the whole process of software development.
 h the help of software configuration management we can easily find out what
odification and controlling required by the developer. SCM have the capacity to control all
 e effects which comes in software projects. The main objectives of SCM is increase the
 duction by reduce the errors.
hen a software development process start then SCM take change by identification, control,
 ration, audit and etc. after that the output of total process provided to our customer. We
 clarify the action of SCM as:
1.
Software configuration identification
- Normally software is used in various kinds
 of programs and documentation and data related to each program is called
 configuration identification. With the help of C.I we can make a guide line which
 will be helpful in software development process, several time the requirement of
 guideline for check the document and design of software. Document related to SCM
 are the useful item, with the help of this we can make better control and take a basic
 unit for configuration.
)S.NO QUESTIONS
1	(f) pr (
ex 	

Soft ever bett soft role

In t ma Wit m thos pro

W alte can

2. Software configuration control - This is the process of deciding with the help of this we make coordination between the changes which is necessary and apply them as per mentioned in guideline. Configuration control board gives the permission for any kind of change or modification which is necessary for the project. Many times CCB take advice of those members which are the part of software development process.

3. Accounting status of Software configuration - The process of maintaining record of all data which is necessary for the software is called accounting status of software. It has all the data related to the old software to new software that what changes are done or required for the fulfillment of the customer need.
17

4. Auditing of software configuration - Auditing of software configuration is may be defined as an art with the help of this we can understand that the required actions or changes are done by the developer or not. Some of the item involved in the process of verifying or auditing.

o Function is properly performed by the software.

o The process of documentation, data is completed or not.

Benefits

2 Ex

de

 (
o
With the help of SCM we can easily control all changes which are done in
development process.
o
It gives the surety to check that changes are done on required area.
o
It is helpful to generate the new software with old components.
o
SCM has the capacity to explain everything about the process of software
 development.
plain make/buy decision & discuss Putnam resource allocation model &
rive time & effort equation?APRIL/MAY2016
Lawrence Putnam model describes the time and effort requires finishing a software
ect of a specified size. Putnam makes a use of a so-called The Norden/Rayleigh Curve to
 mate project effort, schedule & defect rate as shown in fig:
)The proj esti

17

 (
am noticed that software staffing profiles followed the well known Rayleigh distribution.
 am used his observation about productivity levels to derive the software equation:
various terms of this expression are as follows:
Lawrence Putnam model describes the time and effort requires finishing a software
ect of a specified size. Putnam makes a use of a so-called The Norden/Rayleigh Curve to
)Putn
Putn

The

The proj
estimate project effort, schedule & defect rate as shown in fig:

17

 (
am noticed that software staffing profiles followed the well known Rayleigh distribution.
 am used his observation about productivity levels to derive the software equation:
various terms of this expression are as follows:
the total effort expended (in PM) in product development, and L is the product estimate
LOC
.
)Putn
Putn

The

K is in K

td correlate to the time of system and integration testing. Therefore, td can be relatively considered as the time required for developing the product.

Ck Is the state of technology constant and reflects requirements that impede the development of the program.

Typical values of Ck = 2 for poor development environment

17

Ck= 8 for good software development environment

Ck = 11 for an excellent environment (in addition to following software engineering principles, automated tools and techniques are used).

The exact value of Ck for a specific task can be computed from the historical data of the organization developing it.

 (
specification tasks. As the project progresses and more detailed work are necessary, the
 ber of engineers reaches a peak. After implementation and unit testing, the number of
 ect staff falls.
ct of a Schedule change on Cost
nam derived the following expression:
re,
K
is the total effort expended (in PM) in the product development
 the product size in KLOC
rresponds to the time of system and integration testing
s the state of technology constant and reflects constraints that impede the progress of the
 ram
ow by using the above expression, it is obtained that,
3
he same product size, C =L
3

/ C
k

is

a

constant.
)Putnam proposed that optimal staff develop on a project should follow the Rayleigh curve. Only a small number of engineers are required at the beginning of a plan to carry out planning and
num
proj

Effe

Put

Whe L is td co
Ck I
prog

N

For t

(As project development effort is equally proportional to project development cost)

From the above expression, it can be easily observed that when the schedule of a project is
17

compressed, the required development effort as well as project development cost increases in proportion to the fourth power of the degree of compression. It means that a relatively small compression in delivery schedule can result in a substantial penalty of human effort as well as development cost.

For example, if the estimated development time is 1 year, then to develop the product in 6 months, the total effort required to develop the product (and hence the project cost) increases
16 times.

3 Ex

us

Proj proj pro

W
plen

Let'

1 -

 (
plain the various CASE tools for project management and how they are
 eful in achieving the objectives APRIL/MAY- 15
ect management is one of the critical processes of any project. This is due to the fact that
 ect management is the core process that connects all other project activities and
 cesses together.
hen it comes to the activities of project management, there are plenty. However, these
 ty of project management activities can be categorized into five main processes.
s have a look at the five main project management processes in detail.
Project Initiation
ect initiation is the starting point of any project. In this process, all the activities related
 winning a project takes place. Usually, the main activity of this phase is the pre-sale.
ing the pre-sale period, the service provider proves the eligibility and ability of
 pleting the project to the client and eventually wins the business. Then, it is the detailed
 uirements gathering which comes next.
ing the requirements gathering activity, all the client requirements are gathered and
 ysed for implementation. In this activity, negotiations may take place to change certain
 uirements or remove certain requirements altogether.
sually, project initiation process ends with requirements sign-off.
Project Planning
ect planning is one of the main project management processes. If the project
 agement team gets this step wrong, there could be heavy negative consequences during
 next phases of the project.
)Proj to

Dur com req

Dur anal req

U

2 -

Proj man the

Therefore, the project management team will have to pay detailed attention to this process of the project.

In this process, the project plan is derived in order to address the project requirements such as, requirements scope, budget and timelines. Once the project plan is derived, then the project schedule is developed.

Depending on the budget and the schedule, the resources are then allocated to the project. This phase is the most important phase when it comes to project cost and effort.

17

3 - Project Execution

After all paperwork is done, in this phase, the project management executes the project in order to achieve project objectives.

When it comes to execution, each member of the team carries out their own assignments within the given deadline for each activity. The detailed project schedule will be used for tracking the project progress.

 (
gress.
ddition to that, the client may also want to track the progress of the project. During the
 ect execution, it is a must to track the effort and cost of the project in order to determine
 ther the project is progressing in the right direction or not.
addition to reporting, there are multiple deliveries to be made during the project
 cution. Usually, project deliveries are not onetime deliveries made at the end of the
 ect. Instead, the deliveries are scattered through out the project execution period and
 vered upon agreed timelines.
Control and Validation
ing the project life cycle, the project activities should be thoroughly controlled and
 dated. The controlling can be mainly done by adhering to the initial protocols such as
 ect plan, quality assurance test plan and communication plan for the project.
ometimes, there can be instances that are not covered by such protocols. In such cases, the
 ect manager should use adequate and necessary measurements in order to control such
uations.
dation is a supporting activity that runs from first day to the last day of a project. Each
 every activity and delivery should have its own validation criteria in order to verify the
 cessful outcome or the successful completion.
hen it comes to project deliveries and requirements, a separate team called 'quality
 urance team' will assist the project team for validation and verification functions.
Closeout and Evaluation
e all the project requirements are achieved, it is time to hand over the implemented
 em and closeout the project. If the project deliveries are in par with the acceptance
 eria defined by the client, the project will be duly accepted and paid by the customer.
e the project closeout takes place, it is time to evaluate the entire project. In this
)During the project execution, there are many reporting activities to be done. The senior management of the company will require daily or weekly status updates on the project pro

In a proj whe

In exe proj deli

4 -

Dur vali proj

S proj sit

Vali and suc

W
ass

5 -

Onc syst crit

Onc
evaluation, the mistakes made by the project team will be identified and will take necessary steps to avoid them in the future projects.

During the project evaluation process, the service provider may notice that they haven't gained the expected margins for the project and may have exceeded the timelines planned at the beginning.

In such cases, the project is not a 100% success to the service provider. Therefore, such instances should be studied carefully and should take necessary actions to avoid in the future.

18

Conclusion

Project management is a responsible process. The project management process connects all other project activities together and creates the harmony in the project.

Therefore, the project management team should have a detailed understanding on all the project management processes and the tools that they can make use for each project management process.

 (
APRIL/MAY 2018
ed value analysis is the project management tool that is used to measure project progress.
 ompares the actual work completed at any time to the original budget and schedule. It
casts the final budget and schedule and analyzes the path to get there. It gives you the
 ntial early warning signal that things are going awry.
e are two variables which the earned value method focuses on.
Schedule (time)
 Cost
e are 8 steps to performing earned value analysis effectively. It may seem like alot at
 glance, but for small projects this takes five minutes once you learn how to do it:
Determine the percent complete of each task.
 Determine Planned Value (PV).
Determine Earned Value (EV).
 Obtain Actual Cost (AC).
Calculate Schedule Variance (SV).
 Calculate Cost Variance (CV).
Calculate Other Status Indicators (SPI, CPI, EAC, ETC, and TCPI)
 Compile Results
first four steps represent an information gathering phase. The remaining steps are
)4 Brief about calculating Earned value measuresAPR/MAY-

12, Earn It c fore esse

Ther



 Ther first

1.

2.

3.

4.

5.

6.

7.

8. The
calculations which give the project manager a glimpse into the current status of the project

from a budget and schedule perspective.

Before you get started, it is important to define appropriate project status points in which this calculation is performed. Weekly status meetings work very well for any size project, but whatever time frame is used the important thing is to make sure these calculations are
performed at that time.

18

Determine Percent Complete

To start the process, the percentage complete of each task needs to be determined.

 (
repetitive tasks you can also use progressive measures such as number of fence posts
 lled.
rmine Planned Value (PV)
Planned Value
, also known as
Budgeted Cost of Work Scheduled (BCWS)
, is defined as the
 unt of the task that is supposed to have been completed. It is in monetary terms as a
on of the task budget.
For example let’s say that:
The task budget is $5,000,
The task start date is January 1, and
The task finish date is January 10.
s January 6 today, the task is supposed to be 60% complete. Therefore,
PV = $5,000 x
= $3,000
.
rmine Earned Value (EV)
arned Value
, also known as
Budgeted Cost of Work Performed (BCWP)
, is the amount of
 ask that is actually complete. It is, again, in monetary terms as a portion of the task
budget.
For example, let’s use the same example task.
The task budget is $5,000, (same as above)
The task start date is January 1, and (same as above)
)Small tasks (80 hours or less) are often best done on a 0, 50, or 100% complete basis (not started, in progress, or complete). This brings the workload down to reasonable levels and prevents abuse when project team members exaggerate, for example they might tell you a task is 80% complete when it is really 50% complete.

For insta

Dete

amo porti







If it’

60%

Dete

E

the t





 The task finish date is January 10. (same as above)

Let’s say the actual percent complete of the task (step 1) is 40%. Therefore, EV = $5,000 x

40% = $2,000.

Obtain Actual Cost (AC)

The Actual Cost, also known as Actual Cost of Work Performed (ACWP), as you might guess, is the actual cost of the work. Generally employee hours need to be converted into a

18

cost, and all project costs need to be added up, such as the following items:

 Labor

 Materials

 Equipment

 Fixed cost items, like subcontractors

 (
will not go into great detail here.
For the purposes of our example project let’s say the
ual cost of the example task is $1,500.
his point the information gathering phase is complete. The following calculations
esent the application of the earned value analysis to keep your project on schedule and
 budget.
ulate Schedule Variance (SV)
Schedule Variance represents the schedule status of the project.
= EV
–
PV
ur above example the schedule variance is:
SV = $2,000
–
$3,000 = -$1,000
.
gative schedule variance means the task is behind schedule. A positive schedule
ance means it is ahead of schedule. The amount can be compared to worker charge out
 or similar metrics to get an idea of how difficult it would be to recover.
ulate Cost Variance (CV)
Cost Variance represents the cost status of the project.
= EV
–
AC
ur above example the cost variance is:
CV = $2,000
–
$1,500 = $500
.
gative cost variance means the task is over budget. A positive cost variance means it is
)Since most projects have these well defined via accounting or project management software, we
act

At t repr

Calc

The

SV

In o

A ne vari rates

Calc

The

CV

In o 	

A ne

under budget.

Calculate Other Status Indicators

Although the SV and CV are the minimum requirement and work well for small projects, there are other variables that are derived from them which you might want to calculate:

 Schedule Performance Index (SPI): The schedule variance expressed in percentage

18

terms, for example, SPI = 0.8 means the project 20% behind schedule.

SPI = EV / PV

		Cost Performance Index (CPI): The cost variance expressed in percentage terms, for example, CPI = 0.9 means the project is 10% over budget.
CPI = EV / AC
 (
his value but assuming that the past variances are likely to persist:
EAC = AC + BAC
–
EV
Estimate to Complete (ETC):
The expected cost to finish the rest of the project.
ETC = EAC
–
AC
To Complete Performance Index (TCPI):
The required CPI necessary to finish the
 project right on budget. For example, TCPI = 1.25 means you need to find 25%
 efficiencies to finish on budget.
TCPI = (BAC
–
EV) / (BAC
–
AC)
ompile the Results
h metric is calculated for each individual task in the project. Therefore they need to be
 d up into overall project variances to get the overall progress indicator for the project.
 represents the total variance of the project and can be reported to management, clients,
 stakeholders.
results are as instantaneous as the input data, that is, if you input the percent complete as
 ght now the statu
s reported will be as of right now as well. It’s amazing how a small
ance does not cause anyone concern until they see it as a number, and it can be corrected
 re it becomes more serious.
rpreting the Results
first two calculations (SV and CV) give you the basic indicator of project progress. A
)		Estimate at Completion (EAC): The expected budget at the end of the project given the variances that have already taken place. There are various ways to extrapolate t

 	

 	

C

Eac adde This and

The of ri vari befo

Inte

The

negative value indicates an undesirable situation.

 If the schedule variance (SV) is negative, you are behind schedule.

 If the cost variance (CV) is negative, you are over budget.

The amount of the variance can be compared to the project’s budget to see how concerning it

is. For example, a variance of $1,000 on a $100,000 project is not that concerning but a

$10,000 variance might need some attention. The variances can also be compared to employee charge out rates or something similar, for example a $1,000 variance might require
18

a person who’s earning $50/hour to work 20 hours to recover.

 (
k.
phing the results over multiple status points is a very helpful exercise. Good project
rol often means that the instantaneous project status snapshot is not as important as the
 nd the indicators are making over time. For example, if the SV has been increasing, then
be the project will finish on time even though it’s behin
d schedule today.
a well understood concept that if projects fall behind early they will tend to continue
ng further behind throughout their entire life. Earned value analysis will alert you if you
 ven one hour behind and allow you to take the necessary remedial action. The value of
 in producing successful projects is almost without equal.
fine Risk. Explain the needs and activities or risk management?APR/MAY-
, NOV/DEC2015
,
NOV/DEC 2017
sk is inevitable in a business organization when undertaking projects. However, the
 ect manager needs to ensure that risks are kept to a minimal. Risks can be mainly
 ded between two types, negative impact risk and positive impact risk.
all the time would project managers be facing negative impact risks as there are positive
 pact risks too. Once the risk has been identified, project managers need to come up with a
gation plan or any other solution to counter attack the risk.
ect Risk Management
nagers can plan their strategy based on four steps of risk management which prevails in
)In our example the schedule variance was -$1,000 and the cost variance was $500. This means that the project is behind schedule, but it is being performed efficiently and is cost- positive. If an worker charging $75/hr was performing the majority of this work, they are about 13 hours behind schedule (although they will finish under budget). Thus, we know that this task requires a couple days of work over and above the regular schedule to get it back on trac

Gra cont tre may

It is falli are e
this

5 De

15

Ri proj divi

Not im miti

Proj

Ma
an organization. Following are the steps to manage risks effectively in an organization:

 Risk Identification

 Risk Quantification

 Risk Response

 Risk Monitoring and Control

Let's go through each of the step in project risk management:

18

Risk Identification

Managers face many difficulties when it comes to identifying and naming the risks that occur when undertaking projects. These risks could be resolved through structured or unstructured brainstorming or strategies. It's important to understand that risks pertaining to the project can only be handled by the project manager and other stakeholders of the project.

 (
ource risk occurs when the human resource used in the project is not enough or not
 ed enough. Budget risk would refer to risks that can occur if the costs are more than
 t was budgeted.
Quantification
sks can be evaluated based on quantity. Project managers need to analyze the likely
 nces of a risk occurring with the help of a matrix.
ng the matrix, the project manager can categorize the risk into four categories as Low,
 dium, High and Critical. The probability of occurrence and the impact on the project are
 two parameters used for placing the risk in the matrix categories. As an example, if a risk
 urrence is low (probability = 2) and it has the highest impact (impact = 4), the risk can be
 gorized as 'High'.
Response
hen it comes to risk management, it depends on the project manager to choose strategies
 will reduce the risk to minimal. Project managers can choose between the four risk
sponse strategies, which are outlined below.
)Risks, such as operational or business risks will be handled by the relevant teams. The risks that often impact a project are supplier risk, resource risk and budget risk. Supplier risk would refer to risks that can occur in case the supplier is not meeting the timeline to supply the resources required.

Res skill wha

Risk

Ri cha

Usi Me the occ cate

Risk

W that re

 Risks can be avoided

 Pass on the risk

 Take corrective measures to reduce the impact of risks

 Acknowledge the risk

Risk Monitoring and Control

Risks can be monitored on a continuous basis to check if any change is made. New risks can be identified through the constant monitoring and assessing mechanisms.

18

Risk Management Process

Following are the considerations when it comes to risk management process:

	Each person involved in the process of planning needs to identify and understand the risks pertaining to the project.

	Once the team members have given their list of risks, the risks should be consolidated to a single list in order to remove the duplications.

 Assessing the probability and impact of the risks involved with the help of a matrix.

Risk

Oft stra

 (

Split the team into subgroups where each group will identify the triggers that lead to
 project risks.

The teams need to come up with a contingency plan whereby to strategically
 eliminate the risks involved or identified.

Plan the risk management process. Each person involved in the project is assigned a
 risk in which he/she looks out for any triggers and then finds a suitable solution for
 it.
Register
en project managers will compile a document, which outlines the risks involved and the
 tegies in place. This document is vital as it provides a huge deal of information.
sk register will often consists of diagrams to aid the reader as to the types of risks that are
 t by the organization and the course of action taken. The risk register should be freely
 essible for all the members of the project team.
ect Risk; an Opportunity or a Threat?
mentioned above, risks contain two sides. It can be either viewed as a negative element
 positive element. Negative risks can be detrimental factors that can haphazard situations
a project.
refore, these should be curbed once identified. On the other hand, positive risks can
 ng about acknowledgements from both the customer and the management. All the risks
 d to be addressed by the project manager.
onclusion
organization will not be able to fully eliminate or eradicate risks. Every project
 agement will have its own set of risks to be dealt with. A certain degree of risk will be
 olved when undertaking a project.
)Ri deal acc

Proj

As or a for

The bri nee

C

An eng inv

The risk management process should not be compromised at any point, if ignored can lead to detrimental effects. The entire management team of the organization should be aware of the project risk management methodologies and techniques.

Enhanced education and frequent risk assessments are the best way to minimize the damage from risks.

18

6	Explain about all COCOMO models?NOV/DEC 2015, APRIL/MAY2016, APRIL/MAY 2017, APRIL/MAY 2018
Cocomo (Constructive Cost Model) is a regression model based on LOC, i.e number of Lines of Code. It is a procedural cost estimate model for software projects and often used as a process of reliably predicting the various parameters associated with making a project such as size, effort, cost, time and quality. It was proposed by Barry Boehm in 1970 and is based on the study of 63 projects, which make it one of the
best-documented models.
The an o





Diff diff thes the pert

Boe

1.

2.

3.

 (
key parameters which define the quality of any software products, which are also
utcome of the Cocomo are primarily Effort & Schedule:
Effort:
Amount of labor that will be required to complete a task. It is
 measured in person-months units.
Schedule:
Simply means the amount of time required for the completion of
the job, which is, of course, proportional to the effort put. It is measured in the
 units of time such as weeks, months.
erent models of Cocomo have been proposed to predict the cost estimation at
 erent levels, based on the amount of accuracy and correctness required. All of
e models can be applied to a variety of projects, whose characteristics determine
 value of constant to be used in subsequent calculations. These characteristics
aining to different system types are mentioned below.
hm’s definition of organic, semidetached, and embedded systems:
Organic
–
A software project is said to be an organic type if the team size
 required is adequately small, the problem is well understood and has been solved
 in the past and also the team members have a nominal experience regarding the
 problem.
Semi-detached
–
A software project is said to be a Semi-detached type if the
 vital characteristics such as team-size, experience, knowledge of the various
 programming environment lie in between that of organic and Embedded. The
 projects classified as Semi-Detached are comparatively less familiar and difficult
 to develop compared to the organic ones and require more experience and better
 guidance and creativity. Eg: Compilers or different Embedded Systems can be
 considered of Semi-Detached type.
Embedded
–
A software project with requiring the highest level of
complexity, creativity, and experience requirement fall under this category. Such
 software requires a larger team size than the other two models and also the
)developers need to be sufficiently experienced and creative to develop such complex models.
All the above system types utilize different values of the constants used in Effort
Calculations.

Types of Models: COCOMO consists of a hierarchy of three increasingly detailed and accurate forms. Any of the three forms can be adopted according to our requirements. These are types of COCOMO model:
1. Basic COCOMO Model
2. Intermediate COCOMO Model
3. Detailed COCOMO Model
18

The first level, Basic COCOMO can be used for quick and slightly rough calculations of Software Costs. Its accuracy is somewhat restricted due to the absence of sufficient factor considerations.
Intermediate COCOMO takes these Cost Drivers into account and Detailed COCOMO additionally accounts for the influence of individual project phases, i.e in case of Detailed it accounts for both these cost drivers and also calculations are performed phase wise henceforth producing a more accurate result. These two models are further discussed below.
Estimation of Effort: Calculations –
4.

5.

6.

 (
Basic Model
–
The above formula is used for the cost estimation of for the basic COCOMO
 model, and also is used in the subsequent models. The constant values a and b for
 the Basic Model for the different categories of system:
SOFTWARE PROJECTS A B
Organic 2.4 1.05
Semi Detached 3.0 1.12
Embedded 3.6 1.20
The effort is measured in Person-Months and as evident from the formula is
 dependent on Kilo-Lines of code. These formulas are used as such in the Basic
 Model calculations, as not much consideration of different factors such as
 reliability, expertise is taken into account, henceforth the estimate is rough.
Intermediate Model
–
The basic Cocomo model assumes that the effort is only a function of the number
 of lines of code and some constants evaluated according to the different software
system. However, in reality, no system’s effort and schedule can be solely

calculated on the basis of Lines of Code. For that, various other factors such as
 reliability, experience, Capability. These factors are known as Cost Drivers and
 the Intermediate Model utilizes 15 such drivers for cost estimation.
)Classification of Cost Drivers and their attributes:

1. Product attributes –
 Required software reliability extent
 Size of the application database
 The complexity of the product
(ii) Hardware attributes –
 Run-time performance constraints
 Memory constraints
 The volatility of the virtual machine environment
18

 Required turnabout time
(iii) Personnel attributes –
 Analyst capability
 Software engineering capability
 Applications experience
 Virtual machine experience
 Programming language experience
(iv) Project attributes –
 (

Application of software engineering methods

Required development schedule
;
VERY VERY
 COST DRIVERS LOW LOW NOMINAL HIGH HIGH
Product Attributes
Required Software
Reliability 0.75 0.88 1.00 1.15 1.40
Size of Application
Database 0.94 1.00 1.08 1.16
Complexity of The
Product 0.70 0.85 1.00 1.15 1.30
Hardware Attributes
Runtime Performance
) Use of software tools

Constraints 1.00 1.11 1.30

Memory Constraints 1.00 1.06 1.21

Volatility of the virtual 0.87 1.00 1.15 1.30

19

machine environment

Required turnabout

time 0.94 1.00 1.07 1.15

 (
Analyst capability 1.46 1.19 1.00 0.86 0.71
Applications
experience 1.29 1.13 1.00 0.91 0.82
Software engineer
capability 1.42 1.17 1.00 0.86 0.70
Virtual machine
experience 1.21 1.10 1.00 0.90
Programming language
experience 1.14 1.07 1.00 0.95
Project Attributes
Application of software
engineering methods 1.24 1.10 1.00 0.91 0.82
)Personnel attributes

Use of software tools 1.24 1.10 1.00 0.91 0.83

Required development

schedule 1.23 1.08 1.00 1.04 1.10

The project manager is to rate these 15 different parameters for a particular project on a scale of one to three. Then, depending on these ratings, appropriate
19

cost driver values are taken from the above table. These 15 values are then multiplied to calculate the EAF (Effort Adjustment Factor). The Intermediate COCOMO formula now takes the form:

The values of a and b in case of the intermediate model are as follows:

SOFTWARE PROJECTS A B

 (
Organic 3.2 1.05
Semi Detached 3.0 1.12
Embeddedc 2.8 1.20
Detailed Model
–
Detailed COCOMO incorporates all characteristics of the intermediate version
with an assessment of the cost driver’s impact on each step of the sof
tware
 engineering process. The detailed model uses different effort multipliers for each
 cost driver attribute. In detailed cocomo, the whole software is divided into
 different modules and then we apply COCOMO in different modules to estimate
 effort and then sum the effort.
The Six phases of detailed COCOMO are:
1. Planning and requirements
2. System design
3. Detailed design
4. Module code and test
5. Integration and test
6. Cost Constructive model
The effort is calculated as a function of program size and a set of cost drivers are
 given according to each phase of the software lifecycle.
Write about software maintenance, PERT - CPM for scheduling ,
 RMMP NOV/DEC-12
)2.

7

Project Scheduling or project management is used to schedule, manage and control projects which can be analyzed into various semi-independent activities or tasks. Example: Building a New Home When building a home individual subcontractors are hired to:
― Grade and prepare the land
― Build the foundation
― Frame up the home
― Insulate the home
― Wire (Electricity, Cable, Telephone lines) the home ― Drywall

19

― Paint (inside)
― Put vinyl siding on home
― Install Carpet
― Landscape
― Lay Concrete
PERT – Program Evaluation and Review Technique
– Developed by U.S. Navy for Polaris missile project
– Developed to handle uncertain activity times CPM
– Critical Path Method

 (
–
Developed by Du Pont & Remington Rand
–
Developed for industrial projects for which activity times are known
 There are project management software packages that can perform both.
 PERT and CPM have been used to plan, schedule, and control a wide
 variety of projects:
–
R&D of new products and processes
–
Construction of buildings and highways
–
Maintenance of large and complex equipment
–
Design and installation of management systems
–
Organizing transportation projects
–
Deployment and/or relocation of forces
–
Design of computer systems

PERT/CPM is used to plan the scheduling and optimal staffing of
 individual activities that make up a project.

Projects may have as many as several thousand activities and may
have to be broken up into simpler sub-projects.

Usually some activities depend on the completion of other activities
 before they can be started.

So we need to start with the Prerequisites Task Set giving the order
of precedencies, along with durations for each task, or activity
scribe steps involved in project scheduling process, project timeline chart
 d task network
.
MAY/JUN-15
,
APRIL/MAY 2018
Press-Pg-no- 708
)8 De

an

19

9	(b) Suppose you have a budgeted cost of a project as Rs. 9,00,000. The project is to be completed in 9 months. After a month you have completed 10 percent of project at a total expense of Rs. 1,00,000. The planned completion should have been 15 percent. You need to determine whether the project is on-time and on budget? Use Earned value analysis approach and interpretNOV/DEC
 (
Consider the following function point components and their complexity. If
e total degree of influence is 52, find the estimated function points.
 nction type Estimated count complexity
ED 2 7
GHD 4
10
HJI 22 4
BU 16 5
BJ 24 4
er class notes
scribe in detail COCOMO model for software cost estimation. Use it to
 imate the effort required to build software for a simple ATM that produce
 screens, 10 reports and has 80 software components. Assume average
 omplexity and average developer maturity. Use application composition
odel with object points.NOV/DEC 2016, NOV/DEC 2017
Refer class notes
plain the process of function point analysis?explain function point analysis
 h sample cases for componentfor different complexity APRIL/MAY 2018
)2016 (c)
th

Fu

F

Ref
10	De est
12 c
m

11	Ex wit
Refer class notes

12 Discuss on the various software cost estimation techniques. (April/MayApr/May
2008)
Refer class notes
13 Explain the process of Delphi method ? advantages and disadvantages
(Nov/Dec 2013)
Refer class notes
14 Explain about Risk management (May/Jun 2014)

Risk management is the identification, evaluation, and prioritization of risks (defined
19

in ISO 31000 as the effect of uncertainty on objectives) followed by coordinated and economical application of resources to minimize, monitor, and control the probability or impact of unfortunate events[1] or to maximize the realization of opportunities.

 (
agement
standards
have been developed by various institutions, including
Project Management Institute
, the
National Institute of Standards and Technology
,
 uarial societies, and ISO standards.
[2][3]

Methods, definitions and goals vary widely
 ording to whether the risk management method is in the context of project
agement, security,
engineering
,
industrial processes
, financial portfolios, actuarial
 ssments, or public health and safety.
tegies to manage threats (uncertainties with negative consequences) typically
 ude avoiding the threat, reducing the negative effect or probability of the threat,
 sferring all or part of the threat to another party, and even retaining some or all of
 potential or actual consequences of a particular threat, and the opposites for
 ortunities (uncertain future states with benefits).
ain risk management standards have been criticized for having no measurable
 provement on risk, whereas the confidence in estimates and decisions seems to
 ease.
[1]

For example, one study found that one in six IT projects were "
black
ns
" with gigantic overruns (cost overruns averaged 200%, and schedule overruns
ve detail explanation about Scheduling and Tracking
ect Scheduling helps to establish a roadmap for project managers together with
mation methods and risk analysis. Project scheduling and Tracking begins with the
tification of process models, identification of software tasks and activities,
 mation of effort and work and ends with creation of network of tasks and making
 it gets done on time. This network is adapted on encountering of changes and
ks.
he project level, the Project Manager does project tracking and scheduling based
 nformation received from Software Engineers. At an individual level the Software
)Risks can come from various sources including uncertainty in financial markets, threats from project failures (at any phase in design, development, production, or sustaining of life-cycles), legal liabilities, credit risk, accidents, natural causes and disasters, deliberate attack from an adversary, or events of uncertain or unpredictable root-cause. There are two types of events i.e. negative events can be classified as risks while positive events are classified as opportunities. Risk
man 	
the
act acc man asse

Stra incl tran the opp

Cert im incr swa
7

15		Gi Proj esti iden esti sure ris

At t on i
Engineer does it. It is important, as in a complex system many tasks may occur in
parallel and have interdependencies that are understandable only with a schedule. A
detailed schedule is a useful tool to assess progress on a moderate or large project.

The basic steps followed are, once the tasks dictated by the software process model is refined based on the functionality of the system , effort and duration are allocated for each task and an activity network is created that allows the project to meets its deadlines. The work product of this activity is the project schedule and in order that it is accurate it is required to check all tasks are covered in the activity network, effort and timing are appropriately allocated, interdependencies are correctly indicated,
19

resources are allocated tasks in a right manner and closely spaced milestones are defined to track the project easily.

One of the major challenges in software project management is the difficulty to adhere to schedules. The common reasons for a late delivery of software project are an unrealistic deadline, changing customer requirements, honest underestimate of effort or resources, overlooked risks, unforeseen technical difficulties or human difficulties, miscommunication and failure by project manager to recognize the delay early and take appropriate measures.

Soft dur with com allo tea mile

 (
ware project scheduling is an activity that distributes estimated effort across the
 ation of project cycle by allocating effort to each specific task that is associated
all process. The basic principles that guides software project scheduling is
partmentalization of the project into a number of manageable tasks, correct
 cation of time, correct effort validation ,defining responsibility for each task to a
 m member, defining outcomes or work product for each task and defining
stones for a task or group of tasks as appropriate.
ask set is a collection of software tasks, milestones and deliveries that must be
 pleted for the project to be successfully accomplished. Task sets are defined for
ng applicable to different type of project and degree of rigor. The types of projects
 monly encountered are Concept Development projects, New applications,
elopment projects, Application enhancement projects, Application maintenance
 ects and Re-engineering projects. The degree of rigor with which the software
 cess is applied may be casual, structured, strict or quick reaction (used for
rgency situation).
the project manager to develop a systematic approach for selecting degree of rigor
 he type of project project adaptation criteria are defined and a task set selector
ue is computed based on the characteristics of the project.
gram evaluation and review technique (PERT) and critical path method (CPM) are
 of the commonly used project scheduling methods. These techniques are driven
 nformation such as estimates of effort, decomposition of the product function, the
 ction of process model, task set and decomposition of tasks. The
rdependencies among tasks are defined using a task network.
sk network or activity network is a graphic representation of the task flows for a
)A T com bei com Dev proj pro eme

For for t val

Pro two by i sele inte

A ta
project. According to basic PERT, expected task duration is calculated as the weighted average of the most pessimistic, the most optimistic and most probable time estimates. The expected duration of any path on the network is found by summing the expected durations of tasks.

PERT gives appropriate results when there is a single dominant path in the network. The time needed to complete the project is defined by the longest path in the network which is called critical path. CPM allows software planner to determine the critical path and establish most likely time estimates.

19

While creating schedule a timeline chart also called as Gantt chart can be generated. This can be developed for entire project or separately for each function or individual.

The information necessary for generation of this is Work Breakdown Structure (WBS
 (
nned and actual start, end dates and other information. This with timeline chart is
uable to project managers to track the progress.
cking the project schedule can be done by conducting periodic project status
 ting, evaluating result of reviews conducted at all stages of development life
e, determining the completion of defined project milestones, comparison of actual
planned dates, using earned value analysis technique for performing quantitative
 lysis of program.
or tracking methods can also be used for assessing the status of current project.
 is done by collecting error related measures and metrics from past project and
g this as baseline for comparison against real time data.
)– Making a complex project manageable by breaking it into individual components in a hierarchical structure that defines independent tasks), effort, duration and start date and details of assignment of tasks to resources. Along with this most software project scheduling tools produce project tables which is a tabular listing o project tasks, their pla
val

Tra mee cycl and ana

Err This usin

19
image4.png

image7.png

image5.png

image22.jpg
The 3 C's

1. Card

Written on a card

2. Conversation
Details captured in conversations

3. Confirmation
Acceptance criteria confirm that the
story is Done.

Socroe, XP Magarioe 83001, Ron Jefties

image23.png
Up/down Train info

Cancellation
Reservation m eserve/cancel infg| m
e Passenger info |

Ticket info|

0-LEVEL DFD

image24.png
Passenger

Down Storage UP Storage

1-LEVEL DFD

image25.png
.
’ i\

i

#1

delivery manager

image26.png
iz ¥
Requirement I qunlramlnl'ngmllﬂnn & Requirement

Gathering Organisation ad Discussion Specification

S ay

image27.png
Command parameters

2 gopat e 2 a0,
476 Do 24 09:20 ..
15264 Jul 2 2013 annstations-aol Jor>
50142 1 2 2013 catalina-ant.ar
130215 a1 2 2013 catalina-ha.dar
257520 Jul 2 2013 catalina-tribes.dar
ISR Gl 2 2003 catalina,ja
1801636 Ol 2 2003 ecy-4.2.2.305
46005 1 2 2013 al-api.jar
123200 21 2 2013 Jasper-el.jar
39328 Jui 2 2013 Jasper.dar
93630 1 2 2013 Jepapisar
s g 2 2013
3 2 203
96527 du 2 2013
250190 2 2013
7364 Sl 2 2013 concat-ilBn-es.jar
48653 Ju1 2 2013 comeat-i28a-tr jax
51678 Sl 2 2013 cencat-ildn-satar
120006 Jul 2 2003 tomees s jer
20200 20l 2 2013 comeac-ussl.dar

i

T

et
einacasiie

osais

Command Prompt

image28.png
0o e

Status-bar

image29.png
Radio Buttons

Time options: (&) Digital () Analog

[Display the time with seconds
[_ Flash the time separators

(] Use a 24-hour clock

¥ Show AM/PM

Date options: (¥ Show the day of the week
¥ Show date

Check Box

image30.png
irst day of we

| Monday
Cl!andar‘ Toesdor
Wednesday
Time format [L-41eS"
List sort order ~ Friday
Saturday

o et AN—

image31.jpg
Conceptin®

image32.jpg
Business
Strategy

Quality
Attributes

[Ssoftware
| Architecture

{ IT Environment

Human
Dynamics

image33.jpg
CONTROL

l INPUT }: PROCESSOR :j OUTPUT
| &
BOUNDARIES
FEEDBACK AND
INTERFACES

ENIVORNMENT

image6.png

image34.jpg
Data Flow Diagram

Information
Gathering
Tools

Decision tree

Decision Tables

Structured Query

Data
Organization

Pseudo Code

image35.jpg

image36.jpg

image37.jpg

image38.jpg

image39.jpg
Student

[e

N
Perishabie tems

Mess Manager

Payments

Requistions.

Vendors

Supplies
Mess Secretary

Overdue Payments

ChietWarden

Payments

Overdue Bils

image40.jpg
v Give 5% Discount
Y Yeves
————— Gives%Discount
‘ N=No
- CL: Advance Payment Mode.
(o) (@)

Lo oA A D
- (. E—

3 Regular Customer

()
Decisionres [~ Noiscaunt

image41.jpg
10

Action2

Action

Actions

Actiont

Action?

image42.jpg
Reguirement
desied Qualiey

Hardware
Domain Anlysis Softviare Architecture | Architecture
Requirement analysis e

Risk Analysis | ’

Hardware Architacture.
design

Modification to Requirement e

Implementation constraint

coding, Integration,

Detailed design ,
Testing

Modification to H/W"

image43.png
Control Madule{ Module

—— ——
Sub-Module Library Module

image44.png
Module

Module

image45.png

image46.png
Module

Module Module

image47.png
Module
Labels

!

Labels

Module

image48.png
Module

Module

image49.png
Online
Sales

Invortory Payment
Check Process

Dispatch tom

Generate.

ssue_ttem e

Hom_Missing

Deduct
Inventory

image50.png
Input

Process

Output

User Soreen -]

take authentication credentials
from user-screen

Check validity of credentials

Call Appropriate Module

F2>| User Screen

image51.png
Tranafer
Batance

o
Transacton

—_—
ook o LowBtanco |
o

—
> o2
e

Online Banking System

\
. N
(o)

—

4(‘;”.”.."]

image52.png
ponel

User commands
end dota

Sensar

Display
infomnar

Tolophons

Telaphane

image53.png

image54.png
infomotion

(o
o

Telephone

pe

Telephone
number tones

image55.png

image8.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.jpg
System Testing

Integration

Unit Testing

Code and Debug
Detailed Design

architecture

image64.jpg
Check Out
Codefrom
Repository

Codeinto

Repository

Execute Unit

Codereview
Tests

FixDefects

and Re-
execute Unit
Tests

image65.jpg
PRINTA,B,C

image66.jpg
Module A

Module B

Module H

image67.jpg
¥
.
KN B B ETE

image68.jpg

image69.jpg
Top down Bottom Up

Integration Integration

image70.jpg
Overall Curve

Design and
Coding
Persons

0

—> Time <€——

The Rayleigh manpower loading Curve

image71.png
L

CuK!3Y

4/3

image72.png
L

CKY/3E!

4/3

image73.png
or

K=L/Cit]

K=cC/t}

image74.png
Ki_ 4
=t 2/t
Kectlt}

cost octlty

image75.jpg
Prababiliy

Medum | Critical
Low High
7 3 4

image9.jpg
Refactoring

image10.jpg

image11.jpg
Planning
esfimation
scheduling
risk analysis

Deployment
delivery

feedback

Modeling
analysis
design

Construction
code
test

image1.jpg
CS8494 Software Engineering

UNIT -1
PART A
S.NO QUESTIONS
1 ‘Write down the generic process framework that is applicable to any software project /
relationship between work product, task, activity and system NOV/DEC-
10,NOV/DEC2016, NOV/DEC 2017
Common process frame work
- Process frame work activities
- Umbrella activities
- Frame work activities
- Task sets
2 List the goals of software engineering? APR/MAY-11
Satisfy user requirements , High reliability , Low maintenance cost , Delivery on time , Low
production cost , High performance , Ease of reuse.
3 ‘What is the difference between verification and validation? NOV/DEC-10 , APR/MAY-11

NOV/DEC-11, MAY/JUN-13
e Verification refers to the set of activities that ensure that software correctly implements
a specific function. Verification: "Are we building the product
right?"
e Validation refers to a different set of activities that ensure that the software that has
been built is traceable to customer requirements. Validation: "Are

we building the right product?"

image12.png

image13.png
Business
Modeling

Data Modeling

Process Modeling

‘Application
Generation

Testing and Tumover

RAD Prototype

Model

image14.png

image2.jpg
OADI 2(Tuco I

4

5

6

7

For the scenario described below, which life cycle model would you choose? Give the
reason why you would choose this model. NOV/DEC-11,
You are interacting with the MIS department of a very large oil company with multiple
departments. They have a complex regency system. Migrating the data from this legacy
system is not an easy task and would take a considerable time. The oil company is very
particular about processes, acceptance criteria and legal contracts.
Spiral model Proactive problem prevention. Each iteration has a risk analysis,
sector that evaluates. Alternatives for proactive problem

avoidance.

Give two reasons why system engineers must understand the environment of a system?
APR/MAY-12

1.The reason for the existence of a system is to make some changes i its

environment.

2.The functioning of a system can be very difficult to predict.
What are the two types of software products? APR/MAY-12
1. Generic products: these are stand-alone systems that are produced by a development
Organization and sold in the open market to any customer who wants to buy it.
2. Customized products: these are systems that are commissioned by a specific customer

and developed specially by some contractor to meet a special need.

What is the advantage of adhering to life cycle models for software? NOV/DEC-12
It helps to produce good quality software products without time and cost over

runs.It encourages the development of software in a systematic & disciplined

manner.

image15.png
N

. Requirement Feasibility _ S \ Q \)
> Design Codin, Testin > Install Deploy Maintenance
Analysis Study 8! g > 2 g ploy >

© guru99.com

image16.jpg
quick plan

communication
quick design

delivery &
prototype
feedback construction

image17.jpg
Planning.

Req Analysis

Heration 1

Bulding

Designing

Heration 2

Req Analysis
Designing

Planning

Testing

Req Analyss

Meration3

image18.jpg
Saaxbfe

S gem
coprs

image19.jpg
J—

[—

image20.png

image21.png

image3.png
STUCOR APP

