[image: C:\Users\admin\Desktop\JEC LOGO.png]

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS3301– DATA STRUCTURES
Question Bank

II YEAR A & B / BATCH : 2022 -26

Vision of Institution
To build Jeppiaar Engineering College as an Institution of Academic Excellence in Technical education and Management education and to become a World Class University.
Mission of Institution

	M1
	To excel in teaching and learning, research and innovation by promoting the principles of scientific analysis and creative thinking

	M2
	To participate in the production, development and dissemination of knowledge and interact with national and international communities

	M3
	To equip students with values, ethics and life skills needed to enrich their lives and enable them to meaningfully contribute to the progress of society

	M4
	To prepare students for higher studies and lifelong learning, enrich them with the practical and entrepreneurial skills necessary to excel as future professionals and contribute to Nation’s economy

Program Outcomes (POs)
	
PO1
	Engineering Knowledge: Apply the Knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

	
PO2
	Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

	
PO3
	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

	
PO4
	Conduct investigations of complex problems: Use research-based Knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

	
PO5
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	
PO6
	The engineer and society: Apply reasoning informed by the contextual Knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

	
PO7
	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the Knowledge of, and need for sustainable development.

	PO8
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

	PO9
	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

	
PO10
	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

	
PO11
	Project management and finance: Demonstrate Knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

	
PO12
	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Vision of Department
To emerge as a globally prominent department, developing ethical computer professionals, innovators and entrepreneurs with academic excellence through quality education and research.
Mission of Department

	M1
	To create computer professionals with an ability to identify and formulate the engineering problems and also to provide innovative solutions through effective teaching learning process.

	M2
	To strengthen the core-competence in computer science and engineering and to create an ability to interact effectively with industries.

	M3
	To produce engineers with good professional sKills, ethical values and life skills for the
betterment of the society.

	M4
	To encourage students towards continuous and higher level learning on technological advancements and provide a platform for employment and self-employment.

Program Educational Objectives (PEOs)
	PEO1
	To address the real time complex engineering problems using innovative approach with strong core computing skills.

	PEO2
	To apply core-analytical Knowledge and appropriate techniques and provide solutions to real time challenges of national and global society

	PEO3
	Apply ethical Knowledge for professional excellence and leadership for the betterment of the society.

	PEO4
	Develop	life-long	learning	skills	needed	for	better	employment	and entrepreneurship

SYLLABUS
UNIT I	LISTS	9
Abstract Data Types (ADTs) – List ADT – Array-based implementation – Linked list implementation – Singly linked lists – Circularly linked lists – Doubly-linked lists – Applications of lists – Polynomial ADT – Radix Sort – Multilists.
UNIT II	STACKS AND QUEUES	9
Stack ADT – Operations – Applications – Balancing Symbols – Evaluating arithmetic expressions- Infix to Postfix conversion – Function Calls – Queue ADT – Operations – Circular Queue – DeQueue – Applications of Queues.
UNIT III	TREES	9
Tree ADT – Tree Traversals - Binary Tree ADT – Expression trees – Binary Search Tree ADT – AVL Trees – Priority Queue (Heaps) – Binary Heap.
UNIT IV	MULTIWAY SEARCH TREES AND GRAPHS	9
B-Tree – B+ Tree – Graph Definition – Representation of Graphs – Types of Graph - Breadth-first traversal – Depth-first traversal –– Bi-connectivity – Euler circuits – Topological Sort – Dijkstra's algorithm – Minimum Spanning Tree – Prim's algorithm – Kruskal's algorithm
UNIT V	SEARCHING, SORTING AND HASHING TECHNIQUES	9
Searching – Linear Search – Binary Search. Sorting – Bubble sort – Selection sort – Insertion sort
– Shell sort –. Merge Sort – Hashing – Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible Hashing.

TEXT BOOKS:
1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,2005.
2. Kamthane, Introduction to Data Structures in C, 1st Edition, Pearson Education, 2007

REFERENCES:

1. Langsam, Augenstein and Tanenbaum, Data Structures Using C and C++, 2nd Edition, Pearson Education, 2015.
2. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, Introduction to Algorithms", Fourth Edition, Mcgraw Hill/ MIT Press, 2022.
3. Alfred V. Aho, Jeffrey D. Ullman,John E. Hopcroft ,Data Structures and Algorithms, 1st edition, Pearson, 2002.
4. Kruse, Data Structures and Program Design in C, 2nd Edition, Pearson Education, 2006.

Course Outcomes (COs)

	C311.1
	1.	Implement abstract data type for List linear data structure and apply them to problem solutions

	C311.2
	2.	Implement abstract data type for Stack and Queue data structure and apply them to problem solutions

	C311.3
	3.	Implement abstract data type for Tree non list linear data structure and apply them to problem solutions

	C311.4
	4.	Implement abstract data type for Graph non list linear data structure and apply them to problem solutions

	C311.5
	Analyze the various sorting and searching algorithms and hashing techniques

BLOOM TAXANOMY LEVELS
BTL 6: Creating
BTL 5: Evaluating
BTL 4: Analyzing
BTL 3: Applying
BTL 2: Understanding
BTL 1: Remembering

INDEX

	UNIT NO
	TEXT/ REFERENCE BOOK
	PAGE NO

	UNIT -I
	1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
2. Reema Thareja, “Data Structures Using C”, Second Edition , Oxford University Press, 2011
	

	UNIT -II
	1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
2. Reema Thareja, “Data Structures Using C”, Second Edition , Oxford
University Press, 2011
	

	UNIT -III
	1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
2. Reema Thareja, “Data Structures Using C”, Second Edition , Oxford University Press, 2011
	

	UNIT -IV
	1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
2. Reema Thareja, “Data Structures Using C”, Second Edition , Oxford University Press, 2011
	

	UNIT -V
	1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
2. Reema Thareja, “Data Structures Using C”, Second Edition , Oxford
University Press, 2011
	

UNIT I

	
Topics
	
Text / Reference book
	
Page No.

	Abstract Data Types (ADTs)
	

1. Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
	57

	List ADT – array-based implementation
	
	58-59

	linked list implementation
	
	59

	singly linked lists
	
	60

	circularly linked lists
	
	68

	doubly-linked lists
	
	67

	applications
	of
	lists
	–Polynomial
	
	73

	Manipulation
	
	
	
	
	

	All	operations	(Insertion,	Deletion,
	
	73

	Merge, Traversal).
	
	

	S.
No
.
	Question
	Course Outcom e
	Blooms Taxanom y Level

	1
	What is a data structure?
· A data structure is a method for organizing and storing data which would allow efficient
data retrieval and usage.
· A data structure is a way of organizing data that considers not only the items stored, but
also their relationships to each other.
	C311.1
	
BTL1

	2
	Why do we need data structures?
· Data structures allow us to achieve an important goal: component reuse.
· Once data structure has been implemented, it can be used again and again in
various applications.
	C311.1
	BTL 1

	3
	List some common data structures.
· Stacks
· Queues
· Lists
· Trees
· Graphs
· Tables
	C311.1
	BTL 1

	
	
	
	

	4
	How data structures are classified?
Data structures are classified into two categories based on how the data items are
operated:
i. Primitive data structure
ii. Non-Primitive data structure
a. Linear data structure
b. Non-linear data structure
	C311.1
	BTL 1

	5
	Differentiate linear and non-linear data structure.
	C311.1
	

BTL 2

	
	
	Linear data structure
	Non-linear data structure
	
	
	

	
	
	Data are arranged in linear or sequential manner
	Data are not arranged in linear manner
	
	
	

	
	
	Every items is related to its previous
and next item
	Every item is attached with many other
items
	
	
	

	
	
	Data items can be traversed in a
single run.
	Data items cannot be traversed in a
single run.
	
	
	

	
	
	Implementation is easy
	Implementation is difficult.
	
	
	

	
	
	Example: array, stack, queue, linked
list
	Example: tree, graph
	
	
	

	6
	Define ADT (Abstract Data Type)
An abstract data type (ADT) is a set of operations and mathematical abstractions , which
can be viewed as how the set of operations is implemented. Objects like lists, sets and graphs, along with their operation, can be viewed as abstract data types, just as integers, real numbers and Booleans.
	C311.1
	BTL 1

	7
	Mention the features of ADT.
a. Modularity
i. Divide program into small functions
ii. Easy to debug and maintain
iii. Easy to modify
b. Reuse
i. Define some operations only once and reuse them in future
c. Easy to change the implementation
	C311.1
	BTL 2

	8
	Define List ADT
A list is a sequence of zero or more elements of a given type. The list is represented as
sequence of elements separated by comma. A1, A2, A3…..AN
Where N>0 and A is of type element
	C311.1
	BTL 1

	9
	What are the ways of implementing linked list?
The list can be implemented in the following ways:
i. Array implementation
ii. Linked-list implementation
iii. Cursor implementation
	C311.1
	BTL 1

	10
	What are the types of linked lists?
There are three types
i. Singly linked list
ii. Doubly linked list
iii. Circularly linked list
	C311.1
	BTL 1

	11
	How the singly linked lists can be represented?

[image:]
Each node has two elements
i. Data
ii. Next
	C311.1
	BTL 1

	12
	How the doubly linked list can be represented?
[image:]
Doubly linked list is a collection of nodes where nodes are connected by forwarded and
backward link.
Each node has three fields:
1. Address of previous node
2. Data
3. Address of next node.
	C311.1
	BTL 1

	13
	What are benefits of ADT?
a. Code is easier to understand
b. Implementation of ADT can be changed without requiring changes to the program
that uses the ADT
	C311.1
	

BTL 1

	14
	When singly linked list can be represented as circular linked list?
In a singly linked list, all the nodes are connected with forward links to the next nodes in
the list. The last node has a next field, NULL. In order to implement the circularly linked
	C311.1
	BTL 1

	
	lists from singly linked lists, the last node’s next field is connected to the first node.

[image:]
	
	

	15
	When doubly linked list can be represented as circular linked list?
In a doubly linked list, all nodes are connected with forward and backward links to the
next and previous nodes respectively. In order to implement circular linked lists from
doubly linked lists, the first node’s previous field is connected to the last node and the
last node’s next field is connected to the first node.

[image:]

	C311.1
	BTL 1

	16
	Where cursor implementation can be used?
The cursor implementation of lists is used by many languages such as BASIC and
FORTRAN that do not support pointers. The two important features of the cursor
implementation of linked are as follows:
· The data are stored in a collection of structures. Each structure contains data and a
index to the next structure.
· A new structure can be obtained from the system’s global memory by a call to
cursorSpace array.
	C311.1
	BTL 1

	17
	List down the applications of List.
a. Representation of polynomial ADT
b. Used in radix and bubble sorting
c. In a FAT file system, the metadata of a large file is organized as a linked list of FAT entries.
d. Simple memory allocators use a free list of unused memory regions, basically a
linked list with the list pointer inside the free memory itself.
	C311.1
	BTL 1

	18
	What are the advantages of linked list?(apr/may 2019)
a. Save memory space and easy to maintain
b. It is possible to retrieve the element at a particular index
c. It is possible to traverse the list in the order of increasing index.
d. It is possible to change the element at a particular index to a different value,without affecting any other elements.
	C311.1
	BTL 1

	19
	Mention the demerits of linked list
a. It is not possible to go backwards through the list
b. Unable to jump to the beginning of list from the end.
	C311.1
	BTL 2

	20
	The polynomial equation can be represented with linked list as follows:

struct polynomial
{
int coefficient; int exponent;
struct polynomial *next;
};
	C311.1
	BTL 2

	21
	What are the operations performed in list?
The following operations can be performed on a list
i. Insertion
a. Insert at beginning
b. Insert at end
c. Insert after specific node
d. Insert before specific node
ii. Deletion
a. Delete at beginning
b. Delete at end
c. Delete after specific node
d. Delete before specific node
iii. Merging
iv. Traversal
	C311.1
	BTL 1

	22
	What are the merits and demerits of array implementation of lists?
Merits
· Fast, random access of elements
· Memory efficient – very less amount of memory is required
Demerits
· Insertion and deletion operations are very slow since the elements should be
moved.
· Redundant memory space – difficult to estimate the size of array.
	C311.1
	BTL 1

	23
	What is a circular linked list?
A circular linked list is a special type of linked list that supports traversing from the end
of the list to the beginning by making the last node point back to the head of the list.
	C311.1
	BTL 1

 (
Coefficient
Exponent
Next
node
link
)

	24
	What are the advantages in the array implementation of list?
a. Print list operation can be carried out at the linear time
b. Find Kth operation takes a constant time
	C311.1
	BTL 1

	25
	What is the need for the header?
Header of the linked list is the first element in the list and it stores the number of elements in the list. It points to the first data element of the list.
	C311.1
	BTL 1

	26
	List three examples that uses linked list?
a. Polynomial ADT b.Radix sort c.Multi lists
	C311.1
	BTL 1

	27
	List out the different ways to implement the list?
1. Array Based Implementation
2. Linked list Implementation
i. Singly linked list
ii. Doubly linked list
iii. Cursor based linked list
	C311.1
	BTL 1

	28
	Write the routine for insertion operation of singly linked list.
Void Insert (ElementType X, List L, Position P)
{Position TmpCell; TmpCell=malloc(sizeof(struct Node)); if(TmpCell==NULL)
FatalError(“Out of space!!!”);
TmpCell->Element =X; TmpCell->Next=P->Next; P->Next=TmpCell;
}
	C311.1
	BTL 5

	29
	Advantages of Array over Linked List.
1. Array has a specific address for each element stored in it and thus we can access any memory directly.
2. As we know the position of the middle element and other elements are easily accessible too, we can easily perform BINARY SEARCH in array.
	C311.1
	

BTL 5

	30
	Disadvantages of Array over Linked List.
1. Total number of elements need to be mentioned or the memory allocation needs to be done at the time of array creation
2. The size of array, once mentioned, cannot be increased in the program. If number of elements entered exceeds the
	C311.1
	BTL 5

	
	size of the array ARRAY OVERFLOW EXCEPTION occurs.
	
	

	31
	Advantages of Linked List over Array.
1. Size of the list doesn't need to be mentioned at the beginning of the program.
2. As the linked list doesn't have a size limit, we can go on adding new nodes (elements) and increasing the size of the list to any extent.
	C311.1
	BTL 5

	32
	Disadvantages of Linked List over Array.
1. Nodes do not have their own address. Only the address of the first node is stored and in order to reach any node, we need to traverse the whole list from beginning to the desired node.
2. As all Nodes don't have their particular address, BINARY SEARCH cannot be performed
	C311.1
	BTL 5

	33
	Difference between linear linked list and circular linked list(apr/may 2019)
Linked list are used to create trees and graphs. Circular linked list : In circular linked list the last node address part holds the address of the first node hence forming a circular chain like structure.	Linked
list is a linear data structure which consists of group of nodes in a sequence
	C311.1
	

	34
	Enlist the various operations that can be performed on data structure.
Various operations that can be performed on the data structure are • Create • Insertion of element • Deletion of element • Searching for the desired element • Sorting the elements in the data structure • Reversing
the list of elements.
	C311.1
	

	35
	What are all not concerned in an ADT?
The abstract data type is a triple of D i.e. set of axioms, F-set of functions and A-Axioms in which only what is to be done is mentioned
but how is to be done is not mentioned. Thus ADT is not concerned with implementation details
	C311.1
	

	37
	List out the areas in which data structures are applied extensively.

Following are the areas in which data structures are applied extensively
Operating system- the data structures like priority queues are used for scheduling the jobs in the operating system.
· Compiler design- the tree data structure is used in parsing the source program. Stack data structure is used in handling recursive calls.
· Database management system- The file data structure is used in database management systems. Sorting and searching techniques can be applied on these data in the file.
· Numerical analysis package- the array is used to perform the numerical analysis on the given set of data.
· Graphics- the array and the linked list are useful in graphics applications.
· Artificial intelligence- the graph and trees are used for the applications like building expression trees, game playing.
	C311.1
	

	38
	What are the pitfall encountered in singly linked list?
Following are the pitfall encountered in singly linked list • The singly linked list has only forward pointer and no backward link is provided. Hence the traversing of the list is possible only in one direction. Backward traversing is not possible. • Insertion and deletion operations are less efficient because for inserting the element at desired position the list needs to be traversed. Similarly, traversing of the list is
required for locating the element which needs to be deleted.
	C311.1
	

	40
	Write down the steps to modify a node in linked lists.
· Enter the position of the node which is to be modified.
· Enter the new value for the node to be modified.
· Search the corresponding node in the linked list.
· Replace the original value of that node by a new value
. ➢ Display the messages as “ the node is modified”.
	C311.1
	

	41
	State the properties of LIST abstract data type with suitable example.
Various properties of LIST abstract data type are
(i) It is linear data structure in which the elements are arranged adjacent to each other.
(ii))It allows to store single variable polynomial
(iii) 	(iii)If the LIST is implemented using dynamic memory then it is called linked list. Example of LIST are- stacks, queues,
linked list
	C311.1
	

	42
	Why is the linked list used for polynomial arithmetic?
We can have separate coefficient and exponent fields for representing each term of polynomial. Hence there is no limit for exponent. We can
have any number as an exponent.
	C311.1
	

	43
	What is the basic purpose of header of the linked list?

The header node is the very first node of the linked list. Sometimes a dummy value such - 999 is stored in the data field of header node. This
node is useful for getting the starting address of the linked list.
	C311.1
	

	44
	What is static linked list? State any two applications of it.
· The linked list structure which can be represented using arrays is called static linked list.
· It is easy to implement, hence for creation of small databases, it is useful
.➢ The searching of any record is efficient, hence the applications in
which the record need to be searched quickly, the static linked list are used.
	C311.1
	

	

PART-B

	1
	Explain the various operations of the list ADT with examples
	C311.1
	
BTL 2

	2
	Write the program for array implementation of lists
	C311.1
	BTL 5

	3
	Write a C program for linked list implementation of list.
	C311.1
	BTL 5

	4
	Explain the operations of singly linked lists
	C311.1
	BTL 2

	5
	Explain the operations of doubly linked lists
	C311.1
	BTL 2

	6
	Explain the operations of circularly linked lists
	C311.1
	BTL 2

	7
	How polynomial manipulations are performed with lists? Explain the operations
	C311.1
	BTL 1

	8
	Explain the steps involved in insertion and deletion into a singly and doubly linked list.
	C311.1
	BTL2

UNIT II

	Topics
	Text / Reference book
	Page No.

	Stack ADT
	

1.	Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
	78

	Operations
	
	79

	Applications – Evaluating arithmetic expressions- Conversion of Infix to postfix expression
	
	87

	Queue ADT
	
	95

	Operations
	
	95

	Circular Queue
	
	95

	Priority Queue - deQueue
	
	98

	applications of queues
	
	100

	S.
No.
	Question
	Course Outcome
	Blooms
Taxanomy Level

	1
	Define Stack.
A stack is an ordered list in which all insertions and deletions are made at one end, called
the top. It is an abstract data type and based on the principle of LIFO (Last In First Out).
	C311.2
	BTL 1

	2
	What are the operations of the stack?
a. CreateStack/ InitStack(Stack) – creates an empty stack
b. Push(Item) – pushes an item on the top of the stack
c. Pop(Item) – removes the top most element from the stack
	C311.2
	BTL 1

	
	d. Top(Stack) – returns the first element from the stack
e. IsEmpty(Stack) – returns true if the stack is empty
	
	

	3
	Write the routine to push a element into a stack.
Push(Element X, Stack S)
{
if(IsFull(S)
{
Error(“Full Stack”);
}
else S→Array[++S→TopOfStack]=X;
}
	C311.2
	BTL 5

	4
	How the operations performed on linked list implementation of stack?
a. Push and pop operations at the head of the list.
b. New nodes should be inserted at the front of the list, so that they become the top of the stack.
c. Nodes are removed from the front(top) of the stack.
	C311.2
	BTL 1

	5
	What are the applications of stack?
The following are the applications of stacks
· Evaluating arithmetic expressions
· Balancing the parenthesis
· Towers of Hanoi
· Function calls Tree traversal
	C311.2
	BTL 1

	6
	What are the methods to implement stack in C?
The methods to implement stacks are:
· Array based
· Linked list based
	C311.2
	BTL 1

	7
	How the stack is implemented by linked list?
It involves dynamically allocating memory space at run time while performing stack
operations.
Since it consumes only that much amount of space is required for holding its data
elements , it prevents wastage of memory space. struct stack
{
int element;
struct stack *next;
}*top;
	C311.2
	BTL 1

	8
	Write the routine to pop a element from a stack.
int pop()
{
if(top==NULL)
	C311.2
	BTL 5

	
	{
printf(“\n Stack is empty.\n”); getch();
exit(1);
}
else
{
int temp;
temp=top→element; /* retreiving the top element*/ top=top→next; /* Updating the stack pointer */ return temp; /* returning the popped value */
}
}
	
	

	9
	Define queue.
It is a linear data structure that maintains a list of elements such that insertion happens at
rear end and deletion happens at front end. FIFO – First In First Out principle
	C311.2
	BTL 1

	10
	What are the operations of a queue?
The operations of a queue are
· isEmpty()
· isFull()
· insert()
· delete()
· display()
	C311.2
	BTL 1

	11
	Write the routine to insert a element onto a queue.
void insert(int element)
{
if(front==-1)
{
front = rear = front +1; queue[front] = element; return;
}
if(rear==99)
{
printf(“Queue is full”); getch();
return;
}
rear = rear +1; queue[rear]=element;
}
	C311.2
	BTL 5

	12
	What are the types of queue?
The following are the types of queue:
	C311.2
	BTL 1

	
	· Double ended queue
· Circular queue
· Priority queue
	
	

	13
	Define double ended queue
· It is a special type of queue that allows insertion and deletion of elements at both
Ends.
· It is also termed as DEQUE.

[image:]
	C311.2
	BTL 1

	14
	What are the methods to implement queue in C?
The methods to implement queues are:
· Array based
· Linked list based
	C311.2
	BTL 1

	15
	How the queue is implemented by linked list?
· It is based on the dynamic memory management techniques which allow allocation and
De-allocation of memory space at runtime.
Insert operation
It involves the following subtasks:
1. Reserving memory space of the size of a queue element in memory
2. Storing the added value at the new location
3. Linking the new element with existing queue
4. Updating the rear pointer
Delete operation
It involves the following subtasks:
1. Checking whether queue is empty
2. Retrieving the front most element of the queue
3. Updating the front pointer
4. Returning the retrieved value
	C311.2
	BTL 1

	16
	Write the routine to delete a element from a queue
int del()
{
int i;
if(front == NULL) /*checking whether the queue is empty*/
{
return(-9999);
}
else
{
i = front→element;
	C311.2
	BTL 5

	
	front = front→next; return i;
}
}
	
	

	17
	What are the applications of queue?
The following are the areas in which queues are applicable
a. Simulation
b. Batch processing in an operating systems
c. Multiprogramming platform systems
d. Queuing theory
e. Printer server routines
f. Scheduling algorithms like disk scheduling , CPU scheduling
g. I/O buffer requests
	C311.2
	BTL 1

	18
	Define circular queue
A Circular queue is a queue whose start and end locations are logically connected with
each other. That means the start location comes after the end location.
[image:]
	C311.2
	BTL 1

	19
	What are push and pop operations?
· Push – adding an element to the top of stack
· Pop – removing or deleting an element from the top of stack
	C311.2
	BTL 1

	20
	What are enqueue and dequeue operations?
· Enqueue - adding an element to the queue at the rear end
If the queue is not full, this function adds an element to the back of the queue, else it prints “OverFlow”.
void enqueue(int queue[], int element, int& rear, int arraySize)
{
if(rear == arraySize)	// Queue is full printf(“OverFlow\n”);
else{
queue[rear] = element;	// Add the element to the back rear++;
}
}

· Dequeue – removing or deleting an element from the queue at the front end
	C311.2
	BTL 1

	
	If the queue is not empty, this function removes the element from the front of the queue, else it prints “UnderFlow”.
void dequeue(int queue[], int& front, int rear) { if(front == rear)	// Queue is empty
printf(“UnderFlow\n”); else {
queue[front] = 0;	// Delete the front element front++;
}
}
	
	

	21
	Distinguish between stack and queue.
	C311.2
	BTL4

	
	
	STACK
	QUEUE
	
	
	

	
	
	Insertion and deletion are made at one end.
	Insertion at one end rear and deletion at other end front.
	
	
	

	
	
	The element inserted last would be removed first. So LIFO structure.
	The element inserted first would be removed first. So FIFO structure.
	
	
	

	
	
	Full stack condition: If(top==Maxsize)
Physically and Logically full stack
	Full stack condition:

If(rear = = Maxsize)

Logically full. Physically may or may not be full.
	
	
	

	22
	Convert the infix (a+b)*(c+d)/f into postfix & prefix expression
Postfix	: a b + c d + * f /

Prefix	: / * + a b + c d f
	C311.2
	BTL5

	23
	Write postfix from of the expression –A+B-C+D?

A-B+C-D+
	C311.2
	BTL5

	24
	How do you test for an empty queue?
To test for an empty queue, we have to check whether READ=HEAD where REAR is a pointer pointing to the last node in a queue and HEAD is a pointer that pointer to the dummy header. In the case of array implementation of queue,
	C311.2
	BTL1

	
	the condition to be checked for an empty queue is READ<FRONT.
	
	

	25
	What are the postfix and prefix forms of the expression?
A+B*(C-D)/(P-R)
Postfix form: ABCD-*PR-/+ Prefix form: +A/*B-CD-PR
	C311.2
	BTL1

	26
	Explain the usage of stack in recursive algorithm implementation?
In recursive algorithms, stack data structures is used to store the return address when a recursive call is encountered and also to store the values of all the parameters essential to the current state of the procedure.
	C311.2
	BTL5

	27
	Define priority queue with diagram and give the operations.
Priority queue is a data structure that allows at least the following two operations.
1. Insert-inserts an element at the end of the list called the rear.
2. DeleteMin-Finds, returns and removes the minimum element in the priority Queue.
[image:]

Operations: Insert, DeleteMin
	C311.2
	BTL1

	28
	Give the applications of priority queues.
There are three applications of priority queues
1. External sorting.
2. Greedy algorithm implementation.
3. Discrete even simulation.
4. Operating systems.
	C311.2
	BTL3

	29
	How do you test for an empty stack?
To check if the stack is empty, we only need to check whether top and bottom are the same number.
bool stack_empty(stack S) //@requires is_stack(S);
{ return S->top == S->bottom; }
	C311.2
	BTL1

	30
	What are the features of stacks?
· Dynamic data structures
· Do not have a fixed size
· Do not consume a fixed amount of memory
· Size of stack changes with
each push() and pop() operation.
	C311.2
	BTL1

	
	Each push() and pop() operation increases and decreases the size of the stack by 1, respectively.
	
	

	31
	Write a routine for IsEmpty condition of queue.
If a queue is empty, this function returns 'true', else it returns 'false'.
bool isEmpty(int front, int rear) { return (front == rear);
}
	C311.2
	BTL5

	32
	How do you test for an empty stack?
The condition for testing an empty stack is top =-1, where top is the pointer pointing to the topmost element of the stack, in the array implementation of stack. In linked list implementation of stack the condition for an empty stack is the header node link
field is NULL.
	C311.2
	

	33
	Define a suffix expression.
The notation used to write the operator at the end of the operands is called suffix notation. Suffix notation format : operand operand operator Example: ab+, where a & b are operands and ‘+’ is addition
operator
	C311.2
	

	34
	What do you meant by fully parenthesized expression? Give example. A pair of parentheses has the same parenthetical level as
that of the operator to which it corresponds. Such an expression is called fully parenthesized expression. Ex: (a+((b*c) + (d * e))
	C311.2
	

	35
	Write the postfix form for the expression -A+B-C+D?
A-B+C-D+
	C311.2
	

	36
	What are the postfix and prefix forms of the expression?
A+B*(C-D)/(P-R)
Postfix form: ABCD-*PR-/+ Prefix form: +A/*B-CD-PR
	C311.2
	

	37
	Explain the usage of stack in recursive algorithm implementation?

In recursive algorithms, stack data structures is used to store the return address when a recursive call is encountered and also to store the values of all the parameters essential to the current state of the
function.
	C311.2
	

	38
	Write down the function to insert an element into a queue, in which the queue is implemented as an array
Q – Queue X – element to added to the queue Q IsFull(Q) – Checks and true if Queue Q is full Q->Size - Number of elements in the queue Q Q->Rear – Points to last element of the queue Q Q->Array – array used to store queue elements void enqueue (int X, Queue Q) { if(IsFull(Q)) Error (“Full queue”); else { Q->Size++; Q->Rear = Q-
>Rear+1; Q->Array[Q->Rear]=X; } }
	C311.2
	

	PART-B

	1
	Explain Stack ADT and its operations
	C311.2
	BTL5

	2
	Explain array based implementation of stacks
	C311.2
	BTL5

	
3
	Explain linked list implementation of stacks
	C311.2
	BTL5

	4
	Explain the applications of Stacks
	C311.2
	BTL5

	5
	Explain how to evaluate arithmetic expressions using stacks
	C311.2
	BTL5

	6
	Explain queue ADT
	C311.2
	BTL2

	7
	Explain array based implementation of queues
	C311.2
	BTL2

	8
	Explain linked list implementation of queues
	C311.2
	BTL2

	9
	Explain the applications of queues
	C311.2
	BTL5

	10
	Explain circular queue and its implementation
	C311.2
	BTL2

	11
	Explain double ended queue and its operations
	C311.2
	BTL2

	12
	Explain priority queue and its operations
	C311.2
	BTL5

UNIT III

	Topics
	Text / Reference book
	Page No.

	Tree ADT– tree traversals
	

1.	Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
	106

	Binary Tree ADT
	
	111

	expression trees – applications of trees
	
	113

	binary	search	tree	ADT–Threaded Binary Trees
	
	116

	AVL Trees
	
	126

	B-Tree
	
	149

	B+ Tree
	
	154

	Heap - Applications of heap.
	
	208

	S.
No.
	Question
	Course Outcome
	Blooms Taxanomy
Level

	1
	Define non-linear data structure
Data structure which is capable of expressing more complex relationship than that of physical adjacency is called non-linear data structure.
	C311.3
	BTL1

	2
	Define tree?
A tree is a data structure, which represents hierarchical relationship between individual data items.
	C311.3
	BTL1

	3
	Define leaf?
In a directed tree any node which has out degree o is called a terminal node or a leaf.
	C311.3
	BTL1

	4
	Explain the representations of priority queue.
Using Heap structure, Using Linked List
	C311.3
	BTL2

	5
	List out the steps involved in deleting a node from a binary search tree.
1. t has no right hand child node t->r == z
2. t has a right hand child but its right hand child node has no left sub tree
t->r->l == z
3.t has a right hand child node and the right hand child node has a left hand child node t->r-
>l != z
	C311.3
	BTL1

	6
	Convert the infix expression (A-B/C)*(D/E-F) into a postfix.
Postfix: ABC/-DE/F-*
	C311.3
	BTL2

	7
	What are the steps to convert a general tree into binary tree?
· use the root of the general tree as the root of the binary tree
· determine the first child of the root. This is the leftmost node in the general tree at the next
level
· insert this node. The child reference of the parent node refers to this node
· continue finding the first child of each parent node and insert it below the parent node with the
child reference of the parent to this node.
· when no more first children exist in the path just used, move back to the parent of the last node
entered and repeat the above process.	In other words, determine the first sibling of the last
node entered.
· complete the tree for all nodes. In order to locate where the node fits you must search for the
	C311.3
	BTL1

	
	first child at that level and then follow the sibling references to a nil where the next sibling can
be inserted. The children of any sibling node can be inserted by locating the parent and then
inserting the first child. Then the above process is repeated.
	
	

	
8
	What is meant by directed tree?
Directed tree is an acyclic diagraph which has one node called its root with in degree o while all other nodes have in degree I.
	C311.3
	BTL1

	9
	What is a ordered tree?
In a directed tree if the ordering of the nodes at each level is prescribed then such a tree is called ordered tree.
	C311.3
	BTL1

	10
	What are the applications of binary tree?
1. Binary tree is used in data processing.
2. File index schemes
3. Hierarchical database management system
	C311.3
	BTL1

	11
	What is meant by traversing?
Traversing a tree means processing it in such a way, that each node is
visited only once.
	C311.3
	BTL1

	12
	What are the different types of traversing?
The different types of traversing are
a. Pre-order traversal-yields prefix form of expression.
b. In-order traversal-yields infix form of expression.
c. Post-order traversal-yields postfix form of expression.
	C311.3
	BTL1

	13
	What are the two methods of binary tree implementation?

Two methods to implement a binary tree are
a. Linear representation.
b. Linked representation
	C311.3
	BTL1

	14
	What is a balance factor in AVL trees?
Balance factor of a node is defined to be the difference between the height of the node's left subtree and the height of the node's right subtree.
	C311.3
	BTL1

	15
	What is meant by pivot node?
The node to be inserted travel down the appropriate branch track along the way of the deepest level node on the branch that has a balance factor of +1 or -1 is called pivot node.
	C311.3
	BTL1

	16
	What is the length of the path in a tree?
	C311.3
	BTL1

	
	The length of the path is the number of edges on the path. In a tree there is exactly one path form the root to each node.
	
	

	17
	Define expression trees?
The leaves of an expression tree are operands such as constants or variable names and the other nodes contain operators.
	C311.3
	BTL1

	18
	What is a threaded binary tree?
A threaded binary tree may be defined as follows: "A binary tree is threaded by making all right child pointers that would normally be null point to the inorder successor of the node, and all left child pointers that would normally be null point to the inorder predecessor of the node
	C311.3
	BTL1

	19
	What is meant by binary search tree?
Binary Search tree is a binary tree in which each internal node x stores an element such that the element stored in the left sub tree of x are less than or equal to x and elements stored in the right sub tree of x are greater than or equal to x.
	C311.3
	BTL2

	20
	Write the advantages of threaded binary tree.
The difference between a binary tree and the threaded binary tree is that in the binary trees the nodes are null if there is no child associated with it and so there is no way to traverse back. But in a threaded binary tree we have threads associated with the nodes i.e they either are linked to the predecessor or successor in the in order traversal of the nodes.
This helps us to traverse further or backward in the in order traversal	fashion.
There can be two types of threaded binary tree :-
1) Single Threaded: - i.e. nodes are threaded either towards its in	order	predecessor	or	successor.
2) Double threaded: - i.e. nodes are threaded towards both the in order predecessor and successor.
	C311.3
	BTL5

	21
	What is the various representation of a binary tree?
Tree Representation Array representation Linked list representation
	C311.3
	BTL1

	22
	List the application of tree.
(i) Electrical Circuit
ii) Folder structure
a. Binary tree is used in data processing.
b. File index schemes
c. Hierarchical database management system
	C311.3
	BTL1

	23
	Define binary tree and give the binary tree node structure.
	C311.3
	BTL1

	
	
[image:]
	
	

	24
	What are the different ways of representing a Binary Tree?
· Linear Representation using Arrays.
· Linked Representation using Pointers.
	C311.3
	BTL1

	25
	Give the pre & postfix form of the expression (a + ((b*(c- e))/f).

[image:]

	C311.3
	BTL2

	26
	Define a heap. How can it be used to represent a priority queue?
A priority queue is a different kind of queue, in which the next element to be removed is defined by (possibly) some other criterion. The most common way to implement a priority queue is to use a different kind of binary tree, called a heap. A heap avoids the long paths that can arise with binary search trees.
	C311.3
	BTL1

	27
	What is binary heap?
It is a complete binary tree of height h has between 2h and 2h+1 - 1 node. The value of the root node is higher than their child nodes
	C311.3
	BTL1

	28
	Define Strictly binary tree?
If every nonleaf node in a binary tree has nonempty left and right subtrees ,the tree is termed
as a strictly binary tree.
	C311.3
	BTL1

	29
	Define complete binary tree?
A complete binary tree of depth d is the strictly binary tree all of whose are at level d.
	C311.3
	BTL1

	30
	What is an almost complete binary tree?
A binary tree of depth d is an almost complete binary tree if :
_ Each leaf in the tree is either at level d or at level d-1
_ For any node nd in the tree with a right descendant at level d,all the left descendants of
nd that are leaves are at level d.
	C311.3
	BTL1

	
	
	
	

	31
	Define AVL Tree.
A AVL tree is a binary search tree except that for every node in the tree,the height of the
left and right subtrees can differ by atmost 1.
	C311.3
	BTL1

	32
	What is the length of the path in a tree?
The length of the path is the number of edges on the path. In a tree there is exactly one path form the root to each node.
	C311.3
	BTL1

	33
	Define sibling?
Nodes with the same parent are called siblings. The nodes with common parents are called siblings.
	C311.3
	BTL1

	34
	What are the two methods of binary tree implementation?
Two methods to implement a binary tree are, a. Linear representation.
b. Linked representation
	C311.3
	BTL1

	35
	List out few of the Application of tree data-structure?
Ø The manipulation of Arithmetic expression Ø Used for Searching Operation
Ø Used to implement the file system of several popular operating systems
Ø Symbol Table construction Ø Syntax analysis
	C311.3
	BTL1

	36
	Define tree traversal and mention the type of traversals?
Visiting of each and every node in the tree exactly is called as tree
traversal. Three types of tree traversal 1. Inorder traversal 2. Preoder traversal 3. Postorder traversal.
	C311.3
	BTL1

	37
	What are the types of threaded binary tree?
i. Right-in threaded binary tree
ii. . Left-in threaded binary tree
iii. . Fully-in threaded binary tree
	C311.3
	BTL1

	38
	List out the steps involved in deleting a node from a binary search tree.
· Deleting a node is a leaf node (ie) No children
· Deleting a node with one child.
· Deleting a node with two Childs
	C311.3
	BTL1

	39
	What is B Tree
A B-tree is a tree data structure that keeps data sorted and allows searches, insertions, and deletions in logarithmic amortized time. Unlike self-balancing binary search trees, it is optimized for systems that read and write large blocks of data. It is most commonly used in database and file systems.
Important properties of a B-tree: • B-tree nodes have many more than two children. • A B-tree node may contain more than just a single element.
	C311.3
	BTL1

	40
	What is binomial heaps?
A binomial heap is a collection of binomial trees that satisfies the
following binomial-heap properties: 1. No two binomial trees in the collection have the same size. 2. Each node in each tree has a key. 3.
	C311.3
	BTL1

	
	Each binomial tree in the collection is heap-ordered in the sense that each non-root has a key strictly less than the key of its parent
	
	

	41
	Define complete binary tree.
If all its levels, possible except the last, have maximum number of nodes and if all the nodes in the last level appear as far left as possible.
	C311.3
	BTL1

	PART-B

	1
	Define Tree. Explain the tree traversals with algorithms and examples.
	C311.3
	BTL5

	2
	Construct an expression tree for the expression (a + b
* c) +((d * e + 1) * g). Give the outputs when you apply preorder, inorder and postorder traversals.
	C311.3
	BTL5

	3
	Explain binary search tree ADT in detail.
	C311.3
	BTL5

	4
	Explain AVL tree ADT in detail.
	C311.3
	BTL5

	5
	Explain b tree and B+ tree ADT in detail.
	C311.3
	BTL5

	6
	Explain Heap tree ADT in detail.
	C311.3
	BTL5

	7
	Explain threaded binary tree ADT in detail.
	C311.3
	BTL2

UNIT IV

	Topics
	Text / Reference book
	Page No.

	Definition – Representation of Graph
	

1.	Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
	229

	Types of graph
	
	300

	Breadth-first traversal
	
	335

	Depth-first traversal
	
	342

	Topological Sort
	
	302

	Bi-connectivity
	
	338

	Cut vertex
	
	342

	Euler circuits
	
	342

	Applications of graphs
	
	348

	S. N
o.
	Question
	Course Outco me
	Bloo ms Taxan
omy Level

	1
	Define Graph?
A graph G consist of a nonempty set V which is a set of nodes of the graph, a set E which is the set of edges of the graph, and a mapping from the set for edge E to a set of pairs of elements of V. It can also be represented as G= (V, E).
	C311.4
	BTL1

	2
	Explain the topological sort.
It is an Ordering of vertices in a directed acyclic graph such that if there is a path from vi to vj, then vj appears after vi in the ordering.
	C311.4
	BTL1

	3
	Define NP
NP is the class of decision problems for which a given proposed solution for a given input can be checked quickly to see if it is really a solution.
	C311.4
	BTL1

	4
	Define biconnected graph.
A connected undirected graph is biconnected if there are no vertices whose removal disconnects the rest of the graph.
	C311.4
	BTL1

	5
	Define shortest path problem?
For a given graph G=(V, E), with weights assigned to the edges of G, we have to find the shortest path (path length is defined as sum of the weights of the edges) from any given source vertex to all the remaining vertices of G.
	C311.4
	BTL1

	6
	Mention any two decision problems which are NP-Complete.
NP is the class of decision problems for which a given proposed solution for a given input can be checked quickly to see if it is really a solution
	C311.4
	BTL2

	7
	Define adjacent nodes?
Any two nodes which are connected by an edge in a graph are called adjacent nodes. For E is associated with a pair of nodesexample, if and edge x (u,v) where u, v V, then we say that the edge x connects the nodes u and v. 
	C311.4
	BTL1

	8
	What is a directed graph?
A graph in which every edge is directed is called a directed graph.
	C311.4
	BTL1

	9
	What is a undirected graph?
A graph in which every edge is undirected is called a directed graph.
	C311.4
	BTL1

	10
	What is a loop?
An edge of a graph which connects to itself is called a loop or
sling.
	C311.4
	BTL1

	11
	What is a simple graph?
A simple graph is a graph, which has not more than one edge between a pair of nodes than such a graph is called a simple graph.
	C311.4
	BTL1

	12
	What is a weighted graph?
A graph in which weights are assigned to every edge is called a weighted graph.
	C311.4
	BTL1

	13
	Define out degree of a graph?
In a directed graph, for any node v, the number of edges which have v as their initial	node	is	called	the	out	degree	of	the	node	v.
	C311.4
	BTL1

	14
	Define indegree of a graph?
In a directed graph, for any node v, the number of edges which have v as their terminal node is called the indegree of the node v.
	C311.4
	BTL1

	15
	Define path in a graph?
The path in a graph is the route taken to reach terminal node from a starting node.
	C311.4
	BTL1

	16
	What is a simple path?
A path in a diagram in which the edges are distinct is called a simple path. It	is	also	called	as	edge	simple.
	C311.4
	BTL1

	17
	What is a cycle or a circuit?
A path which originates and ends in the same node is called a cycle or circuit.
	C311.4
	BTL1

	18
	What is an acyclic graph?
A simple diagram which does not have any cycles is called an acyclic graph.
	C311.4
	BTL1

	19
	What is meant by strongly connected in a graph?
An undirected graph is connected, if there is a path from every vertex to every other vertex. A directed graph with this property is called strongly
connected.
	C311.4
	BTL1

	20
	When is a graph said to be weakly connected?
When a directed graph is not strongly connected but the underlying graph is connected, then the graph is said to be weakly connected.
	C311.4
	BTL1

	21
	Name the different ways of representing a graph?
a. Adjacency matrix
b. Adjacency list
	C311.4
	BTL1

	
	
	
	

	22
	What is an undirected acyclic graph?
When every edge in an acyclic graph is undirected, it is called an undirected acyclic graph. It is also called as undirected forest.
	C311.4
	BTL1

	23
	What are the two traversal strategies used in traversing a graph?
a. Breadth first search
b. Depth first search
	C311.4
	BTL1

	24
	What is a minimum spanning tree?
A minimum spanning tree of an undirected graph G is a tree formed from graph edges that connects all the vertices of G at the lowest total cost.
	C311.4
	BTL1

	25
	Define topological sort?
A topological sort is an ordering of vertices in a directed acyclic graph, such that if there is a path from vi to vj appears after vi in the ordering.
	C311.4
	BTL1

	26
	What is the use of Kruskal’s algorithm and who discovered it? Kruskal’s algorithm is one of the greedy techniques to solve the minimum spanning tree problem. It was discovered by Joseph Kruskal when he was a second-year graduate student.
	C311.4
	BTL1

	27
	What is the use of Dijksra’s algorithm?
Dijkstra’s algorithm is used to solve the single-source shortest- paths problem: for a given vertex called the source in a weighted connected graph, find the shortest path to all its other vertices. The single-source shortest-paths problem asks for a family of paths, each leading from the source to a different vertex in the graph, though some paths may have edges in common.
	C311.4
	BTL1

	28
	Prove that the maximum number of edges that a graph with n Vertices is n*(n-1)/2.
Choose a vertex and draw edges from this vertex to the remaining n-1 vertices. Then, from these n-1 vertices, choose a vertex and draw edges to the rest of the n-2 Vertices. Continue this process till it ends with a single Vertex. Hence, the total number of edges added in graph is
(n-1)+(n-2)+(n-3)+…+1 =n*(n-1)/2.
	C311.4
	BTL5

	29
	Define minimum cost spanning tree?
A spanning tree of a connected graph G, is a tree consisting of edges and all the vertices of G. In minimum spanning tree T, for a given graph G, the total weights of the edges of the spanning tree must be minimum compared to all other spanning trees generated from G. -Prim’s and Kruskal is the algorithm for finding Minimum Cost Spanning Tree.
	C311.4
	BTL1

	30
	Define Adjacency in graph.
Two node or vertices are adjacent if they are connected to each other through an edge. In the following example, B is adjacent to A, C is adjacent to B, and so on.
	C311.4
	BTL1

	
	
	
	

	31
	Define Basic Operations of Graph.
Following are basic primary operations of a Graph
· Add Vertex − Adds a vertex to the graph.
· Add Edge − Adds an edge between the two vertices of the graph.
· Display Vertex − Displays a vertex of the graph.
	C311.4
	BTL1

	32
	What is Levels in graph?
Level of a node represents the generation of a node. If the root node is at level 0, then its next child node is at level 1, its grandchild is at level 2, and so on.
	C311.4
	BTL1

	33
	What is visiting and traversing in graph.
· Visiting refers to checking the value of a node when control is on the node.
· Traversing means passing through nodes in a specific order.
	C311.4
	BTL1

	34
	Write the definition of weighted graph?
A graph in which weights are assigned to every edge is called a weighted graph.
	C311.4
	BTL1

	35
	Define adjacency matrix?
Adjacency matrix is an n x n matrix A whose elements aij are given by aij = 1 if (vi, vj) Exists =0 otherwise
	C311.4
	BTL1

	36
	Define adjacent nodes?
Any two nodes, which are connected by an edge in a graph, are called adjacent nodes. For example, if an edge x E is associated with a pair of nodes
(u,v) where u, v V, then we say that the edge x connects the nodes u and v.
	C311.4
	BTL1

	37
	What is topological sort?
It is an ordering of the vertices in a directed acyclic graph, such that: If there is a path from u to v, then v appears after u in the ordering.
	C311.4
	BTL1

	38
	Write BFS algorithm
1. Initialize the first node’s dist number and place in queue
2. Repeat until all nodes have been examined
3. Remove current node to be examined from queue
4. Find all unlabeled nodes adjacent to current node
5. If this is an unvisited node label it and add it to the queue
6. Finished.
	C311.4
	BTL1

	39
	What are the two traversal strategies used in traversing a graph?
a. Breadth first search
b. Depth first search
	C311.4
	BTL1

	40
	
What is articulation point
Articulation Points (or Cut Vertices) in a Graph A vertex in an undirected connected graph is an articulation point (or cut vertex) if removing it (and edges through it) disconnects the graph. Articulation points represent vulnerabilities in a connected network – single points whose failure would split the network into 2 or more disconnected components. They are useful for designing reliable
network
	C311.4
	BTL1

	PART-B

	1
	Explain the various representation of graph with example in detail?
	C311.4
	BTL2

	2
	Define topological sort? Explain with an example?
	C311.4
	BTL5

	3
	Explain Dijkstra's algorithm with an example?
	C311.4
	BTL5

	4
	Explain Prim's algorithm with an example?
	C311.4
	BTL5

	5
	Explain Krushal's algorithm with an example?
	C311.4
	BTL2

	6
	Write and explain the prim’s algorithm and depth first search algorithm.
	C311.4
	BTL5

	7
	For the graph given below, construct Prims algorithm
 2	
4	1	2	1	7
8	4	5
3	5	1	4	6
 	1		2
6	7
	C311.4
	BTL5

	8
	Explain the breadth first search algorithm
	C311.4
	BTL5

	9
	Write the algorithm to compute lengths of shortest path
	C311.4
	BTL5

	10
	Explain the depth first search algorithm.
	C311.4
	BTL2

UNIT V

	
Topics
	
Text / Reference book
	
Page No.

	Searching- Linear Search
	

1.	Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, 2nd Edition, Pearson Education,1997.
	235

	Binary Search
	
	236

	Sorting – Bubble sort
	
	237

	Selection sort – Insertion sort
	
	235

	Shell sort – Radix sort
	
	238

	Hashing- Hash Functions
	
	165

	Separate Chaining
	
	168

	Open Addressing
	
	173

	Rehashing – Extendible Hashing
	
	181

	S.
No.
	Question
	Course Outcome
	Blooms Taxanom
y Level

	1
	Define sorting
Sorting arranges the numerical and alphabetical data present in a list in a specific order or sequence. There are a number of sorting techniques available. The algorithms can be chosen based on the following factors
· Size of the data structure
· Algorithm efficiency
Programmer’s knowledge of the technique
	C311.5
	BTL1

	2
	Mention the types of sorting
· Internal sorting
· External sorting
	C311.5
	BTL2

	3
	What do you mean by internal and external sorting?
An internal sort is any data sorting process that takes place entirely within the main memory of a computer. This is possible whenever the data to be sorted is small enough to all be held in the main memory.
External sorting is a term for a class of sorting algorithms that can handle massive amounts of data. External sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM) and instead they must reside in the slower external memory (usually a hard drive).
	C311.5
	BTL1

	4
	How the insertion sort is done with the array?
It sorts a list of elements by inserting each successive element in the previously sorted
Sub list.
Consider an array to be sorted A[1],A[2],….A[n]
a. Pass 1: A[2] is compared with A[1] and placed them in sorted order.
b. Pass 2: A[3] is compared with both A[1] and A[2] and inserted at an appropriate
place. This makes A[1], A[2],A[3] as a sorted sub array.
c. Pass n-1: A[n] is compared with each element in the sub array A [1], A [2] …A [n-1] and inserted at an appropriate position.
	C311.5
	BTL1

	5
	Define hashing.
Hash function takes an identifier and computes the address of that identifier in the hash table using some function
	C311.5
	BTL1

	
	
	
	

	6
	What is the need for hashing?
Hashing is used to perform insertions, deletions and find in constant average	time.
	C311.5
	BTL1

	7
	Define hash function?
Hash function takes an identifier and computes the address of that identifier	in	the	hash	table	using	some	function.
	C311.5
	BTL1

	8
	List out the different types of hashing functions?
The different types of hashing functions are,
a. The division method
b. The mind square method
c. The folding method
d. Multiplicative hashing
e. Digit analysis
	C311.5
	BTL1

	9
	What are the problems in hashing?
a. Collision
b. Overflow
	C311.5
	BTL1

	10
	What are the problems in hashing?
When two keys compute in to the same location or address in the hash table
through any of the hashing function then it is termed collision.
	C311.5
	BTL1

	11
	what is insertion sort? How many passes are required for the elements to be sorted ?
one of the simplest sorting algorithms is the insertion sort. Insertion sort consist of N-1 passes . For pass P=1 through N-1 , insertion sort ensures that the elements in positions 0 through P-1 are in sorted order .It makes use of the fact that elements in position 0 through P- 1 are already known to be in sorted order .
	C311.5
	BTL1

	12
	Write the function in C for insertion sort ?
void insertionsort(elementtype A[] , int N)
{
int j, p; elementtype tmp;
for(p=1 ; p <N ;p++)
{
tmp = a[p] ;
for (j=p ; j>0 && a [j -1] >tmp ;j--) a [j]=a [j-1] ;
a [j] = tmp ;
}}
	C311.5
	BTL5

	13
	Who invented shellsort ? define it ? Shellsort was invented by Donald Shell . It works by comparing element that are distant . The distance between the comparisons decreases as the algorithm runs until the last phase in which adjacent elements are compared . Hence it is referred as diminishing increment
sort.
	C311.5
	BTL1

	14
	write the function in c for shellsort?
Void Shellsort(Elementtype A[],int N)
{
int i , j , increment ; elementtype tmp ;
for(elementtype=N / 2;increment > 0;increment / = 2) For(i= increment ; i <N ; i ++)
{
tmp=A[];
for(j=I; j>=increment; j - =increment) if(tmp< A[]=A[j – increment];
A[j]=A[j – increment]; Else
Break;
A[j]=tmp;
}}
	C311.5
	BTL5

	15
	Differentiate	between	merge	sort	and	quick	sort? Mergesort			quick				sort
1. Divide and conquer strategy	Divide and conquer strategy
2. Partition by position	Partition by value
	C311.5
	BTL4

	16
	Mention some methods for choosing the pivot element in quick sort?
1. Choosing first element
2. Generate random number
3. Median of three
	C311.5
	BTL2

	17
	What are the three cases that arise during the left to right scan in quick sort?
1. I and j cross each other
2. I and j do not cross each other
3. I and j points the same position
	C311.5
	BTL1

	18
	What is the need of external sorting?
External sorting is required where the input is too large to fit into memory. So external sorting Is necessary where the program is too large
	C311.5
	BTL1

	19
	What is sorting?
Sorting is the process of arranging the given items in a logical order. Sorting is an example where the analysis can be precisely performed.
	C311.5
	BTL1

	20
	What is mergesort?
The mergesort algorithm is a classic divide conquer strategy. The problem is divided into two arrays and merged into single array
	C311.5
	BTL1

	21
	Compare the various hashing techniques.
Technique	Load Factor
Separate chaining	-	close to 1
Open Addressing	-	should not exceed 0.5
Rehashing	-	reasonable load factor
	C311.5
	BTL2

	22
	Define collision in hashing.
When two different keys or identifiers compute into the same location or address in the hash table through any of the hashing functions, then it is termed Collision.
	C311.5
	BTL1

	23
	Define Double Hashing.
Double Hashing is a collision-resolution technique used in open addressing category. In double hashing, we apply a second hash function to x and probe at a distance of hash2 (x),
2hash2 (x)	, and so on.
	C311.5
	BTL1

	24
	What are applications of hashing?
The applications of hashing are,
· Compliers use hash table to keep track of declared variables on source code.
· Hash table is useful for any graph theory problem, where the nodes have real names instead of numbers.
· Hash tables are used in programs that play games.
· Online spelling checkers use hashing.
	C311.5
	BTL1

	25
	What does internal sorting mean?
Internal sorting is a process of sorting the data in the main memory
	C311.5
	BTL1

	26
	What are the various factors to be considered in deciding a sorting algorithm?
Factors to be considered in deciding a sorting algorithm are,
1. Programming time
2. Executing time for program
3. Memory or auxiliary space needed for the programs environment.
	C311.5
	BTL1

	27
	How does the bubble sort get its name?
The bubble sort derives its name from the fact that the smallest data item bubbles up to the top of the sorted array.
	C311.5
	BTL1

	28
	What is the main idea behind the selection sort?
	C311.5
	BTL1

	
	The main idea behind the selection sort is to find the smallest entry among in a(j),a(j+1),…	a(n) and then interchange it with a(j).
This process is then repeated for each value of j.
	
	

	29
	Is the heap sort always better than the quick sort?
No, the heap sort does not perform better than the quick sort.
Only when array is nearly sorted to begin with the heap sort algorithm gains an advantage. In such a case, the quick deteriorates to its worst performance of O (n2).
	C311.5
	BTL4

	30
	Name some of the external sorting methods.
Some of the external sorting methods are,
1. Polyphase sorting
2. Oscillation sorting
3. Merge sorting
	C311.5
	BTL2

	31
	Define radix sort
Radix Sort is a clever and intuitive little sorting algorithm. Radix sort is a on comparative integer sorting algorithm that sorts data with integer keys by grouping keys by the individual digits which share the same significant position and
	C311.5
	BTL1

	32
	Define searching
Searching refers to determining whether an element is present in a given list of elements
or not. If the element is present, the search is considered as successful, otherwise it is considered as an unsuccessful search. The choice of a searching technique is based on the following factors
a. Order of elements in the list i.e., random or sorted
b. Size of the list
	C311.5
	BTL1

	33
	Mention the types of searching
The types are
· Linear search
· Binary search
	C311.5
	BTL2

	34
	What is meant by linear search?
Linear search or sequential search is a method for finding a particular value in a list
that consists of checking every one of its elements, one at a time and in sequence, until
the desired one is found.
	C311.5
	BTL1

	35
	What is binary search?
For binary search, the array should be arranged in ascending or descending order.
In each step, the algorithm compares the search key value with the middle element of the
	C311.5
	BTL1

	
	array. If the key match, then a matching element has been found and its index, or
Position, is returned.
Otherwise, if the search key is less than the middle element, then the algorithm repeats its
action on the sub-array to the left of the middle element or, if the search key is greater, on
the sub-array to the right.
	
	

	36
	What are the collision resolution methods?
The following are the collision resolution methods
· Separate chaining
· Open addressing
· Multiple hashing
	C311.5
	BTL1

	37
	Define separate chaining
It is an open hashing technique. A pointer field is added to each record location, when an
overflow occurs; this pointer is set to point to overflow blocks making a linked list. In this method, the table can never overflow, since the linked lists are only extended upon the arrival of new keys.
	C311.5
	BTL1

	38
	What is open addressing?
Open addressing is also called closed hashing, which is an alternative to resolve the
Collisions with linked lists. In this hashing system, if a collision occurs, alternative cells
are tired until an empty cell is found.
There are three strategies in open addressing:
· Linear probing
· Quadratic probing
· Double hashing
	C311.5
	BTL1

	39
	What is Rehashing?
If the table is close to full, the search time grows and may become equal to the table size.
When the load factor exceeds a certain value (e.g. greater than 0.5) we do
Rehashing: Build a second table twice as large as the original and rehash there all the keys of the original table.
Rehashing	is	expensive	operation,	with	running	time	O(N) However, once done, the new hash table will have good performance.
	C311.5
	BTL1

	40
	What is Extendible Hashing?
Used when the amount of data is too large to fit in main memory and external storage is used.
N records in total to store, M records in one disk block
	C311.5
	BTL1

	
	The problem: in ordinary hashing several disk blocks may be examined	to	find	an	element	- a time consuming process.
Extendible hashing: no more than two blocks are examined.
	
	

	41
	List the different sorting algorithms.
· Bubble sort
· Selection sort
· Insertion sort
· Shell sort
· Quick sort
· Radix sort
· Heap sort
· Merge sort
	C311.5
	BTL1

	42
	Why bubble sort is called so?
The bubble sort gets its name because as array elements are sorted they gradually “bubble” to their proper positions, like bubbles rising in a glass of
soda.
	C311.5
	BTL1

	43
	State the logic of bubble sort algorithm.
The bubble sort repeatedly compares adjacent elements of an array. The first and second elements are compared and swapped if out of order. Then the second and third elements are compared and swapped if out of order. This sorting process continues until the last two elements of the array are
compared and swapped if out of order.
	C311.5
	BTL1

	44
	What number is always sorted to the top of the list by each pass of the Bubble sort algorithm?
Each pass through the list places the next largest value in its proper place. In essence, each item “bubbles” up to the location where it belongs.
	C311.5
	BTL1

	45
	When does the Bubble Sort Algorithm stop?
The bubble sort stops when it examines the entire array and finds that no "swaps" are needed. The bubble sort keeps track of the occurring swaps by
the use of a flag.
	C311.5
	BTL1

	46
	What is the output of selection sort after the 2nd iteration given the following sequence? 16 3 46 9 28 14
Ans: 3 9 46 16 28 14
	C311.5
	BTL1

	47
	How does insertion sort algorithm work?
In every iteration an element is compared with all the elements before it. While comparing if it is found that the element can be inserted at a suitable position, then space is created for it by shifting the other elements one position up and inserts the desired element at the suitable position. This procedure is repeated for all the elements in the list until we get the sorted elements.
	C311.5
	BTL1

	48
	What operation does the insertion sort use to move numbers from the unsorted section to the sorted section of the list?
The Insertion Sort uses the swap operation since it is ordering numbers within a single list.
	C311.5
	BTL1

	49
	How many key comparisons and assignments an insertion sort makes in its worst case?
The worst case performance in insertion sort occurs when the elements of the input array are in descending order. In that case, the first pass requires one comparison, the second pass requires two comparisons, third pass three
comparisons,….kth pass requires (k-1), and finally the last pass requires (n-
	C311.5
	BTL1

	
	1) comparisons. Therefore, total numbers of comparisons are: f(n) = 1+2+3+………+(n-k)+…..+(n-2)+(n-1) = n(n-1)/2 = O(n2)
	
	

	50
	Which sorting algorithm is best if the list is already sorted? Why?
Insertion sort as there is no movement of data if the list is already sorted and complexity is of the order O(N).
	C311.5
	BTL1

	PART -B

	1
	Explain the sorting algorithms
	C311.5
	BTL2

	2
	Explain the searching algorithms
	C311.5
	BTL5

	3
	Explain hashing
	C311.5
	BTL5

	4
	Explain open addressing
	C311.5
	BTL5

	5
	Write a C program to sort the elements using bubble sort, insertion sort and radix sort.
	C311.5
	BTL5

	6
	Write a C program to perform searching operations using linear and binary search.
	C311.5
	BTL5

	7
	Explain in detail about separate chaining.
	C311.5
	BTL2

	8
	Explain Rehashing in detail.
	C311.5
	BTL5

	9
	Explain Extendible hashing in detail.
	C311.5
	BTL5

image6.png
Deletion Insertion

e
A

insertion Deletion
Front Rear

image7.jpeg

image8.jpeg

image9.png

image1.png
% JEPPIAAR

i, ENGINEERING COLLEGE

image2.png
head
H | E o A s P > null

data next

image3.png
head

g R R » null
P
null H r d E r | A | |

prev data next

image4.png

image5.png
Xt

head

(prev ne

