[image: C:\Users\admin\Desktop\JEC LOGO.png]

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

 CCS366 - SOFTWARE TESTING AND AUTOMATION

 Question Bank

III YEAR A&B | BATCH :2021-2025

Vision of Institution
To build Jeppiaar Engineering College as an Institution of Academic Excellence in Technical education and Management education and to become a World Class University.
Mission of Institution
	M1
	To excel in teaching and learning, research and innovation by promoting the principles of scientific analysis and creative thinking

	M2
	To participate in the production, development and dissemination of knowledge and interact with national and international communities

	M3
	To equip students with values, ethics and life skills needed to enrich their lives and enable them to meaningfully contribute to the progress of society

	M4
	To prepare students for higher studies and lifelong learning, enrich them with the practical and entrepreneurial skills necessary to excel as future professionals and contribute to Nation’s economy

Program Outcomes (POs)
	PO1
	Engineering Knowledge: Apply the Knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

	PO2
	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

	PO3
	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

	PO4
	Conduct investigations of complex problems: Use research-based Knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

	PO5
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

	PO6
	The engineer and society: Apply reasoning informed by the contextual Knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

	PO7
	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the Knowledge of, and need for sustainable development.

	PO8
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

	PO9
	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

	PO10
	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

	PO11
	Project management and finance: Demonstrate Knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

	PO12
	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Vision of Department
To emerge as a globally prominent department, developing ethical computer professionals, innovators and entrepreneurs with academic excellence through quality education and research.
Mission of Department
	M1
	To create computer professionals with an ability to identify and formulate the engineering problems and also to provide innovative solutions through effective teaching learning process.

	M2
	To strengthen the core-competence in computer science and engineering and to create an ability to interact effectively with industries.

	M3
	To produce engineers with good professional sKills, ethical values and life skills for the betterment of the society.

	M4
	To encourage students towards continuous and higher level learning on technological advancements and provide a platform for employment and self-employment.

Program Educational Objectives (PEOs)
	PEO1
	To address the real time complex engineering problems using innovative approach with strong core computing skills.

	PEO2
	To apply core-analytical Knowledge and appropriate techniques and provide solutions to real time challenges of national and global society

	PEO3
	Apply ethical Knowledge for professional excellence and leadership for the betterment of the society.

	PEO4
	Develop life-long learning skills needed for better employment and entrepreneurship

CCS366	SOFTWARE TESTING AND AUTOMATION	L T P C
2 0 2 3
COURSE OBJECTIVES:
· To understand the basics of software testing
· To learn how to do the testing and planning effectively
· To build test cases and execute them
· To focus on wide aspects of testing and understanding multiple facets of testing
· To get an insight about test automation and the tools used for test automation
UNIT I	FOUNDATIONS OF SOFTWARE TESTING	6
Why do we test Software?, Black-Box Testing and White-Box Testing, Software Testing Life Cycle, V- model of Software Testing, Program Correctness and Verification, Reliability versus Safety, Failures, Errors and Faults (Defects), Software Testing Principles, Program Inspections, Stages of Testing: Unit Testing, Integration Testing, System Testing
UNIT II	TEST PLANNING	6
The Goal of Test Planning, High Level Expectations,Intergroup Responsibilities, Test Phases, Test Strategy, Resource Requirements, Tester Assignments, Test Schedule, Test Cases, Bug Reporting, Metrics and Statistics.
UNIT III	TEST DESIGN AND EXECUTION	6
Test Objective Identification, Test Design Factors, Requirement identification, Testable Requirements, Modeling a Test Design Process, Modeling Test Results, Boundary Value Testing, Equivalence Class Testing, Path Testing, Data Flow Testing, Test Design Preparedness Metrics, Test Case Design Effectiveness, Model-Driven Test Design, Test Procedures, Test Case Organization and Tracking, Bug Reporting, Bug Life Cycle.
UNIT IV	ADVANCED TESTING CONCEPTS	6
Performance Testing: Load Testing, Stress Testing, Volume Testing, Fail-Over Testing, Recovery Testing, Configuration Testing, Compatibility Testing, Usability Testing, Testing the Documentation, Security testing, Testing in the Agile Environment, Testing Web and Mobile Applications.
UNIT V	TEST AUTOMATION AND TOOLS	6
Automated Software Testing, Automate Testing of Web Applications, Selenium: Introducing Web Driver and Web Elements, Locating Web Elements, Actions on Web Elements, Different Web Drivers, Understanding Web Driver Events, Testing: Understanding Testing.xml, Adding Classes, Packages, Methods to Test, Test
Reports.	Total Periods :30
TEXT BOOKS:
1. Yogesh Singh, “Software Testing”, Cambridge University Press, 2012.
2. Unmesh Gundecha, Satya Avasarala, "Selenium WebDriver 3 Practical Guide" – Second Edition 2018.
REFERENCES:
1. Glenford J. Myers, Corey Sandler, Tom Badgett, The Art of Software Testing, 3rd Edition,2012, John Wiley & Sons, Inc.
2. Ron Patton, Software testing, 2nd Edition, 2006, Sams Publishing.Paul C. Jorgensen, Software Testing:
A Craftsman’s Approach, Fourth Edition, 2014, Taylor & Francis Group
3. Carl Cocchiaro, Selenium Framework Design in Data-Driven Testing, 2018, Packt Publishing.
4. Elfriede Dustin, Thom Garrett, Bernie Gaurf, Implementing Automated Software Testing, 2009, Pearson Education, Inc.
5. Satya Avasarala, Selenium WebDriver Practical Guide, 2014, Packt Publishing.
6. Varun Menon, TestNg Beginner's Guide, 2013, Packt Publishing.
COURSE OUTCOMES
Upon completion of the course, students will be able to:
	CO1
	Understand the basic concepts of software testing and the need for software testing.

	CO2
	Design Test planning and different activities involved in test planning.

	CO3
	Design effective test cases that can uncover critical defects in the application

	CO4
	Carry out advanced types of testing.

	CO5
	Automate the software testing using Selenium and TestNG.

 (
CCS366-

Software

Testing

and

Automation
) (
Department

of

CSE
)

 (
J
eppiaar

Engineering

College
) (
1
)

MAPPING BETWEEN CO AND PO, PSO WITH CORRELATION LEVEL 1/2/3

	COs
	POs
	PSOs

	
	PO1
	PO2
	PO3
	PO4
	PO5
	PO6
	PO7
	PO8
	PO9
	PO10
	PO11
	
PO12
	
PSO1
	
PSO2
	
PSO3
	
PSO4

	C313.1
	3
	3
	2
	1
	2
	-
	-
	-
	3
	3
	2
	1
	3
	3
	1
	2

	C313.2
	2
	3
	1
	1
	1
	-
	-
	-
	1
	2
	2
	2
	1
	2
	2
	2

	C313.3
	2
	2
	1
	3
	1
	-
	-
	-
	2
	3
	1
	2
	1
	3
	3
	3

	C313.4
	2
	1
	3
	2
	1
	-
	-
	-
	3
	2
	1
	3
	3
	3
	3
	3

	C313.5
	2
	2
	1
	3
	1
	-
	-
	-
	2
	1
	1
	1
	3
	2
	2
	2

RELATION BETWEEN COURSE CONTENT WITH COs UNIT I FOUNDATIONS OF SOFTWARE TESTING
	S.No
	Knowledge level
	Course Content
	Course Outcomes

	1
	R, U & Ap
	Why do we test Software?
	

C313.1

	2
	U & Ap
	Black-Box Testing and White-Box Testing
	

	3
	An & Ap
	Software Testing Life Cycle
	

	4
	An & Ap
	V-model of Software Testing
	

	5
	An & Ap
	Program Correctness and Verification
	

	6
	U & Ap
	Reliability versus Safety, Failures, Errors and Faults
(Defects)
	

	7
	U & Ap
	Software Testing Principles and Program Inspections
	

	8
	U & C
	Stages of Testing: Unit Testing
	

	9
	U & C
	Integration Testing, and System Testing
	

[bookmark: _TOC_250003]UNIT II TEST PLANNING
	S.No
	Knowledge level
	Course Content
	Course Outcomes

	1
	U & Ap
	The Goal of Test Planning
	

C313.2

	2
	U & Ap
	High Level Expectations
	

	3
	R, U & Ap
	Intergroup Responsibilities
	

	4
	U & Ap
	Test Phases
	

	5
	An & Ap
	Test Strategy
	

	6
	U & Ap
	Resource Requirements, Tester Assignments
	

	7
	U & An
	Test Schedule, Test Cases
	

	8
	U & An
	Bug Reporting
	

	9
	U & An
	Metrics and Statistics.
	

[bookmark: _TOC_250002]UNIT III	TEST DESIGN AND EXECUTION
	S.No
	Knowledge level
	Course Content
	Course Outcomes

	1
	U & An
	Test Objective Identification, Test Design Factors
	

C313.3

	2
	An & Ap
	Requirement identification, Testable Requirements
	

	3
	U & C
	Modeling a Test Design Process and Modeling Test Results
	

	4
	U & C
	Boundary Value Testing, Equivalence Class Testing, Path
Testing, Data Flow Testing,
	

	5
	U & C
	Test	Design	Preparedness	Metrics,	Test	Case	Design
Effectiveness
	

	6
	U & An
	Model-Driven Test Design, Test Procedures
	

	7
	An & Ap
	Test Case Organization and Tracking
	

	8
	U & An
	Bug Reporting
	

	9
	An & Ap
	Bug Life Cycle.
	

[bookmark: _TOC_250001]UNIT IV	ADVANCED TESTING CONCEPTS
	S.No
	Knowledge
level
	Course Content
	Course
Outcomes

	1
	U & C
	Performance Testing: Load Testing.
	

C313.4

	2
	U, An & Ap
	Stress Testing, Volume Testing
	

	3
	U & C
	Fail-Over Testing, Recovery Testing
	

	4
	U & Ap
	Configuration Testing and Compatibility Testing
	

	5
	U & An
	Usability Testing
	

	6
	U & An
	Testing the Documentation
	

	7
	U & Ap
	Security testing
	

	8
	U & C
	Testing in the Agile Environment
	

	9
	U, An & Ap
	Testing Web and Mobile Applications
	

[bookmark: _TOC_250000]UNIT V	TEST AUTOMATION AND TOOLS
	S.No
	Knowledge level
	Course Content
	Course Outcomes

	1
	U, An & Ap
	Automated Software Testing
	

C313.5

	2
	U & E
	Automate Testing of Web Applications
	

	3
	U & E
	Selenium: Introducing Web Driver and Web Elements
	

	4
	U & E
	Locating Web Elements, Actions on Web Elements
	

	5
	U & E
	Different Web Drivers
	

	6
	U, An & Ap
	Understanding Web Driver Events
	

	7
	U & E
	Testing: Understanding Testing.xml
	

	8
	U & E
	Adding Classes and Packages
	

	9
	U & E
	Methods to Test and Test Reports.
	

R – Remember; Ap – Apply; An – Analyze; U – Understand, E- Evaluate , C-Create

	UNIT I	FOUNDATIONS OF SOFTWARE TESTING
Why do we test Software?,Black-Box Testing and White-Box Testing,Software Testing Life Cycle,V- model of Software Testing,Program Correctness and Verification,Reliability versus Safety,Failures,Errors
and	Faults(Defects),Software	Testing	Principles,Program	Inspections,Stages	of	Testing:Unit Testing,Integration Testing,System Testing.

	UNIT-I / PART-A
	

	1
	Define software testing(Nov/Dec’14)
Software testing can be stated as the process of verifying and validating whether a software or application is bug-free,meets the technical requirements as guided by its design and development and meets the user requirements effectively and efficiently by handling all the exceptional and boundary cases.
	

BL1

	2
	Explain how software testing contributes to cost savings in the software development process.
Software testing identifies and rectifies defects early in the development cycle, reducing
the cost of fixing issues post-release, where costs can be significantly higher.
	
BL2

	3
	How does software testing help manage risk in software projects?
Software testing helps identify and mitigate potential risks by uncovering defects and vulnerabilities, allowing for proactive risk management and minimizing unexpected issues in production.
	
BL2

	4
	What is black-box testing?
The technique of testing in which the tester doesn’t have access to the source code of the software and is conducted at the software interface without any concern with the internal logical structure of the software is known as black-box testing.
	
BL1

	5
	What is white-box testing?
The technique of testing in which the tester is aware of the internal workings of the product, has access to its source code and is conducted by making sure that all internal operations are performed according to the specifications is known as white-box testing.
	
BL1

	6
	Compare and contrast the objectives of Black-Box Testing and White-Box Testing. Black-Box Testing focuses on functionality, while White-Box Testing examines the internal code. Black-Box aims to validate user requirements, while White-Box verifies
code structure and logic.
	
BL2

	7
	What are the different levels of software testing?
1.Unit Testing	2.Integration Testing 3.System Testing 4.Acceptance Testing
	BL1

	8
	What is the Software Testing Life Cycle (STLC)?
STLC is a series of phases and activities that guide the testing process from test planning through test execution, defect tracking, and reporting.
	
BL1

	9
	Why is test planning an important phase in the STLC?
Test planning defines the scope, objectives, and strategies for testing, ensuring that testing efforts are well-organized and focused on goals.
	
BL3

	10
	Describe the significance of test planning in the Software Testing Life Cycle.
Test planning defines the scope, approach, and resources for testing. It ensures that testing aligns with project goals, budget, and timelines.
	
BL2

	11
	How does the Software Testing Life Cycle interact with the Software Development Life Cycle (SDLC)?
The STLC operates in parallel with the SDLC. While development creates software,
testing ensures its quality and correctness through various stages.
	
BL2

	12
	Why is test design a critical phase in the STLC?
Test design involves creating test cases, scenarios, and scripts based on requirements, ensuring comprehensive test coverage.
	
BL2

	13
	What is the V-model of software testing?
The V-model is a software development and testing approach where each development phase has a corresponding testing phase, forming a "V" shape.
	
BL1

	14
	How does the V-model promote early defect detection?
The V-model emphasizes testing at each development phase, allowing for early detection and resolution of defects, reducing the cost of fixing issues later.
	
BL2

	15
	How does the V-Model reduce post-release defects?
The V-Model promotes early defect detection by testing at each development phase, reducing the likelihood of defects surfacing after release.
	
BL3

	16
	How the V-Model enhances communication between development and testing teams?
The V-Model establishes a clear correlation between development phases and corresponding	testing	phases,	fostering	communication	by	emphasizing	the
interdependency of these activities.
	

BL3

	17
	What are the potential drawbacks of strictly adhering to the V-Model in software development?
A drawback is that it can be rigid and less adaptable to changes or agile development
practices. It may not suit projects with evolving requirements.
	
BL1

	18
	What is program correctness?
Program correctness refers to the extent to which a software program meets its intended specifications and behaves as expected.
	
BL2

	19
	What is the purpose of program verification?
Program verification is the process of formally or rigorously confirming that a program adheres to its specifications to ensure its correctness.
	
BL1

	20
	Differentiate between verification and validation.
	

BL2

	
	
	VERIFICATION
	VALIDATION
	
	

	
	
	Verification is the process of evaluating software system or component to determine whether the products of a given development phase to satisfy the conditions imposed at the start of that
phase.
	Validation is the process of evaluating software system or component during or at the end of the development phase to satisfy the conditions imposed at the start of that phase.
	
	

	
	
	Verification is usually associated with activities such as inspections and reviews
of the software deliverables.
	Validation is usually associated with traditional execution based testing.
	
	

	21
	Why is safety critical in industries like aviation and healthcare?
Safety is critical in such industries because software failures can lead to severe consequences, including loss of life or critical system failures.
	
BL2

	22
	What is the difference between a software failure and a software error?
A software failure is the observable malfunction of the software, while a software error is the part of the code where the fault (defect) resides.
	
BL2

	23
	What is integration testing?
Integration testing is the second level of the software testing process which comes after unit testing.In this testing,units or individual components of the software are tested in a group.The focus of the integration testing level is to expose defects at the time of interaction between integrated components or units.
	

BL1

	24
	What is System testing?
System testing is a type of software testing that is performed on a complete integrated system to evaluate the compliance of the system with the corresponding requirements.In system testing,integration testing passed components are taken as input.The goal of integration testing is to detect any irregularity between the units that are integrated together.System testing detects defects within both the integrated units and the whole system.The result of system testing is the observed behaviour of a component or a system when it is tested.
	

BL3

	25
	What is software testing principles? 1.Testing shows presence of defects. 2.Exhaustive testing is not possible.
3.Early testing. 4.Defect clustering. 5.Pesticide paradox.
6.Testing is context dependent. 7.Absence of errors fallacy.
	

BL2

	26
	What are the different types of software testing?
Sofware testing can be broadly classified into two types:
1. Manual testing:Manual testing includes testing software manually i.e. without using any automation tool or any script. There are different stages of manula testing such as unit testing,integration testing,system testing and user acceptance testing.
2. Automation Testing:When the tester writes scripts and uses another software to test the
product.This process involves the automation of a manual process.
	

BL1

	27
	What is the principle of "Exhaustive Testing"?
Exhaustive testing is impractical because it would require testing all possible inputs and scenarios. Testing is done based on risk and priority.
	
BL2

	28
	What does the "Pesticide Paradox" mean in software testing?
The Pesticide Paradox suggests that if the same test cases are repeatedly used, they become less effective at finding new defects.
	
BL3

	29
	What is the principle of Equivalence Partitioning, and why is it important in software testing?
Equivalence Partitioning is a testing principle that involves dividing input data into groups or partitions to test representative values from each group. It's essential because it
optimizes test coverage by testing typical and boundary values, minimizing redundant test cases.
	

BL3

	30
	How does early testing align with the software development process?
Early Testing involves starting testing activities as soon as possible in the software development life cycle. It aligns with the development process by identifying defects early, reducing rework, and saving costs associated with fixing issues later in the development cycle.
	

BL1

	31
	What is the primary goal of a Formal Technical Review (FTR) during program inspections?
The primary goal of an FTR is to identify defects, improve software quality, and ensure that the software adheres to standards and specifications. It involves a formal, structured
examination of code or design documents.
	

BL1

	32
	How do walkthroughs differ from inspections in program reviews?
Walkthroughs are informal and focus on knowledge sharing, while inspections are formal, structured, and aim to find defects and ensure compliance with standards.
	
BL1

	33
	In unit testing, what is the significance of "stub" and "driver" components, and how do they support testing?
Stubs simulate lower-level components not yet implemented, while drivers simulate higher-level components. They allow testing to proceed when dependent components are
missing or incomplete, facilitating thorough unit testing.
	

BL3

	34
	Describe a common challenge in integration testing and how it can be mitigated.
A common challenge is detecting and resolving integration issues among components.
This can be mitigated by adopting a top-down or bottom-up integration approach, conducting incremental testing, and using well-defined interfaces.
	
BL1

	35
	What is the purpose of "Acceptance Testing" in the system testing phase? Acceptance testing assesses whether the software meets user requirements and is ready for deployment. It helps determine if the system is fit for its intended purpose,
ensuring user satisfaction and system readiness.
	
BL1

	UNIT I/ PART- B

	1.
	What are the fundamental reasons for testing software, and how do they contribute to the
software development process?
	BL2

	2.
	Explain the concepts of Black-Box Testing and White-Box Testing, highlighting their
differences and use cases.
	BL1

	3.
	Describe the key phases and activities in the Software Testing Life Cycle (STLC) and their importance in ensuring a robust testing process.
	BL2

	4.
	Explain the V-Model of Software Testing, how it differs from traditional development
approaches, and its role in promoting early defect detection.
	BL4

	5.
	Discuss the significance of program correctness and verification in the software development process and the methods used to achieve them.
	BL2

	6.
	Differentiate between reliability and safety in the context of software, emphasizing their
importance in safety-critical domains.
	BL3

	7.
	Define and explain the relationship between software failures, errors, and faults
(defects) and how they impact the reliability of software systems.
	BL3

	8.
	Enumerate and elucidate the fundamental software testing principles and their
significance in the testing process
	BL3

	9.
	Define program inspections and outline their purpose, processes, and key participants
in a software development context.
	BL4

	10
	Describe the three stages of testing—Unit Testing, Integration Testing, and System
Testing—and their respective objectives and challenges.
	BL2

	UNIT I/ PART- C

	1.
	You are a quality assurance manager. You've been assigned to test a complex, proprietary software application. How would you decide whether to use Black-Box
Testing or White-Box Testing, and why?
	
BL5

	2.
	You're a software project manager leading a project where quality is paramount. How
would you utilize the V-Model to ensure early defect detection and effective testing?
	BL6

	3.
	Explain how the principle of "Defect Clustering" can guide your testing strategy for the e-commerce platform update. How do you prioritize testing efforts based on this
principle?
	BL4

	4.
	Apply the principle of "Early Testing" to the e-commerce platform update project.
Explain how you would implement this principle.
	BL4

	5.
	Explain the concept and importance of Integration Testing in the context of the inventory
management and order processing application.
	BL3

	UNIT II TEST PLANNING
The Goal of Test Planning, High Level Expectations,Intergroup Responsibilities, Test Phases, Test
Strategy, Resource Requirements, Tester Assignments, Test Schedule, Test Cases, Bug Reporting, Metrics and Statistics

	UNIT II / PART A

	1
	What is the primary goal of test planning in the software testing process?
The primary goal of test planning is to define the scope, objectives, approach, resources, and schedule for testing activities in a structured and organized manner.
	BL1

	2
	What are high-level expectations in the context of test planning, and why are they important?
High-level expectations are the overarching outcomes or results that stakeholders anticipate from the testing process. They are crucial because they set clear quality
standards and help align testing activities with project objectives.
	BL3

	3
	What is the multifaceted goal of test planning, and how does it contribute to the overall success of a software testing project?
The goal of test planning is to establish a comprehensive framework for testing that encompasses defining the scope, objectives, strategies, resources, and schedules. This not only ensures systematic and well-organized testing but also aids in early defect identification and reduction of rework, thus saving time and costs. Furthermore, it aligns the testing process with the project's overall objectives and helps in delivering a high-
quality, reliable software product.
	BL2

	4
	In the context of software testing, what is the significance of high-level expectations, and how can they be effectively communicated to stakeholders?
High-level expectations serve as the quality benchmarks and desired outcomes for a software testing project. They are crucial because they provide a clear vision of what the stakeholders expect in terms of software quality and functionality. Effective communication of these expectations involves regular collaboration with stakeholders, setting specific quality standards, and using visual aids, such as graphs or charts, to
ensure a common understanding of what is expected from the testing process.
	BL1

	5
	Describe the complexities associated with intergroup responsibilities in software testing, and provide an example of how misalignment in responsibilities can impact a testing project.
Intergroup responsibilities can be intricate due to the need for effective coordination and collaboration between various teams, such as development, testing, and quality assurance. For instance, if there is a lack of clarity regarding who is responsible for maintaining test environments, it can lead to delays in testing, resource conflicts, and,
ultimately, project delays. Clear delineation of responsibilities and collaboration protocols are vital to avoid such issues.
	BL2

	6
	What are the key test phases in the software testing life cycle?
The key test phases in the software testing life cycle typically include unit testing, integration testing, system testing, and acceptance testing.
	BL1

	7
	What is the purpose of a test strategy in software testing, and how does it guide the testing process?
A test strategy outlines the approach, scope, objectives, and resources for testing. It provides a high-level plan that guides the testing process, ensuring that it aligns with
project goals and requirements.
	BL1

	8
	Why is defining resource requirements essential in test planning, and what types of resources should be considered?
Defining resource requirements is crucial to ensure that the testing process has the necessary people, tools, and environments. Resources to consider include test engineers,
testing tools, test data, and testing environments.
	BL2

	9
	In the context of software testing, how do test phases evolve from the initial unit testing to the final acceptance testing, and what are the primary objectives at each phase?
Test phases evolve in a progressive manner. Unit testing focuses on individual components to verify their correctness. Integration testing examines the interactions between these components. System testing evaluates the entire software system's functionality and performance. Finally, acceptance testing ensures that the software
meets user requirements and is ready for production deployment.
	BL2

	10
	What is the the role of a test strategy in a software testing project, detailing how it influences test planning, test design, and overall project success?
A test strategy is a critical document that defines the overall approach, scope, and objectives of the testing effort. It guides test planning by specifying what to test and how to test it. Test design is influenced by the strategy, ensuring that test cases align with project goals. A well-defined test strategy enhances the chances of project success by
providing a structured and organized approach to software testing.
	BL2

	11
	In the context of resource requirements for software testing, how does the selection of testing tools and the availability of skilled test engineers impact the testing process, and what types of resources go beyond personnel and tools?
The selection of testing tools can significantly affect testing efficiency and automation capabilities. Skilled test engineers can maximize the value derived from these tools through effective usage. Resource requirements also encompass test data, which should
be representative of real-world scenarios, and testing environments, which should mimic the production environment as closely as possible.
	BL1

	12
	Why is it essential to have a structured and organized set of test cases for a software application?
Structured and organized test cases ensure thorough testing coverage, help in replicating
scenarios, and enable efficient defect tracking. They act as a blueprint for validating software functionality and are vital for achieving a high level of software quality.
	BL2

	13
	How does a comprehensive test schedule contribute to the successful completion of a software testing project?
A comprehensive test schedule sets clear timelines, priorities, and milestones for the testing process. It helps in efficient resource management, timely defect identification, and adherence to project timelines, ultimately contributing to the successful and on-time
completion of the testing project.
	BL2

	14
	What is the importance of well-defined tester assignments in software testing?
Well-defined tester assignments ensure that each tester knows their responsibilities and areas of focus within the testing project. It optimizes efficiency, enhances accountability, and facilitates better collaboration among the testing team.
	BL2

	15
	How do well-structured and organized test cases contribute to comprehensive test coverage, and what strategies can be employed to efficiently manage a large repository of test cases in a complex software application?
Well-structured test cases contribute to comprehensive test coverage by providing clarity on what to test and how to test it. They enable efficient test execution and defect tracking. In managing a large repository of test cases, strategies like categorization, test case management tools, and regular reviews can be employed to ensure efficient
maintenance, execution, and continuous improvement of the test case repository.
	BL2

	16
	What is the primary purpose of a bug report in software testing?
The primary purpose of a bug report is to document and communicate defects or issues found during testing.
	BL1

	17
	How do metrics and statistics enhance the effectiveness of software testing processes, and what are some examples of key testing metrics?
Metrics and statistics help in quantifying testing progress, identifying trends, and making data-driven decisions. Examples of key testing metrics include defect density, test
coverage, and mean time to failure (MTTF).
	BL1

	18
	How can testing metrics, such as pass-fail ratios and defect density, be employed to improve resource allocation and testing efficiency in a software testing project?
Testing metrics, like pass-fail ratios, can be used to optimize resource allocation by identifying areas with a high density of defects. Test efforts can then be concentrated on
these areas, improving testing efficiency and directing resources where they are most needed.
	BL3

	19
	Explain the critical components that should be included in a well-structured bug report, and how does a detailed bug report benefit the software development process?
A well-structured bug report should include components like a clear title, detailed description, steps to reproduce, expected and actual results, and system environment information. A detailed bug report benefits the software development process by providing developers with precise insights into the issue, making it easier to locate,
understand, and fix the problem efficiently.
	BL3

	20
	Explain the concept of "mean time to failure" (MTTF) in the context of software reliability testing, and discuss its significance for measuring software stability.
MTTF is a metric that measures the average time between the occurrence of failures or defects in a software system. It's significant for measuring software stability as it provides an estimate of how long the system is expected to operate without critical
issues. A higher MTTF indicates greater stability and reliability.
	BL3

	21
	In agile development, how can metrics and statistics be effectively integrated into the development and testing processes, ensuring continuous improvement and transparency?
In agile development, metrics and statistics can be integrated by using tools like burndown charts and velocity charts to track progress. Teams can conduct regular retrospectives to discuss performance metrics and identify areas for improvement. This
approach ensures transparency and facilitates continuous improvement.
	BL3

	22
	Describe the challenges associated with relying solely on metrics and statistics for testing effectiveness assessment, and highlight the importance of considering qualitative factors alongside quantitative data.
Relying solely on metrics and statistics can lead to a tunnel vision approach. Challenges include ignoring subjective aspects and overlooking user feedback. It's essential to consider qualitative factors like user experience and feedback alongside quantitative data
to achieve a holistic assessment of testing effectiveness.
	BL2

	23
	How can testing metrics, such as pass-fail ratios and defect density, be employed to improve resource allocation and testing efficiency in a software testing project?
	BL4

 (
CCS366-

Software

Testing

and

Automation
) (
Department

of

CSE
)

 (
St.

Joseph’s

Institute

of

Technology
) (
9
)

	
	Testing metrics, like pass-fail ratios, can be used to optimize resource allocation by identifying areas with a high density of defects. Test efforts can then be concentrated on these areas, improving testing efficiency and directing resources where they are most
needed.
	

	24
	How can testing metrics and statistics be effectively communicated to project stakeholders, and what benefits does transparent communication bring to a software testing project?
Testing metrics can be effectively communicated to stakeholders through clear visual reports and presentations. Transparent communication benefits a testing project by providing stakeholders with visibility into progress, helping them make informed
decisions, and fostering collaboration between testing teams and project stakeholders.
	BL3

	25
	What is "balanced scorecard" approach to testing metrics, and how it aids in assessing the overall health and performance of a software testing process?
A balanced scorecard approach to testing metrics involves evaluating metrics from various perspectives, such as cost, quality, and delivery. It provides a well-rounded view of testing process performance, allowing for a more comprehensive assessment of its
overall health and effectiveness.
	BL3

	26
	What is the primary purpose of bug reporting in the software testing process?
The primary purpose of bug reporting is to document and communicate defects or issues discovered during testing, providing essential information for developers to reproduce, understand, and resolve the problems.
	BL2

	27
	What are the essential components of a well-structured bug report?
A well-structured bug report typically includes a clear title, detailed description, steps to reproduce, expected and actual results, and system environment information.
	BL2

	28
	Why is it crucial to include steps to reproduce in a bug report?
Steps to reproduce help developers recreate the issue, understand its cause, and facilitate efficient debugging and resolution.
	BL3

	29
	What is the significance of providing system environment information in a bug report?
System environment information assists in pinpointing issues related to specific
configurations, software versions, and hardware setups.
	BL3

	30
	How can effective bug reporting enhance collaboration between testers and developers?
Effective bug reporting provides clear and actionable information, making it easier for
developers to understand and address issues, fostering collaboration between teams.
	BL2

	31
	What is the purpose of using metrics and statistics in software testing?
Metrics and statistics are used in software testing to measure, evaluate, and improve the quality and effectiveness of the testing process.
	BL3

	32
	How do testing metrics like defect density influence decision-making in software testing projects?
Testing metrics like defect density provide insights into the quality of the software,
influencing decisions about the readiness of the product for release.
	BL1

	33
	What is the role of trend analysis using historical testing metrics?
Trend analysis using historical testing metrics helps in identifying patterns, predicting future defects, and making informed decisions for process improvement.
	BL2

	34
	How do you prevent the overreliance on metrics from negatively impacting the software testing process?
Prevent overreliance on metrics by balancing quantitative data with qualitative factors,
such as user feedback and experience, to ensure a holistic assessment.
	BL2

	35
	What benefits does transparent communication of testing metrics bring to a project?
Transparent communication of testing metrics provides stakeholders with visibility into
progress, helps in making informed decisions, and fosters collaboration between teams.
	BL4

	UNIT II/ PART- B

	1
	How do intergroup responsibilities in software testing contribute to effective
collaboration between development and testing teams?
	BL4

 (
CCS366-

Software

Testing

and

Automation
) (
Department

of

CSE
)

 (
J
eppiaar

Engineering

College
) (
13
)

	2
	Provide an example of a test case that belongs to the system testing phase of the software
testing life cycle.
	BL5

	3
	How does a comprehensive test strategy impact the testing process and overall project
success?
	BL2

	4
	Can you describe the resource requirements for a complex software testing project and
explain how they influence the testing approach?
	BL4

	5
	Compare and contrast the roles and responsibilities of testers and developers in the bug reporting and resolution process. What are the challenges that can arise from
misalignment in these roles, and how can they be mitigated?
	BL5

	6
	Given a specific software testing project, develop a tailored test strategy that outlines test
phases, objectives, and resource requirements to align with the project's unique characteristics.
	BL4

	7
	Explain the significance of including detailed steps to reproduce an issue in a bug report. How does this practice benefit both testers and developers in the software testing process?
	BL5

	8
	Discuss the role of effective communication between testers and developers in the bug reporting and resolution process. What strategies can be employed to enhance
collaboration and reduce communication barriers?
	BL1

	9
	Describe the key testing metrics used to evaluate the quality of a software application. How can metrics like defect density and test coverage be used to make informed
decisions about the readiness of a software product for release?
	BL2

	10
	Explain the concept of "mean time to failure" (MTTF) in software testing. How is it calculated, and what insights does it provide into software reliability? Provide examples
of situations where MTTF is particularly useful.
	BL2

	UNIT II/ PART- C

	1
	Imagine you're the QA manager for an e-commerce platform update. Describe how you would implement the principle of "early testing" and the "pesticide paradox" in the
testing process.
	BL4

	2
	Develop a comprehensive test case template that includes all essential components, such
as title, description, steps to reproduce, expected and actual results, and system environment information.
	BL4

	3
	Design a balanced scorecard for evaluating the performance of a software testing
process. Include key metrics and categories for assessing testing effectiveness.
	BL5

	4
	Given a real-world software testing project, can you outline a test strategy that includes
test phases, objectives, and resource requirements based on the project's needs?
	BL6

	5
	Create a sample test schedule for a hypothetical software project, incorporating both functional and non-functional testing phases, and explain the rationale behind your
choices.
	
BL5

	UNIT III TEST DESIGN AND EXECUTION
Test Objective Identification, Test Design Factors, Requirement identification, Testable Requirements, Modeling a Test Design Process, Modeling Test Results, Boundary Value Testing, Equivalence Class Testing, Path Testing, Data Flow Testing, Test Design Preparedness Metrics, Test Case Design
Effectiveness, Model-Driven Test Design, Test Procedures, Test Case Organization and Tracking, Bug Reporting, Bug Life Cycle.

	UNIT- III /PART –A
	
	

	1.
	What is the purpose of test objective identification in the software testing process?
Test objective identification defines what you aim to achieve with testing and sets clear goals and targets for the testing effort.
	BL1
	

	2.
	How does the identification of clear test objectives contribute to effective test planning?
Clear test objectives provide the foundation for creating a well-structured and organized test plan that aligns with project goals and requirements.
	BL4
	

	3.
	Name some factors that should be considered when designing a test for a software application.
Factors include the complexity of the software, its functionality, the intended users, available resources, and risk assessment.
	BL1
	

	4.
	How does considering the test environment impact test design decisions?
The test environment influences factors like hardware, software configurations, and network settings, all of which can affect test design choices.
	BL2

	5.
	What is the role of requirement identification in the software testing process? Requirement identification involves understanding and clarifying the specifications, functionality, and expectations for the software being tested
	BL3

	6.
	Why is it important for test engineers to collaborate closely with business analysts and stakeholders during requirement identification?
Collaboration ensures a clear understanding of requirements, helps identify potential ambiguities, and aligns testing efforts with business needs.
	BL3

	7.
	What are testable requirements, and why are they crucial in the testing process? Testable requirements are those that can be verified through testing. They are essential to ensure that the software behaves as expected.
	BL1

	8.
	Provide an example of a requirement that is not testable and explain why.
A non-testable requirement could be "The system should be user-friendly," as "user- friendly" lacks specific, verifiable criteria.
	BL1

	9.
	How can modeling a test design process, such as creating flowcharts or diagrams, aid in test design?
Modeling helps visually represent test scenarios, sequences, and interactions, making it easier to plan and design test cases.
	BL2

	10
	Give an example of a visual representation commonly used for modeling test design.
Flowcharts, decision trees, and state transition diagrams are common examples of visual representations used in test design
	BL1

	11.
	What is the purpose of modeling test results, and how does it contribute to test documentation?
Modeling test results helps visualize the expected outcomes of test cases and supports clear and structured documentation of test execution.
	BL2

	12.
	What types of artifacts or tools can be used for modeling test results?
Tools like test management software, spreadsheets, and reporting templates can be used for modeling and documenting test results.
	BL2

	13.
	What is boundary value testing, and why is it an important testing technique? Boundary value testing focuses on testing values at the boundaries of input domains, as these are often where defects are more likely to occur.
	BL2

	14.
	How do clear and concise test procedures aid test execution efficiency and reduce the likelihood of human errors during testing?
Clear test procedures provide step-by-step instructions, reducing the need for testers to make decisions during test execution. This clarity minimizes human errors, streamlining
the testing process.
	BL3

	15.
	Define the concept of equivalence class testing and its benefits in test design. Equivalence class testing groups input values into classes that should produce similar results when tested. It helps in reducing the number of test cases while providing good
coverage.
	BL2

	16.
	How can effective organization and tracking of test cases enhance project management and ensure comprehensive test coverage?
Effective organization and tracking facilitate categorization of test cases, which helps in prioritization and execution planning. Test case tracking ensures that each test case is executed, contributing to comprehensive test coverage and better project management.
	BL4

	17.
	What is path testing, and how does it differ from other testing techniques?
Path testing aims to test all possible paths through a program or system, ensuring that each path is executed at least once. It is more exhaustive than many other techniques.
	BL1

	18.
	What are some challenges associated with path testing?
Challenges include dealing with complex, multi-branching code, which can lead to a large number of test cases and increased testing effort.
	BL2

	19.
	What is the concept of data flow testing and its relevance to identifying defects.
Data flow testing focuses on how data is transferred and manipulated within a program.
	BL1

	
	By examining data flow paths, it helps uncover potential defects related to data
handling.
	

	20.
	How the effectiveness of test case design can be evaluated using metrics such as "defects found per test case hour." What factors should be considered when interpreting this metric?
"Defects found per test case hour" measures how efficiently test cases uncover defects. Factors to consider include the complexity of the software, testing environment stability, tester expertise, and test data quality. A higher ratio indicates more effective test cases,
but it should be balanced with other quality measures.
	BL3

	21.
	What are test design preparedness metrics, and how can they assist in assessing the readiness of test cases?
Test design preparedness metrics measure the completeness and quality of test design activities. They help ensure that test cases are well-prepared and effective.
	BL2

	22.
	Name a common test design preparedness metric and explain how it can be used to assess the quality of test cases.
One metric is "test case coverage," which measures the percentage of requirements or code covered by test cases. A higher coverage indicates better test case quality.
	BL2

	23.
	Define test case design effectiveness and its relationship to testing efficiency.
Test case design effectiveness refers to the ability of test cases to find defects. Effective test cases are those that uncover defects efficiently, maximizing testing efficiency.
	BL1

	24
	How can test case design effectiveness be evaluated and improved throughout the testing process?
Evaluation involves analyzing test results to see how many defects were found by each test case. Improvement can be achieved by enhancing test scenarios and ensuring
comprehensive coverage.
	BL1

	25
	What is model-driven test design, and how does it streamline the test case design process?
Model-driven test design involves using formal models of software behavior to generate test cases automatically. This approach simplifies and accelerates test case design.
	BL2

	26
	What types of models are commonly used in model-driven test design?
State transition models, data flow diagrams, and finite state machines are examples of models used in model-driven test design.
	BL3

	27
	How does data flow testing differ from other testing techniques like boundary value testing and equivalence class testing, and when is it particularly useful in identifying defects?
Data flow testing focuses on how data is transferred and manipulated within a program. Unlike boundary value and equivalence class testing, it targets the paths data takes through the system. It is particularly useful for identifying defects related to data
handling, such as uninitialized variables or data corruption.
	BL2

	28
	When determining test design factors for a safety-critical software application, what considerations should be given priority, and why?
Safety-critical software requires a strong emphasis on factors related to risk, reliability, and fault tolerance. Key considerations include the identification of potential failure modes, system criticality, adherence to safety standards, and the impact of system
failures on human life and the environment.
	BL3

	29
	Define test procedures and their role in the execution of test cases.
Test procedures are detailed instructions for executing test cases. They provide step-by- step guidance on how to conduct testing activities.
	BL3

	30
	What are some key elements that should be included in a well-structured test procedure document?
Test procedures should include clear steps, expected outcomes, data setup instructions, and any specific conditions or prerequisites for test execution.
	BL3

	31
	How does organizing test cases into logical groups or test suites aid in test case management?
Organizing test cases into test suites simplifies test case management, allowing for
better categorization, prioritization, and execution of tests.
	BL3

	32
	What tools or software are commonly used for tracking test cases and their execution status?
Test case management tools, such as TestRail and Zephyr, are widely used for tracking test cases and their execution progress.
	BL1

	33
	What is the process of bug reporting and its significance in software testing?
Bug reporting involves documenting and communicating defects found during testing. It is vital for developers to understand and address issues efficiently.
	BL4

	34
	What components are typically included in a well-structured bug report, and why are they important?
Bug reports should include a clear title, detailed description, steps to reproduce,
expected and actual results, and system environment information to help developers diagnose and fix issues.
	BL2

	35
	How does understanding the bug life cycle benefit test teams and project stakeholders?
Understanding the bug life cycle helps in managing and tracking defects effectively,
ensuring that issues are addressed and closed in a structured manner.
	BL3

	UNIT III/ PART- B
	

	1.
	Explain the process of identifying test objectives in the context of a complex software project. How do these objectives evolve throughout the project lifecycle, and why is it
important to adapt them as needed?
	BL2

	2.
	In the context of a large-scale software testing project, discuss the interplay between test design factors like time, budget, and available resources. How can test managers make
informed decisions to balance these factors and ensure successful testing?
	BL3

	3.
	Describe the role of requirement identification in software testing, emphasizing the importance of clear and unambiguous requirements. How can discrepancies or
ambiguities in requirements impact the quality of testing, and what steps can be taken to mitigate such issues?
	BL2

	4.
	Define the concept of testable requirements and discuss their role in test case design. Provide examples of requirements that are easy to test and those that pose
challenges, and explain why.
	BL2

	5.
	How does modeling a test design process using visual representations, such as flowcharts or decision trees, enhance test case design and communication between testing teams and
stakeholders? Illustrate the advantages with a practical example.
	BL4

	6.
	Explain the significance of modeling test results and their impact on the effectiveness of
test documentation. How can visual representations of test results, such as graphs and charts, aid in understanding and decision-making?
	BL2

	7.
	Elaborate on the concept of equivalence class testing and how it streamlines test case
design. Provide a detailed example of applying equivalence class testing to a software feature, including the identification of equivalence classes and the creation of test cases.
	BL4

	8.
	Describe the principles and challenges of path testing, particularly in large and complex software systems. How does path testing ensure thorough code coverage, and what
strategies can be employed to manage the complexity of path testing effectively?
	BL3

	9.
	In the context of boundary value testing, discuss the rationale for focusing on values at the edges of input domains. Provide real-world examples of situations where this testing
technique is crucial for software reliability.
	BL4

	10.
	Explain the methodology of data flow testing and its role in identifying defects related to data handling. Provide a practical example of data flow testing in a software system, including the identification of data flow paths and the creation of test cases.
	BL5

	UNIT III/ PART- C

	1.
	In a software testing project with multiple stakeholders, you are tasked with ensuring effective communication and collaboration between testing teams and project stakeholders. Describe a scenario where you use visual representations, such as flowcharts and decision trees, to model the test design process. Explain how these visual aids enhance communication and understanding among teams and stakeholders in this
scenario.
	BL4

	2.
	You are part of a testing team working on a large software project. Explain a scenario
	BL5

 (
CCS366-

Software

Testing

and

Automation
) (
Department

of

CSE
)

 (
St.

Joseph’s

Institute

of

Technology
) (
14
)

	
	where you encounter requirements that are challenging to test due to their vague or non- testable nature. Provide examples of such requirements and discuss strategies to work
with stakeholders to make them more testable.
	

	3.
	Imagine you are testing a critical financial application. Describe a scenario where you identify specific inputs and conditions where boundary value testing is essential to ensure
the software's reliability. Provide examples and discuss the implications of not performing boundary value testing in this scenario.
	BL5

	4.
	In a healthcare software system designed to manage electronic health records, discuss a complex scenario where you employ Equivalence Class Testing to validate the input and processing of patient information. Consider various data types, such as lab results, diagnoses, and medication records, and explain how you would ensure data accuracy and
security through this testing technique.
	BL6

	5.
	In a data-sensitive software project, describe a scenario where you use data flow testing to identify defects related to the handling of confidential user information. Provide examples of data flow paths and how data flow testing helps in uncovering vulnerabilities
in the system's data handling processes.
	BL3

	UNIT IV	ADVANCED TESTING CONCEPTS
Performance Testing: Load Testing, Stress Testing, Volume Testing, Fail-Over Testing, Recovery Testing, Configuration Testing, Compatibility Testing, Usability Testing, Testing the Documentation, Security testing, Testing in the Agile Environment, Testing Web and Mobile Applications.

	UNIT IV/ PART- A
	

	1
	What is load testing?
Load testing is a type of performance testing that evaluates a system's ability to handle expected load, such as concurrent users, requests, or transactions.
	
BL1

	2
	Why is load testing important in software testing?
Load testing helps identify performance bottlenecks, resource limitations, and response time issues under normal operational conditions.
	
BL2

	3
	What is stress testing in the context of software testing?
Stress testing assesses how a system behaves under extreme conditions, often exceeding its capacity, to determine its breaking point.
	
BL1

	4
	What is the primary goal of stress testing?
The primary goal of stress testing is to discover how a system fails and to understand its limits in terms of scalability and robustness.
	
BL1

	5
	Define volume testing.
Volume testing is a performance testing type that evaluates how a system handles a large amount of data or a significant volume of transactions.
	
BL1

	6
	How does volume testing differ from load testing?
Load testing focuses on concurrent users, while volume testing concentrates on the data size or volume of transactions processed.
	
BL1

	7
	What is fail-over testing, and why is it essential for high-availability systems?
Fail-over testing examines how a system responds when one component or
server fails and another takes over. It is crucial for ensuring system resilience.
	
BL4

	8
	Provide an example of a fail-over testing scenario in a real-world application.
In a web-based email service, fail-over testing ensures that if one email server goes down, the system seamlessly switches to another without data loss or downtime.
	
BL1

	9
	What recovery testing aims to achieve?
Recovery testing evaluates a system's ability to recover from unexpected failures or crashes and return to normal operation with minimal data loss or disruption.
	
BL2

	10
	Why is recovery testing vital for business-critical systems?
Recovery testing ensures that important systems can quickly bounce back from failures, reducing downtime and minimizing data loss.
	
BL1

	11
	What is configuration testing in the context of software testing?
Configuration testing verifies that a software application functions correctly on various
	BL1

 (
CCS366-

Software

Testing

and

Automation
) (
Department

of

CSE
)

 (
J
eppiaar

Engineering

College
) (
16
)

	
	hardware, software, and network configurations.
	

	12
	Why is configuration testing necessary for ensuring software compatibility?
Configuration testing helps identify compatibility issues and ensures that the software works as expected across diverse environments.
	
BL1

	13
	Define compatibility testing.
Compatibility testing assesses how a software application performs on different devices, browsers, operating systems, and network environments.
	
BL1

	14
	Why is compatibility testing crucial for web applications?
Compatibility testing helps ensure that a web application is accessible and functions properly on a wide range of user devices and browser combinations.
	
BL1

	15
	What is usability testing, and what is its primary focus?
Usability testing evaluates the user-friendliness of a software application, focusing on aspects like user interfaces, user interactions, and overall user experience.
	
BL1

	16
	What is the purpose of testing the documentation in software testing?
The purpose of testing documentation is to ensure that it accurately represents the software, helping users, testers, and developers understand and use the system effectively.
	
BL1

	17
	What types of documentation are commonly tested in software testing?
Commonly tested documentation includes user manuals, technical specifications, test plans, and help guides.
	
BL1

	18
	What is security testing in software testing?
Security testing assesses a software system's ability to protect data and functions from unauthorized access, vulnerabilities, and threats.
	
BL1

	19
	Name a common security testing technique used to identify vulnerabilities in software.
Penetration testing (pen testing) is a common security testing technique that simulates
attacks to find vulnerabilities.
	
BL1

	20
	How does testing in the Agile environment differ from traditional waterfall testing methodologies?
In Agile, testing is iterative, integrated throughout development, and focuses on delivering working software in short cycles (sprints).
	
BL3

	21
	What is the role of a "Scrum Master" in Agile testing, and how does it contribute to the testing process?
The Scrum Master helps the team follow Agile principles and ensures smooth
collaboration between team members, including testers, to achieve sprint goals.
	
BL3

	22
	What is a "user story" in Agile, and how does it relate to testing?
A user story is a concise description of a software feature from an end user's perspective. It helps define testing requirements and aligns development and testing efforts.
	
BL1

	23
	In mobile application testing, what is "device fragmentation," and why is it important to address?
Device fragmentation refers to the variety of mobile devices with different screen sizes, OS versions, and capabilities. It's important to address this in testing to ensure the app
functions correctly across various devices.
	

BL1

	24
	What is the primary objective of security testing in the software development life cycle?
The primary objective of security testing is to identify and mitigate vulnerabilities and threats to protect the system from security breaches and data breaches.
	
BL1

	25
	How can security testing help in compliance with data protection regulations like GDPR (General Data Protection Regulation)?
Security testing can identify vulnerabilities that, if exploited, could lead to data breaches. Addressing these vulnerabilities ensures compliance with data protection regulations.
	
BL1

	26
	How does TDD contribute to Agile software development practices?
TDD encourages writing test cases before code implementation, promoting continuous testing, and ensuring that code meets the specified requirements.
	
BL1

	27
	What are some key challenges in testing web applications compared to traditional desktop applications?
Web applications face challenges related to various browsers, device compatibility, and network latency.
	
BL1

	28
	What is cross-browser testing, and why is it important in web application testing? Cross-browser testing involves verifying that a web application functions correctly on different web browsers. It's essential to ensure a consistent user experience across various
platforms.
	
BL1

	29
	How does responsive design impact mobile application testing, and what are the key considerations for testers?
Responsive design aims to provide a consistent user experience on various screen sizes.
Testers must ensure the app adapts and functions well on different devices and orientations.
	

BL1

	30
	What are the different types of security testing, and can you provide an example of each?
Security testing types include penetration testing (e.g., simulating attacks), vulnerability assessment (e.g., scanning for known vulnerabilities), and security code review (e.g.,
reviewing code for security issues).
	

BL1

	31
	Name one common technique used in security testing to assess a system's susceptibility to common security issues.
Vulnerability scanning is a common technique used to identify known security
vulnerabilities in software.
	
BL3

	32
	In Agile testing, what is the significance of "continuous integration" (CI), and how does it impact software quality?
Continuous integration involves regularly merging code changes into a shared repository,
followed by automated testing. It ensures that new code doesn't introduce defects and maintains software quality.
	

BL5

	33
	What is the significance of "usability testing" in web and mobile application testing?
Usability testing assesses the user-friendliness of an application, ensuring that it meets user expectations, is intuitive, and provides a positive user experience.
	
BL1

	34
	What is the the role of "acceptance criteria" in Agile user stories and how they guide testing efforts?
Acceptance criteria define the conditions that must be met for a user story to be considered complete. They guide testing efforts by providing clear testable requirements.
	
BL1

	35
	How can mobile application testing address performance issues related to app responsiveness and speed, considering various devices and network conditions?
Mobile application testing can include performance testing with real devices, simulators, and emulators to evaluate app responsiveness and speed under various scenarios,
including different devices and network conditions.
	

BL1

	UNIT IV/ PART- B
	

	1
	Explain the differences between load testing and stress testing.
	BL4

	2
	Can you articulate the primary goals of stress testing in a software development project?
	BL3

	3
	Explain how you would simulate and measure the performance impact of rapidly growing
data volume on a web service.
	BL2

	4
	Analyze the importance of fail-over testing in ensuring high availability for critical applications.
	BL2

	5
	Explain in detail about configuration testing.
	BL3

	6
	Illustrate the concept of usability testing with an example.
	BL3

	7
	Compare and contrast compatibility testing and usability testing.
	BL5

	8
	How does recovery testing differ from backup and restore testing, and what unique scenarios does recovery testing address?
	BL6

	9
	Explain the role of documentation testing in the software development lifecycle, and how
	BL3

 (
CCS366-

Software

Testing

and

Automation
) (
Department

of

CSE
)

 (
St.

Joseph’s

Institute

of

Technology
) (
17
)

	
	it contributes to a better user experience.
	

	10
	Describe the challenges associated with testing online help documentation, and how they
differ from testing printed documentation.
	BL3

	
	UNIT IV/PART C
	BL2

	1
	Create a recovery testing plan for a financial system to ensure data integrity after a
system failure.
	BL2

	2
	How would you explain the role of penetration testing in identifying vulnerabilities and
securing software applications?
	BL1

	3
	Design an Agile testing plan for a mobile app development project, incorporating sprint
cycles, user stories, and acceptance criteria.
	BL2

	4
	Analyze the challenges associated with testing the performance of a web application
across various browsers and suggest strategies to overcome these challenges.
	BL4

	5
	How does the diversity of devices and browsers impact the testing process for web
applications and how is it distinct from mobile app testing?
	BL3

	UNIT V	TEST AUTOMATION AND TOOLS
Automated Software Testing, Automate Testing of Web Applications, Selenium: Introducing Web Driver and Web Elements, Locating Web Elements, Actions on Web Elements, Different Web Drivers, Understanding Web Driver Events, Testing: Understanding Testing.xml, Adding Classes, Packages,
Methods to Test, Test Reports.

	UNIT V/ PART-A
	

	1
	What is automated software testing?
Automated software testing is the use of automated testing tools and scripts to perform test cases and verify the behavior of a software application
	
BL1

	2
	Why is automated testing important for web applications?
Automated testing for web applications helps improve efficiency, consistency, and test coverage. It allows for repetitive tests to be executed quickly and helps catch regressions
early.
	
BL2

	3
	What are some popular automated testing tools for web applications?
Selenium, WebDriver, Puppeteer, and TestCafe are widely used tools for automating web application testing.
	
BL1

	4
	What is the role of test scripts in automated testing?
Test scripts are sets of instructions written in a programming language or scripting language to automate the execution of test cases.
	
BL1

	5
	How does automated testing differ from manual testing?
Automated testing is executed by scripts and tools, while manual testing is performed by human testers. Automated testing is faster and more suitable for repetitive tasks, while manual testing provides a more exploratory and ad hoc approach.
	
BL2

	6
	What is regression testing, and how does automation benefit it?
Regression testing involves re-running tests to ensure that new changes or updates have
not introduced new defects. Automation helps in swiftly executing regression tests to maintain software quality.
	
BL4

	7
	How can you select the right test cases for automation in web application testing? Choose test cases that are frequently executed, stable, and unlikely to change frequently. Tests that require a lot of data variations or complex user interactions are also good
candidates for automation.
	
BL2

	8
	What is the significance of test data and test data management in web application automation?
Test data is essential to replicate real-world scenarios. Effective test data management ensures that the right data is available for automated tests to simulate various conditions and use cases.
	

BL1

	9
	How can automated tests be integrated into the continuous integration (CI) and continuous deployment (CD) pipeline for web applications?
Automated tests can be triggered as part of the CI/CD process to ensure that new code
changes are thoroughly tested before deployment.
	
BL1

 (
CCS366-

Software

Testing

and

Automation
) (
Department

of

CSE
)

 (
J
eppiaar

Engineering

College
) (
20
)

	10
	What is the role of assertions in automated testing for web applications?
Assertions are checkpoints within test scripts that verify whether the actual outcomes match the expected outcomes, helping to determine test pass/fail status.
	
BL2

	11
	What is Selenium WebDriver?
Selenium WebDriver is a web automation tool that allows you to control a web browser and automate interactions with web elements.
	
BL1

	12
	What is a web element in Selenium?
A web element in Selenium represents an HTML element on a web page, such as buttons, text fields, links, or checkboxes.
	
BL2

	13
	Which programming languages can you use with Selenium WebDriver?
Selenium WebDriver supports multiple programming languages, including Java, Python, C#, and more.
	
BL1

	14
	How do you initialize a WebDriver instance in Selenium using Java?
WebDriver instance can be initialized in Java using: WebDriver driver = new ChromeDriver();
	
BL1

	15
	What is the purpose of the get() method in Selenium WebDriver?
The get() method is used to navigate to a specific URL in the web browser.
	BL4

	16
	How can you locate a web element by its ID using Selenium WebDriver?
You can locate a web element by its ID using driver.findElement(By.id("elementId")).
	BL1

	17
	What is the CSS selector, and how can you use it to locate web elements?
A CSS selector is a pattern used to select and style HTML elements. You can use it in Selenium with driver.findElement(By.cssSelector("selector")).
	
BL1

	18
	What is the difference between findElement() and findElements() in Selenium?
findElement() returns the first matching web element, while findElements() returns a list of all matching web elements.
	
BL1

	19
	How do you click on a web element in Selenium?
You can click on a web element using the click() method, like element.click().
	BL1

	20
	What is the sendKeys() method used for in Selenium?
The sendKeys() method is used to simulate keyboard input, like entering text into text fields or text areas.
	
BL1

	21
	How can you retrieve the text from a web element using Selenium WebDriver?
You can retrieve the text from a web element using the getText() method, like element.getText().
	
BL2

	22
	Name some of the popular web browsers supported by Selenium WebDriver.
Popular web browsers supported by Selenium WebDriver include Chrome, Firefox, Safari, Edge, and more.
	
BL1

	23
	What are WebDriver events in Selenium?
WebDriver events are actions or occurrences during test execution, such as page loading, clicking, navigation, or alerts.
	
BL1

	24
	How can you handle JavaScript alerts using Selenium WebDriver?
You can handle JavaScript alerts in Selenium using Alert interface methods like accept(), dismiss(), and getText()
	
BL4

	25
	How do you wait for an element to be visible using explicit waits in Selenium?
You can use explicit waits with ExpectedConditions.visibilityOfElementLocated(By
locator) to wait for an element to become visible.
	
BL2

	26
	What is the purpose of adding packages to a TestNG suite in a testing.xml file?
Adding packages allows you to group related classes and execute tests across multiple classes that share a common package.
	
BL3

	27
	How can you generate test reports in TestNG using the testing.xml file? TestNG can automatically generate test reports that can be viewed in HTML format by including <reporters> and specifying the desired report generation options in the
testing.xml file.
	
BL2

	28
	What is the purpose of generating test reports in test automation frameworks?
Generating test reports helps testers and stakeholders review test results, identify issues, and make informed decisions about the software's quality.
	
BL1

	29
	Which popular testing frameworks can be integrated with test reporting tools to generate comprehensive test reports?
TestNG and JUnit are popular testing frameworks that can be integrated with reporting
tools like ExtentReports and Allure to generate detailed test reports.
	
BL3

	30
	What are test reports in the context of test automation?
Test reports provide detailed information about the test execution, including test results, pass/fail status, and any exceptions encountered during testing.
	
BL2

	UNIT V/PART B
	

	1.
	Elaborate on the key considerations when deciding which test cases to automate in a software testing project, including factors such as test case complexity, maintenance
effort, and potential return on investment (ROI)
	
BL2

	2.
	Discuss the role of test automation frameworks in automated software testing, and explain how they help structure and manage test suites, reduce redundancy, and enhance code
maintainability
	
BL2

	3.
	How does the process of automating testing for web applications differ from other software applications, and what unique challenges arise when dealing with web elements
and web pages?
	
BL2

	4.
	Describe the importance of cross-browser testing in web application automation and
explain how Selenium addresses this requirement by supporting different web drivers for various browsers.
	
Bl2

	5
	Explain the concept of web elements in Selenium, the role of the Document Object Model (DOM) in web element identification, and how Selenium interacts with the DOM for
element interaction.
	
BL2

	6
	Explain the concept of asynchronous web elements and the challenges they present in test automation. Describe the use of explicit and implicit waits in Selenium to handle
asynchronous elements effectively.
	
BL6

	7
	Explore the concept of parallel test execution in Selenium, including how it can be managed, the benefits of parallel testing, and the challenges associated with running
multiple tests concurrently.
	
BL3

	8
	Explain the key events that occur during test execution with Selenium WebDriver, including page loading, element interaction, and handling alerts, and explain how the
knowledge of these events can be leveraged for effective test automation.
	
BL3

	9
	Explain in detail about different web drivers.
	BL2

	10
	Discuss the purpose and structure of a testing.xml file in TestNG and how it helps manage
test suites, define test priorities, and handle test dependencies. Explain how the addition of classes, packages, and methods to tests is facilitated within the testing.xml file.
	BL2 BL2

	UNIT V/PART C

	1
	In the process of automating tests for a complex web application, explain why it's crucial
to select the right test automation tool based on the application's technology stack, scalability, and maintainability.
	
BL4

	2
	A new feature has been added to a web application that involves handling asynchronous elements. Develop a Selenium script that uses explicit waits to interact with these
elements during testing.
	
BL6

	3
	A Selenium test script you've developed is failing to locate a specific web element consistently. Analyze the potential reasons for this issue and suggest troubleshooting
steps.
	
BL4

	4
	Lead a team of testers working on a large-scale web application project. Develop a
strategy for organizing classes and packages within a testing.xml file to optimize test suite management.
	
BL6

	5
	As the quality assurance lead, you are tasked with reviewing the generated test reports from a Selenium testing project. Assess the content and format of these reports and their
usability for different stakeholders.
	
BL5

image1.png
% JEPPIAAR

i, ENGINEERING COLLEGE

