JEPPIAAR ENGINEERING COLLEGE

Jeppiaar Nagar, Rajiv Gandhi Salai – 600 119

DEPARTMENT OFMECHANICAL ENGINEERING

QUESTION BANK

III SEMESTER

MA6351 Transforms and Partial Differential Equations

Regulation – 2013

${\bf SUBJECT} \hspace{0.3cm} : {\bf MA6351\text{-} TRANSFORMS \ AND \ PARTIAL \ DIFFERENTIAL \ EQUATIONS}$

SEMESTER / YEAR: III / II

UNIT I - PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

PART- A						
Question	Bloom's Taxonomy Level	Domain				
Form a partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $z = ax^2 + by^2$. Solution p=2ax, q=2by a= p/2x, b=q/2y therefore PDE is 2z=px+qy.	BTL -6	Creating				
Eliminate the arbitrary function from $z = f(y/x)$ and form the partial differential equation MA6351 M/J 2014, N/D '14 Solution: px+qy=0	BTL -6	Creating				
Solution Differentiating the given equation w.r.t x &y, $z^2[p^2+q^2+1]=r^2$.	BTL -3	Applying				
Find the complete integral of p+q=pq. Solution p=a, q=b therefore $z=ax + \frac{a}{a-1}y + c$.	BTL- 6	Creating				
Form the partial differential equation by eliminating the arbitrary constants a, b from the relation $log(az-1) = x + ay + b$. A/M'15 Solution: $log(az-1) = x + ay + b$	BTL -6	Creating				
$\frac{Eqn1}{Eqn2} \Rightarrow q = ap \ Sub \ in \ a(z-p) = 1 \Rightarrow q(z-p) = p$						
relation $z = ax^3 + by^3$. MA6351 MAY/JUNE 2014 Solution: Differentiate w.r.t x and y	BTL -6	Creating				
Form a p.d.e. by eliminating the arbitrary constants from $z = (2x^2+a)(3y-b)$. Solution: $p = 4x(3y-b)$, $q = 3(2x^2+a)$	BTL -6	Creating				
Form the partial differential equation by eliminating arbitrary function ϕ from $\phi(x^2 + y^2, z-xy) = 0$ [MA6351 M/J 2016]	BTL -6	Creating				
	Form a partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $z = ax^2 + by^2$. Solution p=2ax, q=2by a= p/2x, b=q/2y therefore PDE is 2z=px+qy. Eliminate the arbitrary function from $z = f(y/x)$ and form the partial differential equation MA6351 M/J 2014, N/D '14 Solution: px+qy=0 Form the PDE from $(x - a)^2 + (y - b)^2 + z^2 = r^2$. Solution Differentiating the given equation w.r.t x &y, $z^2[p^2+q^2+1]=r^2$. Find the complete integral of p+q=pq. Solution p=a, q=b therefore $z=ax+\frac{a}{a-1}y+c$. Form the partial differential equation by eliminating the arbitrary constants a, b from the relation $\log(az-1) = x + ay + b$. A/M'15 Solution: $\log(az-1) = x + ay + b$ Diff. p.w.r.t x&y, $\frac{ap}{az-1} = 1 - eqn1$ & $\frac{aq}{az-1} = a - eqn2$ $\frac{Eqn1}{Eqn2} \Rightarrow q = ap$ Sub in $a(z-p) = 1 \Rightarrow q(z-p) = p$ Form the PDE by eliminating the arbitrary constants a,b from the relation $z = ax^3 + by^3$. MA6351 MAY/JUNE 2014 Solution: Differentiate w.r.t x and y $p = 3ax^2$, $q = 3by^2$ therefore $3z = px+qy$. Form a p.d.e. by eliminating the arbitrary constants from $z = (2x^2+a)(3y-b)$. Solution: P = 4x(3y-b), $q = 3(2x^2+a)$ $3y - b = p/4x$ $(2x^2+a) = q/3$. Therefore $12xz = pq$.	Form a partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $z = ax^2 + by^2$. Solution $p = 2ax$, $q = 2by$ $a = p/2x$, $b = q/2y$ therefore PDE is $2z = px + qy$. Eliminate the arbitrary function from $z = f(y/x)$ and form the partial differential equation MA6351 M/J 2014, N/D '14 Solution: $px + qy = 0$ Form the PDE from $(x - a)^2 + (y - b)^2 + z^2 = r^2$. Solution Differentiating the given equation w.r.t $x = 4x$, $x = 2x$, $x = $				

	$ v_y = q-x. \begin{vmatrix} u_x & u_y \\ v_x & v_x \end{vmatrix} = 0 \Rightarrow 2xq - 2x^2 - 2yp + 2y^2 = 0$		
9.	Form the partial differential equation by eliminating arbitrary constants a and b from $(x-a)^2 + (y-b)^2 + z^2 = 1$ Solution : Differentiating the given equation w.r.t x &y,	BTL -6	Creating
	$z^{2}[p^{2}+q^{2}+1]=1$		
	Solve $[D^3-8DD'^2-D^2D'+12D'^3]z = 0$ [MA6351 M/J 2017] Solution: The auxiliary equation is $m^3-m^2-8m+12=0$; $m=2,2,-3$ The solution is $z = f_1(y+x)+f_2(y+2x)+xf_3(y+2x)$. [MA6351 NOV/DEC 2014]	BTL -3	Applying
	Find the complete solution of $q = 2 px$ MA6351 APRIL/MAY 2015 Solution Find the complete solution of $q = 2 px$ Solution: Let $q = a$ then $p = a/2x$ $dz = pdx + qdy$ $2z = alogx + 2ay + 2b.$	BTL -3	Applying

12.	Find the complete solution of p+q=1[MA6351 NOV/DEC 2014]	BTL -3	Applying
1	Solution Complete integral is $z = ax + F(a) y + c$		
	Put $p = a$, $q = 1$ -a. Therefore $z = px + (1-a)y + c$		
13.	Find the complete solution of $p^3 - q^3 = 0$ MA6351 M/J 2016	BTL -3	Applying
	Solution Complete integral is $z = ax + F(a) y + c$		
	Put $p = a$, $q = a$. Therefore $z = px + qy + c$		
14.	Solve $[D^3+DD^{2}-D^2D^{2}-D^{3}]z = 0$ Solution	BTL -3	Applying
	The auxiliary equation is m ³ -m ² +m-1=0		
	$m = 1, -i, i \Rightarrow \text{The solution is } z = f_1(y+x) + f_2(y+ix) + f_3(y-ix).$		
	Solve $(D-1)(D-D'+1)z = 0$.	BTL -3	Applying
10.	Solution $z = e^x f_1(y) + e^{-x} f_2(y+x)$		
16.	Solution $z = e^x f_1(y) + e^{-x} f_2(y+x)$ Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial x} = 0$.	BTL -3	Applying
10.	Solution: A.E: D[D-D'+1] = 0		
	h=0, h=k-1		
	$z = f_1(y) + e^{-x} f_2(y + x)$		
17.	Solve $(D^4 - D^{*4})z = 0$. [MA6351 MAY/JUNE 2014]	BTL -3	Applying
17.	Solution: A.E: m^4 -1=0, $m=\pm 1, \pm i$.		117 6
	Z=C.F= $f_1(y+x)+f_2(y-x)+f_3(y+ix)+f_4(y-ix)$.		
18.	Solve $(D^2 - DD' + D' - 1)Z = 0$.	BTL -3	Applying
	Solution: The given equation can be written as		
	(D-1)(D-D'+1)Z = O		
	$z = e^{x} f_{1}(y) + e^{-x} f_{2}(y + x)$		
19.	Solve $xdx + ydy = z$.	BTL -3	Applying

	PART – B		
1.(a)	Find the PDE of all planes which are at a constant distance 'k' units from the origin.	BTL -6	Creating
1. (b)	Find the singular integral of $z = px + qy + 1 + p^2 + q^2$	BTL -2	Understandi ng
2. (a)	Form the partial differential equation by eliminating arbitrary function Φ from $\Phi(x^2 + y^2 + z^2, ax + by + cz) = 0$	BTL -6	Creating
2.(b)	Find the singular integral of $z = px + qy + p^2 + pq + q^2$	BTL -2	Understandi ng
3. (a)	Form the partial differential equation by eliminating arbitrary functions f and g from $z = x f(x/y) + y g(x)$	BTL -6	Creating
3.(b)	Find the singular integral of $z = px + qy + \sqrt{1 + p^2 + q^2}.$	BTL -3	Applying
	MA6351 M/J 2016 Solve (D ³ -7DD' ² -6D' ³)z=sin(x+2y) .[MA6351 NOV/DEC 2014]		
4. (a)		BTL -3	Applying
4.(b)	Form the partial differential equation by eliminating arbitrary function f and g from the relation $z = xf(x + t) + g(x + t)$	BTL -6	Creating
5. (a)	Solve $(D^2-2DD')z=x^3y+e^{2x-y}$. [MA6351 NOV/DEC 2014]	BTL -3	Applying
5.(b)	Solve $x(y-z)p+y(z-x)q=z(x-y)$. [MA6351 NOV/DEC 2014]	BTL -3	Applying
6. (a)	Find the singular integral of px+qy+p²-q². MA6351 NOV/DEC2014	BTL -2	Understandi ng
6.(b)	Find the general solution of $z = px + qy + p^2 + pq + q^2$. M/J '17	BTL -3	Applying
7. (a)	Find the complete solution of $z^2(p^2+q^2+1)=1$	BTL -4	Analyzing

7. (b)	Find the general solution of $(D^2 + 2DD' + D'^2)z = 2\cos y - x\sin y$	BTL -2	Understanding
8. (a)	Find the general solution of $(D^2 + D^{\prime 2})z = x^2y^2$	BTL -2	Understanding
8.(b)	Find the complete solution of $p^2 + x^2y^2q^2 = x^2z^2$ A/M 2015	BTL -2	Understanding
9. (a)	Solve $(D^2 - 3DD' + 2D'^2)$ $z = (2 + 4x)e^{x+2y}$	BTL -3	Applying
9.(b)	Obtain the complete solution of $z = px+qy+p^2-q^2$ MA6351 A/M 2015	BTL -2	Understanding
10.(a)	Solve $x(y^2 - z^2) p + y(z^2 - x^2) q = z(x^2 - y^2)$	BTL -3	Applying
10.(b)	Solve $(D^2 - 3DD' + 2D'^2)z = \sin(x + 5y)$	BTL -3	Applying
11(a)	Solve the Lagrange's equation $(x + 2z) p + (2xz - y)q = x^2 + y$	BTL -3	Applying
11(b)	Solve $(D^2 - DD' - 2D'^2)z = 2x + 3y + e^{2x+4y}$	BTL -3	Applying
12(a)	$Solve (D^2 + DD' - 6D'^2)z = y \cos x$	BTL -3	Applying
12(b)	Solve the partial differential equation $(x^2 - yz)p + (y^2 - xz)q = z^2 - xy$ MA6351 APRIL/MAY 2015, MA6351 M/J 2016	BTL -3	Applying
13(a)	Solve ($D^2 - DD' - 20D'^2$) $z = e^{5s+y} + \sin(4x - y)$.	BTL -3	Applying
13(b)	Solve $(2D^2 - DD' - D'^2 + 6D + 3D')z = xe^{-y}$	BTL -3	Applying
14(a)	Solve $(D^2 - 2DD')z = x^3y + e^{2x-y}$	BTL -3	Applying
14(b)	Solve $(D^3 - 7DD^{12} - 6D^{13})z = \sin(x + 2y)$	BTL -3	Applying
15(a)	Form the PDE by eliminating the arbitrary function from the relation	BTL -6	Creating
	$z = y^2 + 2f(\frac{1}{x} + \log y)$. [MA6351 MAY/JUNE 2014]		
15(b)	Solve the Lagrange's equation $(x+2z)p+(2xz-y) = x^2+y.[MA6351]$	BTL -3	Applying
	MAY/JUNE 2014]		
16(a)	Solve $x^2p^2+y^2q^2 = z^2$. [MA6351 MAY/JUNE 2014]	BTL -3	Applying
16(b)	Solve $(D^2+DD'-6D'^2)z = y \cos x$. [MA6351 MAY/JUNE 2014]	BTL -3	Applying

UNIT II - FOURIER SERIES: Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.

PART -A

Bloom's

Q.N	o Question	Taxono Levo		Domain	
1.	State the Dirichlet's conditions for a function f(x) to be expanded as a Fourier series. MA6351 MAY/JUNE 2014, A/M 2017	BTL		Remembering	
	Solution:				
	(i) f(x) is periodic, single valued and finite.				
	(ii) f(x) has a finite number of discontinuities in any one period (iii) f(x) has a finite number of maxima and minima.				
	(iv) $f(x)$ and $f'(x)$ are piecewise continuous.				
2.	Find the value of a_0 in the Fourier series expansion of $f(x)=e^x$ in (0, π). [MA6351 MAY/JUNE 2014]	² BTL	-1	Remembering	
	Solution: $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} e^x dx = 0.$				
	If $(\pi - x)^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ in $0 < x < 2\pi$, then deduce that value	e			
3.	of $\sum_{n=1}^{\infty} \frac{1}{n^2}$. [MA6351 NOV/DEC 2014]	BTL	-1	Remembering	
	Solution: Put $x=0$, $\sum_{n=1}^{\infty} \frac{1}{n^2} = 6$.				
4.		3TL -2		Understanding	
	<u>Solution</u> No since tanx has infinite number of infinite				
	discontinuous and not satisfying Dirichlet's condition.				
5 .	Determine the value of a_n in the Fourier series expansion of	BTL -5		Evaluating	
	$f(x) = x^3 \text{ in } (-\pi, \pi).$				
	Solution: $a_n = 0$ since $f(x)$ is an odd function				
6 .	Find the constant term in the expansion of COS^2X as a Fourier series in the interval $(-\pi, \pi)$.	BTL -2		Understanding	
	Solution: $a_0 = 1$				
_	If $f(x)$ is an odd function defined in (-1, 1). What are the values of			TT 1	
7.	a_0 and a_n ?	BTL -2		Understanding	
	Solution: $a_n = 0 = a_0$				
8.	If the function $f(x) = x$ in the interval $0 \le x \le 2$ then find the	оті з	-	Understanding	
0.	constant term of the Fourier series expansion of the function f.	BTL -2		Onderstanding	
	Solution: $a_0 = 4 \pi$				

9.	Expand $f(x) = 1$ as a half range sine series in the interval $(0, \pi)$. [MA6351 MAY/JUNE 2014] Solution: The sine series of $f(x)$ in $(0, \pi)$ is given by $f(x) = \sum_{n=1}^{\infty} b_n \sin nx$ where $b_n = \frac{2}{\pi} \int_0^{\pi} \sin nx dx = -\frac{2}{n\pi} [\cos nx]_0^{\pi} = 0$ if n is even $= \frac{4}{n\pi} \text{ if n is odd}$ $f(x) = \sum_{n=odd}^{\infty} \frac{4}{n\pi} \sin nx = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)}.$	BTL -4	Analyzing
10.	Find the value of the Fourier Series for $f(x) = 0 - c < x < 0$ $= 1 0 < x < c \text{ at } x = 0$ MA6351 M/J 2016 $\underline{Solution:} f(x) \text{ at } x = 0 \text{ is a discontinuous point in the middle.}$ $f(x) \text{ at } x = 0 = \frac{f(0-) + f(0+)}{2}$ $f(0-) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} 0 = 0$ $h \to 0 \text{ h} \to 0$ $f(0+) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} 1 = 1$ $h \to 0 \text{ h} \to 0$ $\therefore f(x) \text{ at } x = 0 \Rightarrow (0+1)/2 = 1/2 = 0.5$	BTL -3	Applying
11.	What is meant by Harmonic Analysis? <u>Solution</u> : The process of finding Euler constant for a tabular function is known as Harmonic Analysis.	BTL -4	Analyzing
	Find the constant term in the Fourier series corresponding to $f(x) = \cos^2 x$ expressed in the interval $(-\pi,\pi)$. Solution: Given $f(x) = \cos^2 x = \frac{1+\cos 2x}{2}$ W.K.T $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$ To find $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2 x dx = \frac{2}{\pi} \int_{0}^{\pi} \frac{1+\cos 2x}{2} dx = \frac{1}{\pi} \left[x + \frac{\sin 2x}{2} \right]_{0}^{\pi}$ $= \frac{1}{\pi} [(\pi + 0) - (0 + 0)] = 1$.	BTL -1	Remembering
13.	Define Root Mean Square (or) R.M.S value of a function $f(x)$ over the interval (a,b) . Solution: The root mean square value of $f(x)$ over the interval (a,b) is defined as	BTL -3	Applying

	b		
	$\int [f(x)]^2 dx$		
	R.M.S. $= \sqrt{\frac{\int_a^b [f(x)]^2 dx}{b-a}}.$		
14.	Find the root mean square value of the function $f(x) = x$ in the	BTL -1	Remembering
	interval $(0,l)$.		
	Solution: The sine series of $f(x)$ in (a,b) is given by		
	$\int_{1}^{b} [f(x)]^{2} dx \qquad \int_{1}^{t} [x]^{2} dx$		
	R.M.S. $ = \sqrt{\frac{\int_{a}^{b} [f(x)]^{2} dx}{b-a}} = \sqrt{\frac{\int_{0}^{l} [x]^{2} dx}{l-0}} = \frac{l}{\sqrt{3}}. $		
	$b-a$ $l-0$ $\sqrt{3}$		
15.	If $f(x) = 2x$ in the interval (0,4), then find the value of a_2 in the Fourier series expansion.	BTL -5	Evaluating
	Solution: $a_2 = \frac{2}{4} \int_{0}^{4} 2x \cos[\pi x] dx = 0.$		
	4 0		
16.	To which value, the half range sine series corresponding to $f(x) = x^2$	BTL -6	Creating
	expressed in the interval $(0,5)$ converges at $x = 5$?. Solution: $x = 2$ is a point of discontinuity in the extremum.		
	Solution. x = 2 is a point of discontinuity in the extremum.		
	$\therefore [f(x)]_{x=5} = \frac{f(0) + f(5)}{2} = \frac{[0] + [25]}{2} = \frac{25}{2}.$		
	If the Fourier Series corresponding to $f(x) = x$ in the interval $(0, 2\pi)$		
17.	is $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ without finding the values of	BTL -4	Analyzing
	$a_{0, a_{n}}$, b_{n} find the value of $\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2})$.		
	[MA2211 APR/MAY 2011] Solution: By Parseval's Theorem		
	$\left \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_0^{2\Pi} [f(x)]^2 dx = \frac{1}{\pi} \int_0^{2\Pi} x^2 dx = \frac{1}{\pi} \left[\frac{x^3}{3} \right] \right _0^{2\Pi}$		
	$=\frac{8}{3}\pi^2$		
18.	Obtain the first term of the Fourier series for the function $f(x) = x^2$,	BTL -1	Remembering
	$\pi < x < \pi$.		
	Solution: Given $f(x) = x^2$, is an even function in $-\pi < x < \pi$. Therefore,		
	$a_o = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{\pi} \left[\frac{x^3}{3} \right]_0^{\pi} = \frac{2}{3} \pi^2.$		
19.	Find the co-efficient b_n of the Fourier series for the function $f(x) = \frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \right)$	BTL -6	Creating
	xsinx in $(-2, 2)$. Solution: vsinx is an even function in $(-2, 2)$. Therefore $h = 0$	DIL -U	Croumig
	Solution: xsinx is an even function in $(-2,2)$. Therefore $b_n = 0$.		

20.	Find the sum of the Fourier Series for	BTL -3	Applying
	f(x) = x 0 < x < 1		
	$= 2 1 \le x \le 2 at x = 1.$		
	Solution: $f(x)$ at $x=1$ is a discontinuous point in the middle.		
	$f(x)$ at $x = 1 = \frac{f(1-) + f(1+)}{2}$		
	$I(x) \text{ at } x = 1 = \frac{1}{2}$		
	$f(1-) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} 1 - h = 1$		
	$h \rightarrow 0$ $h \rightarrow 0$		
	$f(1+) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} 2 = 2$		
	$h \rightarrow 0$ $h \rightarrow 0$		
	$f(x)$ at $x = 1 \rightarrow (1+2)/2 = 3/2 = 1.5$		
	DADE D		

PART – B

1.(a)	Obtain the Fourier's series of the function $f(x) = \begin{cases} x & for 0 < x < \pi \\ 2\pi - x & for \pi < x < 2\pi \end{cases}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$ MA6351A/M 2017	BTL -1	Remembering
1.(b)	Find the Fourier's series of $f(x) = x $ in $-\pi < x < \pi$ And deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$	BTL -1	Remembering
2.(a)	Find the Fourier's series expansion of period $2l$ for $f(x) = (l-x)^2$ in the range $(0,2l)$. Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$		Understanding
2.(b)	Find the Fourier series of periodicity 2π for $f(x) = x^2$ in $-\pi \le x \le \pi$. Hence deduce that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$.	BTL -2	Understanding
3.(a)	Find the Fourier series upto second harmonic for the following data:	BTL -1	Remembering

	Find t	he Fourie							
3. (b)		f(x) =	$2x - x^2$ in	the interv	val 0 < x < 2	2		BTL -1	Remembering
4. (a)								BTL -5	Evaluating
		$\begin{bmatrix} x & in \end{bmatrix}$	$0,\frac{l}{l}$					BIL -3	2,41444116
	f(x)	= {	(2)						
		$= \begin{cases} x & in \\ l - x & \frac{1}{2} \end{cases}$	$\left(\frac{l}{2},l\right)$						
	Find	the half r	ange sine	series of t	he function	f(x) = x($(\pi - x)$ in	n	
4. (b)		the inte	rval (0, J	I) .				BTL -3	Applying
	D	1	г .		<u> </u>				
5. (a)					ne function	RIL/ MAY 2	015	BTL -5	Evaluating
		$j = \sin x ^{-t}$	n n = x	= n. 1vii	103317111	1417 1 2	2015		C
	Find	the comp	olex form	of the Four	rier series o	of $f(x) = e^{-ax}$	in (-l,l)		
5.(b)		6351 APF				,	· · · ·	BTL -1	Remembering
6.(a)	Find t	he Fourie	r series fo	f(x) = x	$\sin x in (-$	(π,π) .			
								BTL -2	Remembering
	Find t	he Fourie	r series ex	pansion of	f(x) = x +	$-x^2 - 2 \le x$	$c \leq 2$.		
6.(b)				F	<i>J</i> (11)			BTL -2	Remembering
7.(a)	Find t	he Fourie	r series fo	$f(x) = \int_{-\infty}^{\infty} f(x) dx$	$\frac{x}{\pi - x} = \frac{(0, \pi/2)}{(\pi/2)^2}$	2)			Analyzing
	I ma t	ne i ouriei	301103 10	(x) - (x)	$\pi - x (\pi / $	$(2,2\pi)$.		BTL -4	
	MA63	351 APRII	L/ MAY 2	2015					
7.(b)	Fi	nd the Fou	ırier serie	s of f(x) =	$x + x^2$ in (-	-l, l) with pe	eriod		
	21.								Applying
	Find the Fourier series as far as the second harmonic to represent								
8.(a)	(a) the function $f(x)$ with period 6, given in the following table.						_		
	X	0	1	2	3	4	5	BTL -6	Creating
	f(x)	9	18	24	28	26	20		

8.(b)	Find the cor $1 < x < 1$. MA					ies of fo	$(x)=e^{-x}$	in -	BTL -2	Remembering
9.(a)	Find the half $f(x) = x(\pi)$	•					$\frac{1}{2^4} + \dots =$	$\frac{\pi^4}{90}$	BTL -2	Remembering
0 (1)	Obtain the Fo $f(x) = x , -$	ourier s	series to	represei	nt the fu	nction		2		
9.(b) 10.(a)	(M/J 2012) Find the ha				n=	1 (Applying
10.(b)	Obtain the						= x in () <x<4.< th=""><th></th><th>Remembering</th></x<4.<>		Remembering
	Hence ded			1 2			_4		BTL -1	Remembering
11.(a)	By using Cosine series show that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + = \frac{\pi^4}{96}$ for $f(x) = x$ in $0 < x < \pi$									Analyzing
11.(b)	Find the F			-			-		BTL -6	Creating
12.(a)	Show that $f(x)=e^{ax} (-x)$		mplex fo						BTL -1	Remembering
12.(b)	Find the complex form of the Fourier series of $f(x)=e^{-x}$ in -1 < x < 1 · (N/D 2009)								BTL -4	Analyzing
13.	Calculate the follow			nonics o	of the Fo	urier of	f(x) from	n		
	× 0 ×	90	150 180 210	240	330				BTL -6	Creating
	f(x) 1.8 1.1 0.3	0.16	2.16	1.3	2 1.8					

14.(a)	e comple e ^{-s} in –	BTL -4	Analyzing						
14.(b)	e Fourier ng table.		BTL -6	Creating					
	X	0	1	2	3	4	5		
	f(x)	9	18	24	28	26	20		

UNIT - III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Solution of one dimensional wave equation-One dimensional heat equation-Steady state solution of two dimensional heat equation-Fourier series solutions in Cartesian coordinates .

Textbook: Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.

PΛ	IJТ	' _ /	۸.

Q.No	Questions	BT	Competence	PO
		Level	_	
1	What is the basic difference between the solutions of one	BTL-4	Analyzing	PO1
	dimensional wave equation and one dimensional heat			
	equation.			
	Solution: The correct solution of one dimensional wave			
	equation is of periodic in nature. But the solution of heat			
	equation is not periodic in nature.			
	(A.U.N/D 2017, N/D 2011,2012, M/J 2013)			
2	In steady state conditions derive the solution of one	BTL-2	Understanding	PO1,P
	dimensional heat flow equations. [Nov / Dec 2005]			O2,PO
	Solution: one dimensional heat flow equation is			3
	$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \dots (1)$			
	$\frac{\partial t}{\partial t} - \alpha \frac{\partial x^2}{\partial x^2} \dots \dots$			
	When the steady state conditions exists, put $\frac{\partial u}{\partial t} = 0$			
	∂t			
	Then (1) becomes, $\frac{\partial^2 u}{\partial x^2} = 0$.			
	Solving, we get $u(x)=ax+b$. a and b are arbitrary constants.			

3	What are the possible solution of one dimensional wave equation. Solution: The possible solutions are (i) $y(x,t)=(A_1e^{px}+A_2e^{-px})(A_3e^{pat}+A_4e^{-pat})$ (ii)	BTL-1	Remembering	PO1,P O2
	$y(x,t) = (B_1 \cos px + B_2 \sin px)(B_3 \cos pat + B_4 \sin pat) \text{ (iii)}$			
4	$y(x,t)=(C_1x+C_2)(C_3t+C_4)$. (A.U. M/J 2014)	BTL-1	Damambaring	PO1
4	Classify the P.D.E $3u_{xx} + 4u_{yy} + 3u_y - 2u_x = 0$.	DIL-I	Remembering	POI
	Solution: $B^2 - 4AC = 16 - 4(3)(0) = 16 > 0$. It is hyperbolic. (A.U M/J 2008)			
5	The ends A and B of a rod of length 10cm long have their	BTL-1	Remembering	PO1
	temperatures kept at 20° <i>Cand</i> 70° <i>C</i> . Find the Steady state temperature distribution of the rod. Solution: The initial temperature distribution is $u(x,0) = \frac{b-a}{l}x + a$. Here			
	·			
	$a = 20^{\circ} C, b = 70^{\circ} C, l = 10cm.$ $\therefore u(x,t) = \frac{70 - 20}{10} x + 20 = 5x + 20.0 < x < 10.$			
	(A.U M/J 2008, A.U N/D 2012)			
6	Classify the PDE $ \frac{\partial^{2} u}{\partial x^{2}} + 4 \frac{\partial^{2} u}{\partial x \partial y} + 4 \frac{\partial^{2} u}{\partial y^{2}} - 12 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + 7u = x^{2} + y^{2}. $ Solution: The given PDE is $ u_{xx} + 4u_{xy} + 4u_{yy} - 12u_{x} + u_{y} + 7u = x^{2} + y^{2}.A = 1;B = 4;C = 4. $ $ B^{2} - 4AC = 16 - 16 = 0. $	BTL-3	Applying	PO1
	∴ The given PDE is parabolic.			
7	(A.U M/J 2009) Write down the one dimensional heat equation.	BTL-1	Remembering	PO1,P
/	Write down the one dimensional heat equation. Solution: The one dimensional heat equation is $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}.$	DIL-I	Kemembering	O2
	(A.U M/J 2010,N/D 2012)	DEL 4	D 1 1	DO4 D
8	Write down the possible solutions of one dimensional heat flow equation. Solution: The various possible solutions of one dimensional heat equation are (i)u(x,t)=($Ae^{px} + Be^{-px}$) $e^{\alpha^2 p^2 t}$ (ii) $(A\cos px + B\sin px)e^{-\alpha^2 p^2 t}$ (iii) u(x,t)=(Ax+B).	BTL-1	Remembering	PO1,P O2

boundary conditions in which the initial position of the string is $f(x)$ and the initial velocity imparted at each point is $g(x)$. Solution: The wave equation is $\frac{\partial^2 y}{\partial t^2} = \alpha^2 \frac{\partial^2 y}{\partial x^2}$. The boundary conditions are (i) $y(0,t)=0, \forall t>0$ (ii) $y(0,t)=0, \forall t>0$ (iii) $\frac{\partial y}{\partial t}(x,0)=g(x),0 < x < l.$ (iv) $y(x,0)=f(x),0 < x < l.$ (A.U. N/D 2007,M/J 2012,2016) 10 Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ $\frac{Solution:}{\partial x^2} \frac{\partial^2 u}{\partial t} = \frac{\partial u}{\partial x^2} \frac{\partial u}{\partial t}$ $\frac{\partial^2 u}{\partial t} \frac{\partial^2 u}{\partial t} = 0$ Here $a = \alpha^2$; $B = 0$; $C = 0$. $\therefore B^2 - 4AC = 0 - 4(\alpha^2)(0) = 0$. (A.U. M/J 2007,M/J2013,M/J 2016) 11 State the two dimensional Laplace equation? Solution: $U_{xx} + U_{xy} = 0$ (A.U., N/D 2011,2012, M/J 2014) 12 In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does the constant stands for? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U. M/J 2013) 13 What is the basic difference between the solutions of one dimensional wave	1/J 20	M/J 200	009,A	A.U N	N/D	2014)									
f(x) and the initial velocity imparted at each point is g(x). Solution: The wave equation is $\frac{\partial^2 y}{\partial t^2} = \alpha^2 \frac{\partial^2 y}{\partial x^2}$. The boundary conditions are (i) $y(0,t)=0, \forall t>0$ (ii) $y(0,t)=0, \forall t>0$ (iii) $\frac{\partial y}{\partial t}(x,0)=g(x),0< x< l.$ (iv) $y(x,0)=f(x),0< x< l.$ (A.U.N/D 2007,M/J 2012,2016) Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ $\frac{Solution:}{\alpha^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t}} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial t} = 0$ $\partial^2 u$	he o	the or	ne d	dime	ensio	nal w	ave e	quatio	on wi	ith initial	and	BTL-3	Appl	ying	PO1
Solution: The wave equation is $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$. The boundary conditions are (i) $y(0,t)=0, \forall t>0$ (ii) $y(0,t)=0, \forall t>0$ (iii) $\frac{\partial y}{\partial t}(x,0) = g(x), 0 < x < l.$ (iv) $y(x,0)=f(x), 0 < x < l.$ (A.U N/D 2007,M/J 2012,2016) 10 Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{a^2} \frac{\partial u}{\partial t}$ Solution: Given $\frac{\partial^2 u}{\partial x^2} = \frac{1}{a^2} \frac{\partial u}{\partial t}$ $a^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $a^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $a^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ Here $a = a^2$; $a = 0$; $a = 0$. (A.U M/J 2007,M/J2013, M/J 2016) 11 State the two dimensional Laplace equation? Solution: $u = u + u + u + u + u + u + u + u + u + $	ry co	lary con	nditi	ions	in w	hich t	he init	ial po	sition	of the str	ing is				
boundary conditions are (i) $y(0,t)=0, \forall t>0$ (ii) $y(0,t)=0, \forall t>0$ (iii) $y(0,t)=0, \forall t>0$ (A.U N/D 2007,M/J 2012,2016) 10 Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ $y(0,t)=0, \forall t>0$ $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ $y(0,t)=0, \forall t>0$ $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ $y(0,t)=0, \forall t>0$ $y(0,t)=0, \forall$	the	d the in	nitia	al velo	ocity	impa	rted at	t each	point	is $g(x)$.					
(i) $y(0,t)=0, \forall t>0$ (ii) $y(0,t)=0, \forall t>0$ (iii) $\frac{\partial y}{\partial t}(x,0)=g(x), 0< x<1.$ (iv) $y(x,0)=f(x),0< x<1.$ (A.U N/D 2007,M/J 2012,2016) 10 Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2}=\frac{1}{\alpha^2}\frac{\partial u}{\partial t}$ $\frac{Solution:}{\partial x^2}: \text{Give } \frac{\partial^2 u}{\partial x^2}=\frac{1}{\alpha^2}\frac{\partial u}{\partial t}$ $\frac{\partial^2 u}{\partial t}=\frac{1}{\alpha^2}\frac{\partial^2 u}{\partial t}$ $\frac{\partial^2 u}{\partial t}=\frac{\partial^2 u}{\partial t}=\frac{\partial^2 u}{\partial t}$ $\frac{\partial^2 u}{\partial t}=\frac{\partial^2 u}{\partial t}=\frac{\partial^2 u}{\partial t}$ $\frac{\partial^2 u}{\partial t}=\frac{\partial^2 u}{\partial t}=\frac{\partial^2 u}{\partial t}=\frac{\partial^2 u}{\partial t}$ $\frac{\partial^2 u}{\partial t}=\frac{\partial^2 u}$	<u>ıtion</u>	lution:	Th	he v	wave	equ	ation	is -	$\frac{\partial^2 y}{\partial t^2} =$	$= \alpha^2 \frac{\partial^2 y}{\partial x^2}.$	The				
(iii) $\frac{\partial y}{\partial t}(x,0) = g(x), 0 < x < l.$ (iv) $y(x,0) = f(x), 0 < x < l.$ (A.U N/D 2007,M/J 2012,2016) 10 Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ Solution: Given $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha} \frac{\partial u}{\partial t}$ $\alpha^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ (A.U M/J 2007,M/J2013,M/J 2016) 11 State the two dimensional Laplace equation? Solution: $U_{xx} + U_{yy} = 0$ (A.U., N/D 2011,2012, M/J 2014) 12 In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does the constant stands for? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) 13 What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation.	ndar	undary	y con	nditio	ons a	re									
(A.U N/D 2007,M/J 2012,2016) Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ Solution: Given $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ $\alpha^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ (A.U M/J 2007,M/J2013,M/J 2016) BTL-1 Remembering In an one dimensional Laplace equation? Solution: $U_{xx} + U_{yy} = 0$ (A.U., N/D 2011,2012, M/J 2014) 12 In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does the constant stands for? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c^2$. (A.U M/J 2013) 13 What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution:	3	y((0,t)=	= 0,∀	/ t>0	(ii) y((0,t)=0	$\forall t >$	0						
Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ Solution: Given $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ $\alpha^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $A = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ State the two dimensional Laplace equation? Solution: $U_{xx} + U_{yy} = 0$ $A = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = $	$\frac{\partial y}{\partial t}$	i) $\frac{\partial y}{\partial t}(x)$	<i>x</i> ,0)	=g((x), 0	< <i>x</i> <	(l. (iv)	y(x,0)	=f(x),() <x<1.< th=""><th></th><th></th><th></th><th></th><th></th></x<1.<>					
Classify the partial differential equation $\frac{\partial u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ Solution: Given $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ $\alpha^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $Accord BereA = \alpha^2$; $B = 0$; $C = 0$. $B^2 - 4AC = 0 - 4(\alpha^2)(0) = 0$. (A.U M/J 2007,M/J2013, M/J 2016) State the two dimensional Laplace equation? Solution: $U_{xx} + U_{yy} = 0$ (A.U., N/D 2011,2012, M/J 2014) BTL-1 Remembering In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does the constant stands for? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution:									2			DTI 1	Dam	1	DO1
$\alpha^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $Here A = \alpha^2; B = 0; C = 0.$ $\therefore B^2 - 4AC = 0 - 4(\alpha^2)(0) = 0.$ (A.U M/J 2007,M/J2013, M/J 2016) 11 State the two dimensional Laplace equation? Solution: $U_{xx} + U_{yy} = 0$ (A.U., N/D 2011,2012, M/J 2014) 12 In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does the constant stands for? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) 13 What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution:	the	fy the p	parti	tial d	liffer	ential	equat	ion $\frac{\partial}{\partial}$	$\frac{\partial^2 u}{\partial x^2} = -\frac{1}{6}$	$\frac{1}{\alpha^2} \frac{\partial u}{\partial t}$		B1L-1	Keme	embering	PO1
Here $A = \alpha^2$; $B = 0$; $C = 0$. $\therefore B^2 - 4AC = 0 - 4(\alpha^2)(0) = 0$. (A.U M/J 2007,M/J2013,M/J 2016) 11 State the two dimensional Laplace equation? Solution: $U_{xx} + U_{yy} = 0$ (A.U., N/D 2011,2012, M/J 2014) 12 In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does the constant stands for? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) 13 What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution:	ıtion	<u>lution</u> :	: Giv	ven -	$\frac{\partial^2 u}{\partial x^2} =$	$=\frac{1}{\alpha^2}\frac{\partial}{\partial x^2}$	∂u ∂t								
			α^2	$\frac{\partial^2 u}{\partial x^2}$	$-\frac{\partial u}{\partial t}$	$\frac{1}{2} = 0$									
 (A.U M/J 2007,M/J2013,M/J 2016) State the two dimensional Laplace equation? Solution: U_{xx} + U_{yy} = 0 (A.U., N/D 2011,2012, M/J 2014) In an one dimensional heat equation			Не	ereA :	$=\alpha^2$;B=0	0; C =	0.							
State the two dimensional Laplace equation? Solution: $U_{xx} + U_{yy} = 0$ (A.U., N/D 2011,2012, M/J 2014) In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does the constant stands for? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) Remembering BTL-1 Remembering BTL-1 Remembering In an one dimensional heat equation of the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013)			∴ <i>E</i>	B^2-4	4 <i>AC</i>	' = 0 -	$-4(\alpha^2)$	= (0)	0.						
Solution: $U_{xx} + U_{yy} = 0$ (A.U., N/D 2011,2012, M/J 2014) 12 In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does the constant stands for? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c^2$. (A.U M/J 2013) 13 What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution:															
 (A.U., N/D 2011,2012, M/J 2014) In an one dimensional heat equation ^{∂u}/_{∂t} = α² ^{∂²u}/_{∂x²} what does the constant stands for ? Solution: α² is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation k/ ρα = c² . (A.U M/J 2013) What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution: 							lace ec	quatio	n?			BTL-1	Remo	embering	PO1
In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial u}{\partial x^2}$ what does the constant stands for ? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation.							4)								
the constant stands for ? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation.	ne di	one din	mens	nsion	al he	at eq	uation	$\frac{\partial u}{\partial x}$	$=\alpha^2\frac{\partial}{\partial x}$	$\frac{\partial^2 u}{\partial x^2}$ what	does	BTL-1	Remo	embering	PO1
body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) 13 What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution:								CI	Č	∂x					
specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) 13 What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution:								2							
have the relation $k/\rho\alpha = c2$. (A.U M/J 2013) 13 What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution:		_	-							•					
dimensional wave equation and one dimensional heat equation. Solution:								-			,				
equation and one dimensional heat equation. Solution:					feren	ice be	tween	the so	olutio	ns of one	!	BTL-1	Reme	embering	PO1,P
Solution:					mens	ional	heat e	quati	on.						O2,PO 5
Solution of the one dimensional wave equation is of	<u>n</u> :	on:						-			c				
periodic in nature.					one	dimei	nsıona	ıl wav	e equ	ation is o)Î				
But Solution of the one dimensional heat equation is not of periodic in nature.	utior	olution	of tl	the o	ne di	imens	sional	heat e	equati	on is not	of				

	(A.U A/M 2016)			
14	In the wave equation $\frac{\partial^2 y}{\partial t^2} = \alpha^2 \frac{\partial^2 y}{\partial x^2}$, What does α^2 stands for ? Solution: $\alpha^2 = \frac{Tension}{MassperUnitlength}$	BTL-1	Remembering	PO1
	(A.U M/J 2014)			701
15	In 2D heat equation or Laplace equation ,What is the basic assumption? Solution: When the heat flow is along curves instead of straight lines,the curves lying in parallel planes the flow is called two dimensional (A.U M/J 2016)	BTL-4	Analyzing	PO1
16	Define steady state condition on heat flow. Solution: Steady state condition in heat flow means that the temp at any point in the body does not vary with time. That is, it is independent of t, the time. (MA2211 A.U M/J 2013)	BTL-1	Remembering	PO1
17	Write the solution of one dimensional heat flow equation , when the time derivative is absent. Solution: When time derivative is absent the heat flow equation is $U_{xx} = 0$ (A.U N/D 2009, N/D 2015)	BTL-2	Understanding	PO2
18	If the solution of one dimensional heat flow equation depends neither on Fourier cosine series nor on Fourier sine series, what would have been the nature of the end conditions? Solution: One end should be thermally insulated and the other end is at zero temperature. (A.U M/J 2017)	BTL-1	Remembering	PO1
19	State any two laws which are assumed to derive one dimensional heat equation? Solution: (i)The sides of the bar are insulated so that the loss or gain of heat from the sides by conduction or radiation is negligible. (ii)The same amount of heat is applied at all points of the face (A.U M/J 2013)	BTL-1	Remembering	PO1,P O2
20	What are the assumptions made before deriving the one dimensional heat equation? Solution: (i) Heat flows from a higher to lower temperature. (ii) The amount of heat required to produce a given temperature change in a body is proportional to the mass of the body and to the temperature change. (iii) The rate at which heat flows through an area is	BTL-1	Remembering	PO1,P O2

21	proportional to the area and to the temperature gradient normal to the area. (A.U M/J 2014) Write down the two dimensional heat equation both in transient and steady states.			
	Solution: Transient state: $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ Steady state: : $U_{xx} + U_{yy} = 0$ (A.U M/J 2013)			
	PART-B			
1	A uniform string is stretched and fastened to two points $'l'$ apart. Motion is started by displacing the string into the form of the curve $y = kx(l-x)$ and then releasing it from this position at time $t=0$. Find the displacement of the point of the string at a distance x from one end at time t . (A.U.N/D 2017, N/D 2015,2012, M/J 2013)	BTL-4	Analyzing	PO1,P O2,PO 5
2	A tightly stretched string of length l has its ends fastened at $x=0$ and $x=l$. The midpoint of the string is then taken to a height h and then released from rest in that position. Obtain an expression for the displacement of the string at any subsequent time.	BTL-4	Analyzing	PO1,P O2,PO 5
3	A tightly stretched string of length $2l$ is fastened at both ends. The midpoint of the string is displaced by a distance 'b' transversely and the string is released from rest in this position. (Find the lateral displacement of a point of the string at time 't' from the instant of release) Find an expression for the transverse displacement of the string at any time during the subsequent motion (A.U. N/D 2011, M/J 2014)	BTL-5	Evaluating	PO1,P O2,PO 5
4	A tightly stretched string of length 1 is initially at rest in equilibrium position and each point of it is given the velocity $\left(\frac{\partial y}{\partial y}\right)_{t=0} = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. Find the displacement at any time 't'. (A.U N/D 2014)	BTL-5	Evaluating	PO1,P O2,PO 5
5	A string is stretched between two fixed points at a distance $2l$ apart and the points of the string are given initial	BTL-2	Understanding	PO1,P O2

	velocities v where $v = \begin{cases} \frac{cx}{l} & 0 < x < l \\ \frac{c}{l}(2l - x) & l < x < 2l \end{cases}$ distance from one end point. Find the displacement of the string at any subsequent time. (A.U.N/D 2008).			
6	A rod 30cm long has its ends A and B kept at $20^{\circ}c$ and $80^{\circ}c$ respectively until steady state conditions prevails. The temperature at each end is then suddenely reduced to $0^{\circ}c$ and kept so. Find the resulting temperature function $u(x,t)$ taking $x = 0$ at A.(Nov./Dec. 2009). (A.U.N/D 2011, M/J 2014)	BTL-2	Understanding	PO1,P O2
7	A rod of length 1 has its ends A and B kept at $0^{\circ}c$ and $120^{\circ}c$ respectively until steady state conditions prevail. If the temperature at B is reduced to $0^{\circ}c$ and so while that of A is maintained, find the temperature distribution of the rod. (A.U M/J 2012,16)	BTL-5	Evaluating	PO1,P O2,PO 5
8	An infinitely long rectangular plate with insulated surface is 10 cm wide. The two long edges and one short edge are kept at zero temperature, while the other short edge $x = 0$ is kept at temperature given by $u = \begin{cases} 20y, & 0 \le y \le 5 \\ 20(10 - y), & 5 \le y \le 10 \end{cases}$ (A.U M/J 2011,N/D 2012,M/J 2016)	BTL-5	Evaluating	PO1,P O2,PO 5
9	A string is stretched and fastened to two points \boldsymbol{l} apart. Motion is started by displacing the string into the form $y = k(\boldsymbol{l}x-x^2)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance x from one end at time t. (A.U M/J 2015,2016)	BTL-5	Evaluating	PO1,P O2,PO 5
10	A square plate is bounded by the lines $x = 0$, $x = a$, $y = 0$ and $y = b$. Its surfaces are insulated and the temperature along $y = b$ is kept at 100° C. Find the steady-state temperature at any point in the plate. [A.U. N/D 2014]	BTL-5	Evaluating	PO1,P O2,PO 5
11	A tightly stretched string with fixed end points $x = 0$ and $x = 1$ is initially in a position given by $y(x,0) = y_0 \sin^3 \left(\frac{\pi x}{l}\right)$. Find	BTL-2	Understanding	PO1,P O2

1				1		1
the	displacement	at	any	time ' <i>t</i> ' .		
(A.U N/D			J			

UNIT - IV FOURIER TRANSFORM

Fourier integral theorem (without proof) – Fourier transform pair –Sine and Cosine transforms-Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

Textbook: Grewal. B.S., and Grewal. J.S., "Numerical Methods in Engineering and Science", 9th Edition, Khanna Publishers, New Delhi, 2007.

	PART - A			
CO Mappir	ng: C214.2			
Q.No	Questions	BT	Competence	PO
		Level		
1	Prove that $F[f(x-a)] = e^{ias}F(s)$	BTL-4	Analyzing	PO1
	Proof:			
	$\int_{\Gamma(f(x))} \int_{\Gamma(f(x))} \int_{\Gamma$			
	$F(f(x)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$			
	$F(f(x-a)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-a)e^{isx} dx, putt = x-a;$	dt = dx		
	$x \to +\infty$		x 0	
	. , –	, , , _		
	$F(f(x-a)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{is(t+a)}dt = e^{isa} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)$	$e^{ist}dt=e$	$^{sa}F(s).$	
	(A.U.N/D , N/D 2011,2012, M/J 2013)			
2	Prove that $E(f(x) = x = x) = \frac{1}{1} [E(x + x) + E(x = x)]$	BTL-1	Remembering	PO1,P
	Prove that $F(f(x)\cos ax) = \frac{1}{2}[F(s+a) + F(s-a)].$			O2
	[MA2211 APR/MAY2011]			
	Proof:			
1		1	1	1

		1	I	1
	$F(f(x)\cos ax) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\cos ax e^{ixx} dx$			
	$=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}f(x)\frac{e^{iax}+e^{-iax}}{2}e^{ixx}dx$			
	$=\frac{1}{2}\left(\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{i(s+a)x}dx+\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)dx\right)$	$e^{i(s-a)x}dx$		
	$=\frac{1}{2}\big[F(s+a)+F(s-a)\big].$			
	(A.U.N/D 2017, N/D 2015,2012, M/J 2011)			
3	Prove that $F_c(f(x)\sin ax) = \frac{1}{2}[F_s(s+a) + F_s(s-a)]$	BTL-2	Understanding	PO1,P O2
	Proof:			
	$F_{c}(f(x)\cos ax) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x)\sin ax \cos sx dx$			
	$= \frac{1}{2} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) (\sin(s+a)x + \sin(s-a)x) dx$			
	$= \frac{1}{2} \left(\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x) \sin(s+a)x dx + \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x) s \right)$	in(s-a)	xdx	
	$= \frac{1}{2} [F_{s}(s+a) + F_{s}(s-a)].$			
	(A.U M/J 2011,2008)			
4	Find the Fourier sine transform of e-x, x >0. Solution:	BTL-4	Analyzing	PO2
	$F_s(f(x)) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin sx dx = \sqrt{\frac{2}{\pi}} \int_0^\infty e^{-x} \sin sx dx$			
	$= \sqrt{\frac{2}{\pi}} \left[\frac{e^{-x}}{1+s^2} \left(-\sin sx - s\cos sx \right) \right]_0^{\infty} = \sqrt{\frac{2}{\pi}}$	$\frac{s}{1+s^2}$		
	(A.U.N/D 2010)			
5	Write the Fourier transform pair. <u>Proof:</u>	BTL-1	Remembering	PO1

		T		1
	$F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$			
	$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{-isx} ds$			
	(A.U N/D 2009,N/D 2012,M/J 2015,2016)			
6	Find the Fourier sine transform of $\frac{1}{2}$.	BTL-2	Understanding	PO1
	Solution: $\frac{1}{x}$.			
	$F_{s}(f(x)) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{x} \sin sx dx$			
	$put sx = \theta; sdx = d\theta; \qquad \qquad = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin \theta}{\theta} d\theta =$	$\sqrt{\frac{2}{\pi}} \frac{\pi}{2} =$	$=\sqrt{\frac{\pi}{2}}$.	
	(A.U M/J 2009,N/D 2012,M/J 2015,2016)	DIET 0	** 1 . 1	DO4 D
7	Find the Fourier cosine transform of $f(ax)$.	BTL-2	Understanding	PO1,P O2
	Solution:			02
	$F_{c}(f(ax)) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(ax) \cos sx dx$			
	$put \ t = ax; \ dt = adx$			
	$= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos\left(\frac{st}{a}\right) \frac{dt}{a} = \frac{1}{a} F_{c}\left(\frac{s}{a}\right).$			
0	(A.U M/J 2013)	DTI 4	D 1 .	DO4
8	Find the Fourier Cosine transform of e^{-ax} .	BTL-1	Remembering	PO1
	Solution:			
	$F_{c}[e^{-ax}] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-ax} \cos sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{a^{2} + s^{2}} (-a \cos sx + a $	s sx + s s	$\left[\ln sx \right]_{0}^{\infty}$	
	$=\sqrt{\frac{2}{\pi}}\frac{a}{a^2+s^2}.$			
	(A.U M/J 2012 N/D 2015,N/D 2009)			
9	Find the Fourier transform of $f(x) = \begin{cases} e^{ikx}, & a < x < b \\ 0, & x < a, x > b \end{cases}$	BTL-1	Remembering	PO1
	Solution:			

	T		_ <i>L</i>	1
	$F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{ikx} e^{isx} dx = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{i(s+k)x} dx = \frac{1}{\sqrt{2\pi}}$	$= \frac{e^{i(s+k)}}{i(s+k)}$	$\begin{pmatrix} k \\ k \end{pmatrix} \Big]_a^b$	
	$=\frac{1}{\sqrt{2\pi}}\left[\frac{e^{i(s+k)b}-e^{i(s+k)a}}{i(s+k)}\right].$			
10	(A.U M/J 2016,N/D 2012,N/D 2009)	BTL-1	D l	DO1
10	State convolution theorem. Solution: If F(s) and G(s) are fourier transforms of f(x) and	DIL-I	Remembering	PO1
	g(x) respectively then the fourier transform of the			
	convolutions of $f(x)$ and $g(x)$ is the product of their fourier			
	transform.			
	(A.U N/D 2012,M/J 2016)			
11	Write the Fourier cosine transform pair?	BTL-2	Understanding	PO1,P
	$F(s) = \frac{2}{\int_{0}^{\infty} f(s) \cos s s ds}$			O2
	Solution: $F_c(s) = \frac{2}{\sqrt{\pi}} \int_0^\infty f(x) \cos sx dx$			
	$f(x) = \frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{\infty} F_{c}(f(x)\cos sx ds)$			
	$f(x) = \frac{1}{\sqrt{\pi}} \int_{0}^{\pi} F_{c}(f(x)\cos sx ds)$			
	(A.U N/D 2011,N/D 2014)			
12	Write Fourier sine transform and its inversion formula?	BTL-4	Analyzing	PO1
	Solution: $F_s(s) = \frac{2}{\sqrt{\pi}} \int_0^\infty f(x) \sin sx dx$			
	Solution: $\sqrt{\pi} \int_0^{\pi} (\pi)^{n} dx$			
	$f(x) = \frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{\infty} F_{s}(f(x)\sin sx ds)$			
	$\int (x) = \frac{1}{\sqrt{\pi}} \int_0^{\pi} \int_0^{\pi} (f(x) \sin 3x dx)$			
13	State the modulation theorem in Fourier transform.	BTL-4	Analyzing	PO1,P
	Solution : If $F(s)$ is the Fourier transform of $f(x)$, then			O2
	$F[f(x)\cos ax] = 1/2 [F(s+a) + F(s-a)]$			
14	(A.U.N/D 2014)	BTL-4	Analyzina	DO1
14	State the Parsevals identity on Fourier transform. Solution: If $F(s)$ is the Fourier transform of $f(x)$, then	D1L-4	Analyzing	PO1
	$_{\infty}$ $_{\infty}$ $_{\infty}$ $_{\infty}$ $_{\infty}$ $_{\infty}$ $_{\infty}$			
	$\int_{0}^{\infty} \left f(x) \right ^{2} dx = \int_{0}^{\infty} \left F(s) \right ^{2} ds$			
	$-\infty$ $-\infty$			
	(A.U N/D 2014,M/J 2016)			701
15	State Fourier Integral theorem.	BTL-1	Remembering	PO1
	Solution : If $f(x)$ is piecewise continuously differentiable & absolutely integrable in $(-\infty, \infty)$ then			
	$f(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)e^{is(x-t)}dtds$			
	This is known as Fourier integral theorem			
	(A.U M/J 2014)			
16	Define self-reciprocal with respect to Fourier Transform.	BTL-4	Analyzing	PO1
	Solution: If a transformation of a function $f(x)$ is equal to $f(s)$			
	then the function $f(x)$ is called self-reciprocal			

	A.U. N/D 2013]			
	PART - B			
1	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, & x \le a \\ 0, & x \ne a \end{cases}$ Hence evaluate $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos\left(\frac{s}{2}\right) dx.$ (A.U M/J 2011,A/M 2012,N/D 2015)	BTL-5	Evaluating	PO1,P O2, PO3,P O5
2	Find the Fourier cosine transform of $f(x) = e^{-ax}$, $a > 0$ and $g(x) = e^{-bx}$, $b > 0$. Hence evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + 1)(x^2 + 9)}$. (A.UA/M 2009)	BTL-4	Analyzing	PO1,P O2
3	Find the Fourier Transform of f(x) given by $f(x) = \begin{cases} a - x , & x \le a \\ 0, & x \ne a \end{cases}$. Hence show that $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2} \ and \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}.$ (A.U.N/D 2017, N/D 2011,2012, M/J 2013)	BTL-5	Evaluating	PO1,PO2, PO5,PO1 2
4	Find the Fourier transform of $f(x) = \begin{cases} 1, & \text{for } x \le a \\ 0, & \text{for } x \le a \end{cases} \text{ and using Parseval's } $ identity prove that $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2}.$ (A.U.N/D 2017, N/D 2011,2014, M/J 2013)	BTL-4	Analyzing	PO1,PO2, PO5,PO1 2
5	Find the Fourier sine and cosine transform of e^{-ax} and hence find the Fourier sine transform of $\frac{x}{x^2 + a^2}$ and Fourier cosine transform of $\frac{1}{x^2 + a^2}$ (A.U. N/D 2011)	BTL-5	Evaluating	PO1,PO2, PO5,PO1 2
6	Find the Fourier cosine transform of e^{-x^2} . (A.U M/J 2016)	BTL-4	Analyzing	PO1,PO2, PO5,PO1 2
7	Prove that $\frac{1}{\sqrt{x}}$ is self reciprocal under Fourier sine	BTL-5	Evaluating	PO1,PO2, PO5,PO1

	and cosine transforms. (A.U N/D 2015,M/J 2014)			
8	Evaluate $\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$ using Fourier	BTL-5	Evaluating	PO1,PO2, PO5,PO1
9	transforms(MA1201 N/D 2005, M/J 2014,N/D2016) By finding the Fourier cosine transform of $f(x) = e^{-ax} (a \phi 0)$ and using Parseval's identity for cosine transform evaluate $\int_{0}^{\infty} \frac{dx}{(a^2 + x^2)^2}.$ (A.U A/M 2016)	BTL-3	Applying	PO1,PO2, PO5,PO1 2
10	If $F_c(s)$ and $G_c(s)$ are the Fourier cosine transform of $f(x)$ and $g(x)$ respectively, then prove that $\int_0^\infty f(x)g(x)dx = \int_0^\infty F_c(s)G_c(s)ds.$ (A.U N/D 2008,M/J 2015)	BTL-3	Applying	PO1,PO2, PO5,PO1 2
11.	Find the Fourier sine transform of $f(x) = \begin{cases} x, & 0 \pi x \pi 1 \\ 2 - x, & 1 \pi x \pi 2 \\ 0, & x \neq 2. \end{cases}$	BTL-5	Evaluating	PO1,PO2, PO5,PO1 2
12.	(A.U.N/D 2016, N/D 2011,2012, M/J 2014) If $F_c(f(x)) = F_c(s)$, prove that $F_c(F_c(x)) = f(s)$. (A.U M/J 2017)	BTL-3	Applying	PO1,PO2, PO5,PO1 2
13	Use transform method to evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$	BTL-3	Applying	PO1,PO2, PO5,PO1 2

UNIT-V Z-TRANSFORMS AND DIFFERENCE EQUATIONS

Z-transforms - Elementary properties - Inverse Z-transform - Convolution theorem -Formation of difference equations - Solution of difference equations using Z-transform.

PART – A				
Mapping	;:			
Q.No	Questions	BT	Competence	PO
		Level		
	Define the unit step sequence. Write its Z- transform.			PO1
	Soln: It is defined as			
1.	$U(k): \{1,1,1,\ldots\} =$	BTL -1	Remembering	
	$\begin{cases} 1, \ k > 0 \\ 0, \ k < 0 \end{cases}$			

Hence $Z[u(k)] = 1 + 1/z + 1/z^2 + + = \frac{1}{1 - 1/z} = \frac{z}{z - 1}$ (A.U.N/D 2017, N/D 2010,2012, M/J 2013) Form a difference equation by eliminating the arbitrary constant A from $y_n = A.3^n$ 2. Soln: $y_n = A.3^n$, $y_{n+1} = A.3^{n+1} = 3A 3^n = 3y_n$ Hence $y_{n+1} - 3y_n = 0$ (A.U N/D 2010,M/J 2012,2014) Find the Z transform of $\sin \frac{mn\pi}{2}$ BTL -5	
$\frac{z}{z-1}$ (A.U.N/D 2017, N/D 2010,2012, M/J 2013) Form a difference equation by eliminating the arbitrary constant A from $y_n = A.3^n$ 2. Soln: $y_n = A.3^n$, $y_{n+1} = A.3^{n+1} = 3A 3^n = 3y_n$ Hence $y_{n+1} - 3y_n \ 0$ (A.U N/D 2010,M/J 2012,2014) Find the Z transform of $\sin \frac{nn\pi}{2}$ BTL -5 PO1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	- 1
constant A from $y_n = A.3^n$ Soln: $y_n = A.3^n$, $y_{n+1} = A.3^{n+1} = 3A 3^n = 3y_n$ Hence $y_{n+1} - 3y_n \ 0$ (A.U N/D 2010,M/J 2012,2014) Find the Z transform of $\sin \frac{nn\pi}{2}$ BTL -5 PO1	
2. Soln: $y_n = A.3^n$, $y_{n+1} = A.3^{n+1} = 3A$, $y_n = 3y_n$ Hence $y_{n+1} - 3y_n = 0$ (A.U N/D 2010,M/J 2012,2014) Find the Z transform of $\sin \frac{nn\pi}{2}$ BTL -5 PO1	ĺ
Hence y_{n+1} - $3y_n$ 0 (A.U N/D 2010,M/J 2012,2014) Find the Z transform of $\sin \frac{nn\pi}{2}$ BTL -5	
(A.U N/D 2010,M/J 2012,2014) Find the Z transform of $\sin \frac{nn\pi}{2}$ BTL -5 PO1	
Find the Z transform of $\sin \frac{nn\pi}{2}$ BTL -5 PO1	
Find the Z transform of $\sin \frac{m\pi}{2}$	\dashv
Soln: We know that , $z[\sin n\theta] = \frac{z \sin n\theta}{z^2 - 2z \cos \theta + 1}$ Understanding	
3. $\begin{bmatrix} z_2 - 2z\cos\theta + 1 \\ z_3 - z\sin n\pi/2 \end{bmatrix}$ Understanding	
Put $\theta = \pi/2$ $z[\sin\frac{n\pi}{2}] = \frac{z\sin n\pi/2}{z^2 - \frac{2z\cos\pi}{2} + 1} = \frac{z}{z^2 + 1}$ Understanding	
(A.U.A/M 2010, M/J 2012)	\dashv
Find Z(n). PO1	
4. Soln: $Z(n) = \frac{z}{(z-1)2}$ Remembering	
(A.U M/J 2011)	
Express $Z\{ f(n+1) \}$ in terms of $f(z)$ BTL -1 PO1	
5. Soln: $Z\{f(n+1)\} = zf(z) - zf(0)$ Remembering	
(A.U M/J 2011)	
Find the value of $z\{f(n)\}$ when $f(n) = na^n$ BTL -1	
Soln: $z(na^n) = \frac{az}{1}$ Understanding PO2,	P
(A.U M/J 2009) Find gloid using 7 transform	_
Find z[e-iat] using Z transform. 8 on By shifting property, z[o-iat] = zoiaT / zoiaT . Pomembering	
7. Soln. By shifting property, $z[e^{-iat}] = ze^{iaT}/ze^{iaT}$. Remembering	
(A.U M/J 2011,N/D 2012) Find the Z transform of an/n! . BTL -1 PO1	\dashv
$Coln_1 = Col_2 = Colon_2 = Colon_3 = Colon_3$	
8. Some z[a / hi] = ea/z (by definition) Understanding	
(A.U WIJ 2012,17/D 2017)	
State initial value theorem in Z-transform. BTL -1 PO1	\dashv
9. Solution : If $f(t) = F(z)$ then $\lim_{t \to 0} f(t) = \lim_{z \to \infty} F(z)$. Understanding	
(A.U.N/D 2015,2013)	
State final value theorem in Z-transform. BTL -1 PO1	\exists
10. Solution: If $f(t) = F(z)$ then $\lim_{t \to \infty} f(t) = \lim_{z \to 0} F(z)$. Understanding	
State Euler formula. (A.U M/J 2013)	
State Convolution theorem on Z-transform. BTL -1 PO1	
Solution : If $X(z)$ and $Y(z)$ are Z - transforms of $x(n)$ and	
11. y(n) respectively then the Z- transform of the convolutions	
of x(n) and y(n) is the product of their Z- transform.	
(A.U M/J 2012,N/D 2014)	
12. Define Z-transforms of f(t). Solution: Z-transform for discrete values of t: If f(t) is a BTL -1 Understanding PO1	
to the second to the contract of the contract	

	To a 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T	Т
	function defined for discrete values of t where t=nT,		1	
	n=0,1,2,T being the sampling period then		1	
	$Z{f(t)} = F(Z) = \sum_{n=0}^{\infty} f(nT)Z^{-n}$			
	Define Z- transform of the sequence.	BTL -4		
	Solution: Let {x(n)} be a sequence defined for all integers		1	
13.	then its Z-transform is defined to be		Analyzing	PO2
	$\sum_{n=1}^{\infty} (n)^{n}$			
	$Z\{x(n)\} = X(Z) = \sum_{n=0}^{\infty} x(n)Z^{-n}$		1	
1.4	State first shifting theorem.	BTL -2		PO5
14.	Solution : If $Z\{f(t)\} = F(Z)$ then $Z\{(e^{-at} f(t))\} = F(ze^{at})$		Remembering	
	Find the Z-Transform of $\cos n\theta$ and $\sin n\theta$?	BTL -2		PO5
			1	
	Solution: $Z(\cos n\theta) = \frac{z(z - \cos \theta)}{(z - \cos \theta)^2 + \sin^2 \theta}$		1	
15.			Remembering	
	$Z(\sin \theta) = \frac{z \sin \theta}{(z - \cos \theta)^2 + \sin^2 \theta}$		1	
			1	
	(A.U N/D 2017)	DOT 1	 	701
	Find the Z-transform of unit step sequence.	BTL -1	1	PO1
	Solution: $u(n) = 1$ for $n \ge 0$		1	
16.	Solution: $u(n) = 1$ for $n \le 0$.		Domomhoning	
10.			Remembering	
	Now $Z[u(n)] = \frac{z}{z-1}$		1	
	z-1		1	
	Find the Z-transform of unit sample sequence.	BTL -1		PO1
	Solution: $\delta(n) = 1$ for $n = 0$			
17.	$\delta(n) = 0 \text{ for } n > 0.$		Understanding	
1	Now $Z[\delta(n)] = 1$		1	
	Form a difference equation by eliminating arbitrary	BTL -1		PO1
	constant from $u_n = a.2^{n+1}$.	DIL -	1	
	Solution: Given , $u_n = a.2^{n+1}$		1	
1	$u_{n+1} = a \cdot 2^{n+2}$		1	
18.	Eliminating the constant a, we get		Understanding	
10.	u = 1		Ullucistations	
1	$\begin{bmatrix} u_n & 1 \\ u_{n+1} & 2 \end{bmatrix} = 0$		1	
	We get $2u_n - u_{n+1} = 0$		1	
	We get $2u_n - u_{n+1} - 0$		1	
	Form the difference equation from $y_n = a + b \cdot 3^n$	BTL -1		PO1
	Solution: Given, $y_n = a + b \cdot 3^n$	D12. _	1	
10	$y_{n+1} = a + b \cdot 3^{n+1}$			
19.	$= a+3b.3^{n}$		Understanding	
	$y_{n+2} = a + b \cdot 3^{n+2}$		1	
	$= a+9b.3^{n}$			

	Eliminating a and b we get, $y_n = 1 - 1$ $y_{n+1} = 1 - 3$ = 0 $y_{n+2} = 1 - 9$ We get $y_{n+2} - 4y_{n+1} + 3y_n = 0$			
20.	Find $Z\left[\frac{a^n}{n!}\right]$ Solution : $Z\left[\frac{a^n}{n!}\right] = e^{\frac{a}{z}}$			
	PART-B			1
1.	Find the Z-transform of $\cos n\theta$ and $\sin n\theta$. Hence deduce the Z-transform of $\cos (n + 1)\theta$ and $a^n \sin n\theta$ (A.U.N/D 2012,2015,M/J 2016)	BTL -1	Remembering	PO1,P O2,PO 5
2	Use residue theorem find Z^{-1} $\left(z \cdot (z+1)\right)$ $(z-3)^3$	BTL -3	Applying	PO1,P O2,PO 5
3	Solve $y_{n+2} - 5y_{n+1} + 6y_n = 6^n$, $y_0 = 1$, $y_1 = 0$ (A.U.N/D 2012,2016)	BTL -1	Remembering	PO1,P O2,PO 5
4	Solve using Z-Transform $u_{n+2} + 6u_{n+1} + 9u_n = 2^n$; given $u_0 = u_1 = 0$ [NOV/DEC 2010]	BTL -1	Remembering	PO1,P O2,PO 5
5	Using convolution theorem find the inverse Z transform of [APRIL/MAY 2010] $ \left(\frac{z}{z-4}\right)^3 $ (A.U.M/J 2010, N/D2014)	BTL -2	Understanding	PO1,P O2,PO 5
6	Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, $y_0 = 0$, $y_1 = 0$ (A.U.N/D 2014,2017)	BTL -1	Remembering	PO1,P O2,PO 5
7	Using convolution theorem find $Z^{-1}\left(\frac{z^2}{(z-4)(z-3)}\right)$ (A.U.N/D 2014,2016, M/J2013)	BTL -1	Remembering	PO1,P O2,PO 5
8	Fnd the inverse Z -transform of $\frac{Z^3-20Z}{(Z-2)^3(Z-4)}$ (A.U.N/D 2009)	BTL -3	Applying	PO1,P O2,PO 12
9	Find $Z^{-1}\left(\frac{8z^2}{(2z-1)(4z+1)}\right)$ (A.U.N/D 2015,2013)	BTL -3	Applying	PO1,P O2,PO 12

10	State and Prove Convolution theorem (A.U.N/D 2016,2011)	BTL -3	Applying	PO1,P O2,PO 12
11	Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, $y_0 = 0$, $y_1 = 0$ (A.U.A/M 2008,2010,N/D2014)	BTL -5	Evaluating	PO1,P O2,PO 5
12	Prove that $Z\left(\frac{1}{n}\right) = \log\left(\frac{z}{z-1}\right)$	BTL -3	Applying	PO1,P O2,PO 12
13	Using convolution theorem evaluate inverse Z-transform of $\left[\frac{z^2}{(z-1)(z-3)}\right]$ (A.U.N/D 2010,2016)	BTL -1	Remembering	PO1,P O2,PO 5