

DEPARTMENT OF MANAGEMENT STUDIES

II YEAR / III SEMESTER

# BA4101: STATISTICS FOR MANAGEMENT STUDY MATERIAL 

Faculty In charge

## Dr. P. SIVAGAMI



Anna University Chennai
Regulation 2021

## TABLE OF CONTENTS

| S.No | Particulars | Pg No |
| :---: | :---: | :---: |
| 1 | COLLEGE- Mission/ Vision | 3 |
| 2 | MBA Dept - Mission/ Vision | 3 |
|  | PEO'S/PO's | 4 |
|  | CO'S/ CO-PEO matrix | 4 |
| 3 | SYLLABUS OF THE SUBJECT | 5 |
| 4 | STUDY MATERIAL |  |
|  | UNIT I | 6 |
|  | UNIT II | 39 |
|  | UNIT III | 48 |
|  | UNIT IV | 108 |
|  | UNIT V | 117 |
| 5 | QUESTIONS BNAK UNITWISE <br> PART -A (30 questions with answer) / <br> PART (10 questions from the unit) with page number from the question bank. (Unit 1 to Unit 3) | 122 |
| 6 | PREVIOUS YEAR UNIVERSITY QUESTION | 139 |

# Jeppiaar Nagar, OMR Salai, Semmencherry ,Chennai -600119 

VISION
To build Jeppiaar Engineering College as an institution of academic excellence in technology and management education, leading to become a world class university.

## MISSION

- To excel in teaching and learning, research and innovation by promoting the principles of scientific analysis and creative thinking.
- To participate in the production, development and dissemination of knowledge and interact with national and international communities.
- To equip students with values, ethics and life skills needed to enrich their lives and enable them to contribute for the progress of society.
- To prepare students for higher studies and lifelong learning, enrich them with the practical skills necessary to excel as future professionals and entrepreneurs for the benefit of Nation's economy.


## DEPARTMENT OF MANAGEMENT STUDIES

## VISION

To be a prominent management institution developing industry ready managers, entrepreneurs and socially responsible leaders by imparting extensive expertise and competencies.

## MISSION

- To provide management education to all groups in the community.
- To practice management through scholarly research and education.
- To advance in the best practices of management which enable the students to meet the global industry demand.
- To promote higher studies, lifelong learning, entrepreneurial skills and develop socially responsible professionals for empowering nation's economy.


## PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

MBA programme curriculum is designed to prepare the post graduate students

- To have a thorough understanding of the core aspects of the business.
- To provide the learners with the management tools to identify, analyze and create business opportunities as well as solve business problems.
- To prepare them to have a holistic approach towards management functions.
- To inspire and make them practice ethical standards in business.


## PROGRAMME OUTCOMES (POs)

On successful completion of the programme,

1. Ability to apply the business acumen gained in practice.
2. Ability to understand and solve managerial issues.
3. Ability to communicate and negotiate effectively, to achieve organizational and individual goals.
4. Ability to understand one's own ability to set achievable targets and complete them.
5. Ability to fulfill social outreach
6. Ability to take up challenging assignments

## COURSE OBJECTIVE:

प To learn the applications of statistics in business decision making.

## COURSE OUTCOMES:

[C101.1: Facilitate objective solutions in business decision making.
[ C101.2: Understand and solve business problems.

- C101.3: Apply statistical techniques to data sets, and correctly interpret the results.
[C101.4: Develop skill-set that is in demand in both the research and business environments.
- C101.5: Enable the students to apply the statistical techniques in a work setting.


## CO-PO Matrix

| CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | 3 | 3 | 3 | 0 | 0 | 2 |
| $\mathbf{C O 2}$ | 3 | 3 | 3 | 0 | 0 | 2 |
| $\mathbf{C O 3}$ | 3 | 3 | 3 | 0 | 0 | 2 |
| $\mathbf{C O 4}$ | 3 | 3 | 3 | 0 | 0 | 2 |
| $\mathbf{C O 5}$ | 3 | 3 | 3 | 0 | 3 | 2 |
| Average | $\mathbf{3}$ | $\mathbf{3}$ | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{2}$ |

## BA4101 - STATISTICS FOR MANAGEMENT

## Syllabus

## COURSE OBJECTIVE:

To learn the applications of statistics in business decision making.
UNIT I INTRODUCTION
Basic definitions and rules for probability, conditional probability independence of events, Baye's theorem, and random variables, Probability distributions: Binomial, Poisson, Uniform and Normal distributions.

## UNIT II SAMPLING DISTRIBUTION AND ESTIMATION

Introduction to sampling distributions, sampling distribution of mean and proportion, application of central limit theorem, sampling techniques. Estimation: Point and Interval estimates for population parameters of large sample and small samples, determining the sample size.

UNIT III TESTING OF HYPOTHESIS - PARAMETIRC TESTS
Hypothesis testing: one sample and two sample tests for means and proportions of large samples (ztest), one sample and two sample tests for means of small samples (t-test), F-test for two sample standard deviations. ANOVA one and two way

UNIT IV NON-PARAMETRIC TESTS
Chi-square test for single sample standard deviation. Chi-square tests for independence of attributes and goodness of fit. Sign test for paired data. Rank sum test. Kolmogorov-Smirnov test for goodness of fit comparing two populations. Mann - Whitney U test and Kruskal Wallis test. One sample run test.

UNIT V CORRELATION AND REGRESSION
Correlation - Coefficient of Determination - Rank Correlation - Regression - Estimation of Regression line - Method of Least Squares - Standard Error of estimate.
REFERENCES:

1. Richard I. Levin, David S. Rubin, Masood H.Siddiqui, Sanjay Rastogi, Statistics for Management, Pearson Education, 8th Edition, 2017.
2. Prem. S. Mann, Introductory Statistics, Wiley Publications, 9th Edition, 2015.
3. T N Srivastava and Shailaja Rego, Statistics for Management, Tata McGraw Hill, 3rd Edition 2017.
4. Ken Black, Applied Business Statistics, 7th Edition, Wiley India Edition, 2012.
5. David R. Anderson, Dennis J. Sweeney, Thomas A.Williams, Jeffrey D.Camm, James J.Cochran, Statistics for business and economics, 13th edition, Thomson (South - Western) Asia, Singapore, 2016.
6. N. D. Vohra, Business Statistics, Tata McGraw Hill, 2017.

## UNIT I INTRODUCTION

Basic definitions and rules for probability, conditional probability independence of events, Baye's theorem, and random variables, Probability distributions: Binomial, Poisson, Uniform and Normal distributions.

## UNIT-1 INTRODUCTION

Random experiment: An experiment whose all possible outcomes are known, but it is not possible to predict the outcome.

## Probability:

Let $A$ be a event and $B$ be a its sample space then its probability on the occurrence on events is defined as $P(A)=\frac{\text { No. of favourable Cases }}{\text { Total no. of exhaustic Cases }}$.

## Axioms of Probability:

(i) $0 \leq P(E) \leq 1$ (ii) $P(S)=1$ (iii) $P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)$ if $\mathrm{E}_{\mathrm{i}}$ 's are mutually exclusive events.
Example: (i) A fair coin is "tossed" (ii) A die is "rolled" are random experiments, since we cannot predict the outcome of the experiment in any trial.

## Mutually exclusive:

Two events are said to be mutually exclusive if the occurrence of any one of them excludes the occurrence of other in a single experiment.
Example: Tossing of Coin.

## Independent events:

Two (or) more events are independent if the occurrence of one does not affect the occurrence of the other.
Example: If coin is tossed twice; result of second throw is not affected by the result of first throw.
Addition Law of Probability:
If $A$ and $B$ are two events in a sample space " S " then $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

## Conditional Probability:

The conditional probability of an event $B$ assuming that the event $A$ has happened, is defined as $P(B / A)=\frac{P(A \cap B)}{P(A)}, P(A) \neq 0$
Similarly, $P(A / B)=\frac{P(A \cap B)}{P(B)}, P(B) \neq 0$.

## 1. If $A$ and $B$ are independent events then a) $A$ and $\bar{B}$ b) $\bar{A}$ and $\bar{B}$ are also independent. <br> Solution:

Since A and B are independent,

$$
P(A \cap B)=P(A) P(B)---1
$$

a) $P(A \cap \bar{B})=P(A)-P(A \cap B)$

$$
\begin{aligned}
& =P(A)-P(A) P(B) \quad[u \sin g(1)] \\
& =P(A)[1-P(B)] \\
P(A \cap \bar{B}) & =P(A) P(\bar{B}) \quad \therefore A \& B \text { are independent events }
\end{aligned}
$$

b) $P(\bar{A} \cap \bar{B})=P(\overline{A \cup B})$

$$
\begin{aligned}
& =1-P(A \cup B) \\
& =1-[P(A)+P(B)-P(A \cap B)][B y \text { addition theorem }]
\end{aligned}
$$

$$
\begin{aligned}
& =1-P(A)-P(B)+P(A \cap B) \\
& =1-P(A)-P(B)+P(A) P(B) \quad[u \sin g-1] \\
& =1-P(A)-P(B)[1-P(A)] \\
& =[1-P(A)][1-P(B)] \\
P & (\bar{A} \cap \bar{B})=P(\bar{A}) P(\bar{B})
\end{aligned}
$$

$\therefore \bar{A} \& \bar{B}$ are indepentent events.
2. A Problem in statistics is given to three students. $A, B$ and $C$ whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved?
Solution:
Let A, B, C Denote the events that the problem is solved by the students A, B, C respectively.
Then $P(A)=\frac{1}{2}, P(B)=\frac{1}{2} \quad, P(C)=\frac{1}{4}$

$$
\begin{aligned}
& P(\bar{A})=1-\frac{1}{2}=\frac{1}{2} \\
& P(\bar{B})=1-\frac{1}{3}=\frac{2}{3} \\
& P(\bar{C})=1-\frac{1}{4}=\frac{3}{4}
\end{aligned}
$$

P (all the three students will not solve the problem) $=P(\bar{A}) P(\bar{B}) P(\bar{C})=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}=\frac{1}{4}$
$\therefore \mathrm{P}($ all the three students will solve the problem $)=P(A \cup B \cup C)$
$=1-P(\bar{A}) P(\bar{B}) P(\bar{C})=1-\frac{1}{4}=\frac{3}{4}$
3. Event $A$ and $B$ are such that $P(A+B)=\frac{3}{4}, P(A B)=\frac{1}{4}$ and $P(\bar{A})=\frac{2}{3}$ find $P(B)$.

## Solution:

Given $P(A+B)=\frac{3}{4}, P(A B)=\frac{1}{4}, P(\bar{A})=\frac{2}{3}$
i.e. $P(A)=1-P(\bar{A})=1-\frac{2}{3}=\frac{1}{3}$

By addition theorem

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& \text { i.e. } P(B)=P(A \cup B)-P(A)+P(A \cap B) \\
& \quad P(B)=\frac{3}{4}-\frac{1}{3}+\frac{1}{4}=\frac{9-4+3}{12}=\frac{8}{12}=\frac{2}{3}
\end{aligned}
$$

4. An integer is chosen at random from two hundred digits. What is the probability that the integer is divisible by 6 or 8 ?

## Solution:

The sample space $=\{1,2,3 \ldots . . .199,200\}$

$$
n(S)=100
$$

Let the event A be an integer chosen that is divisible by 6 ,
i.e. $A=\{6,12,18$. 198\}
$n(A)=\frac{198}{6}=33$
$\therefore n(A)=\frac{n(A)}{n(S)}=\frac{33}{200}$
Let the event B be an integer chosen that is divisible by 8
i.e. $B=\{8,16,24 \ldots . .200\}$
$n(B)=\frac{200}{8}=25$
$\therefore P(B)=\frac{n(B)}{n(S)}=\frac{25}{200}$
The L.C.M of $6 \& 8$ is 24 .
Hence, a number that is divisible by both $6 \& 8$ is divisible by 24 .

$$
\begin{aligned}
& \therefore A \cap B=\{24,48,72, \ldots . .192\} \\
& n(A \cap B)=\frac{192}{24}=8 \\
& \therefore P(A \cap B)=\frac{n(A \cap B)}{n(S)}=\frac{8}{200}
\end{aligned}
$$

Hence by addition theorem on probability

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{33}{200}+\frac{25}{200}-\frac{8}{200}=\frac{58-8}{200}=\frac{50}{200}=\frac{1}{4}
$$

5. $A$ and $B$ throw alternatively with a pair of dice. $A$ wins if he throws $\mathbf{6}$ before $B$ throws 7 and 8 wins if he throws 7 before a throws 6.If $A$ begins, show that their respective chances of winning are in the ratio 30:61.

## Solution:

Let $A_{i}$ denote the event of A's throwing 6 in the $\mathrm{i}^{\text {th }}$ thrown $i=1,2,3, \ldots$
' 6 ' can be obtained with two dice in the following ways
$(1,5)(5,1)(2,4)(4,2)(3,3)$
i.e. 5 distinct ways

$$
P\left(A_{i}\right)=\frac{5}{36}, P\left(\overline{A_{i}}\right)=1-P\left(A_{i}\right)=\frac{31}{36}, i=1,2, \ldots
$$

Let $B_{i}$ denote the event of B's throwing 7 in the $\mathrm{i}^{\text {th }}$ thrown $i=1,2,3, \ldots$
' 7 ' can be obtained with two dice in the following ways
$(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)$
i.e. 6 distinct ways

$$
P\left(B_{i}\right)=\frac{6}{36}, P\left(\overline{B_{i}}\right)=1-P\left(B_{i}\right)=\frac{5}{6}, i=1,2, \ldots \ldots
$$

6. If A starts the game, he will win in the following mutually exclusive ways:
(i) $A_{1}$ happens (ii) $\overline{A_{1}} \cap \overline{B_{2}} \cap A_{3}$ happens
(iii) $\overline{A_{1}} \cap \overline{B_{2}} \cap \overline{A_{3}} \cap \overline{B_{4}} \cap A_{5}$ happens, and so on.

Hence by addition theorem of probability, the required probability of winning is given by $P(A)$,

$$
\begin{aligned}
P(A) & =P(i)+P(i i)+P(i i i)+\ldots \\
& =P\left(A_{1}\right)+P\left(\overline{A_{1}} \cap \overline{B_{2}} \cap A_{3}\right)+P\left(\overline{A_{1}} \cap \overline{B_{2}} \cap \overline{A_{3}} \cap \overline{B_{4}} \cap A_{5}\right)+\ldots \\
& =P\left(A_{1}\right)+P\left(\overline{A_{1}}\right) P\left(\overline{B_{2}}\right) P\left(A_{3}\right)+P\left(\overline{A_{1}}\right) P\left(\overline{B_{2}}\right) P\left(\overline{A_{3}}\right) P\left(\overline{B_{4}}\right) P\left(A_{5}\right)+\ldots
\end{aligned}
$$

[ $\because$ the events are mutually independent]

$$
=\frac{5}{36}+\left(\frac{31}{36} \times \frac{5}{6}\right) \times \frac{5}{36}+\left(\frac{31}{36} \times \frac{5}{6}\right) \times\left(\frac{31}{36} \times \frac{5}{6}\right) \times \frac{5}{36}+\ldots
$$

$\left[\because\right.$ the series is an infinite geometric series $\frac{a}{1-r}$ where $\left.a=\frac{5}{36} \& r=\left(\frac{31}{36}\right)\left(\frac{5}{6}\right)\right]$

$$
=\frac{\frac{5}{36}}{\left(1-\frac{31}{36}\right) \times \frac{5}{6}}=\frac{\frac{5}{36}}{\frac{61}{216}}=\frac{30}{61} .
$$

7. The probability that a contractor will get a plumbing contract is $2 / 3$ and the probability that he will not get an electric contract is $5 / 9$.If the probability of getting at least one contract is $4 / 5$, what is the probability that he will get both ?

## Solution:

Let $A$ be an event of getting a plumbing contract \& B be an event of getting an electric contract.

$$
\begin{aligned}
& P(A)=\frac{2}{3}, P(\bar{B})=\frac{5}{9}, P(A \cup B)=\frac{4}{5} \\
& P(B)=1-P(\bar{B})=1-\frac{5}{9}=\frac{4}{9}
\end{aligned}
$$

By addition theorem of probability

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$P(A \cap B)=\frac{2}{3}+\frac{4}{9}-\frac{4}{5}=\frac{30+20-36}{45}=\frac{50-36}{45}=\frac{14}{45}$
i.e. probability of getting both the contract is $\frac{14}{15}$.
8. Let $P(A \cup B)=\frac{5}{6}, P(A \cap B)=\frac{1}{3}$ and $P(\bar{B})=\frac{1}{2}$. Are the events $A$ and $B$ independent Explain.

## Solution:

$$
\begin{aligned}
P(B) & =1-P(\bar{B})=\frac{1}{2} \\
P(A) & =P(A \cup B)+P(A \cap B)-P(B) \\
& =\frac{5}{6}+\frac{1}{3}-\frac{1}{2}=\frac{5+2-3}{6}=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

Since $P(A \cap B)=\frac{1}{3}=P(A) P(B) \quad \because P(A) P(B)=\frac{2}{3} \frac{1}{2}=\frac{1}{3}$
Hence A \& B are independent

## Total probability of an event:

If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually exclusive and exhaustive events and $B$ is any event in $S$ then $P(B)=P\left(B_{1}\right) P\left(B / A_{1}\right)+P\left(B_{2}\right) P\left(B / A_{2}\right)+\ldots+P\left(B_{n}\right) P\left(B / A_{n}\right)$.

## State Baye's theorem.

If $E_{1}, E_{2}, \ldots, E_{n}$ are mutually disjoint events with $P\left(E_{i}\right) \neq 0,(i=1,2, \ldots, n)$ then for any arbitrary event a which is a subset of $\bigcup_{i=1}^{n} E_{i}$ such that $P(A)>0$ We have

$$
P\left(E_{i} / A\right)=\frac{P\left(E_{i}\right) P\left(A / E_{i}\right)}{\sum_{i=1}^{n} P\left(E_{i}\right) P\left(A / E_{i}\right)}, i=1,2, \ldots, n .
$$

9. If the probability that $A$ solves a problem is $1 / 2$ and that for $B$ is $3 / 4$ and if they
aim at solving a problem independently, what is the probability that the problem is solved?

## Solution:

Probability of A solving a problem is $P(A)=1 / 2$ \& that of $B$ is $P(B)=3 / 4$.
$\because A \& B$ are independent $P(A \cap B)=P(A) P(B)=\frac{1}{2} \cdot \frac{3}{4}=\frac{3}{8}$
Hence the probability that the problem is solved is

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B)=\frac{1}{2}+\frac{3}{4}-\frac{3}{8} \text { Using (1) } \\
& =\frac{4+6-3}{8}=\frac{10-3}{8}=\frac{7}{8} .
\end{aligned}
$$

10. In a shooting test, the probability of hitting the target is $1 / 2$ for $A, 2 / 3$ for $B$ and $3 / 4$ for $C$. If all of them fine at the target, find the probability that (i) none of them hits the target and (ii) atleast one of them hits the target. Solution:
Given $P(A)=\frac{1}{2}, P(B)=\frac{2}{3}, P(C)=\frac{3}{4}$

$$
P(\bar{A})=\frac{1}{2}, P(\bar{B})=\frac{1}{3}, P(\bar{C})=\frac{1}{4}
$$

(i) $P(\bar{A} \cap \bar{B} \cap \bar{C})=P(\bar{A}) P(\bar{B}) P(\bar{C})$ (by independence) $=\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}=\frac{1}{24}$
(ii) P (atleast one hits the target) $=1-\mathrm{P}($ none hits the target $)=1-\frac{1}{24}=\frac{23}{24}$
11. A bolt is manufactured by 3 machines $A, B$ and $C$. A turns out twi ce as many items as $B$, and machines $B$ and $C$ produce equal number of items. $2 \%$ of bolts produced by $A$ and $B$ are defective and $4 \%$ of bolts produced by $C$ are defective. All bolts are put into 1 stock pile and 1 is chosen from this pile. What is the Probability that it is defective?

## Solution:

Let A, B \& C be the event in which the item has been produced by machine A, B \& C respectively.
D be the event of the item being defective.
Given $P(A)=\frac{1}{2}, P(B)=P(C)=\frac{1}{4}$

$$
\begin{aligned}
& P(D / A)=P(\text { an item is defective, given that A has produced it }) \\
& \\
& =\frac{2}{100}=P(D / B)
\end{aligned} \begin{aligned}
P(D / C) & =\frac{4}{100}
\end{aligned}
$$

By theorem of total probability,

$$
\begin{aligned}
P(D) & =P(A) \times P(D / A)+P(B) \times P(D / B)+P(C) \times P(D / C) \\
& =\frac{1}{2} \times \frac{2}{100}+\frac{1}{4} \times \frac{2}{100}+\frac{1}{4} \times \frac{4}{100}=\frac{1}{100}+\frac{1}{200}+\frac{1}{100}=\frac{2}{100}+\frac{1}{200}
\end{aligned}
$$

$$
=\frac{4+1}{200}=\frac{5}{200}=\frac{1}{40} .
$$

12. For a certain binary communication channel, the probability that a transmitted ' 0 ' is received as a ' 0 ' is 0.95 and the probability that a transmitted ' 1 ' is received as ' 1 'is 0.90 . If the probability that (i) a ' 1 ' is received and (ii) a ' 1 ' was transmitted given that a ' 1 ' was received.

## Solution:

Let $A$ be the event of transmitting ' 1 '
$\bar{A}$ be the event of transmitting ' 0 '
$B$ be the event of received ' 1 ' \&
$\bar{B}$ be the event of receiving ' 0 '.
Given $P(\bar{A})=0.4, P(B / A)=0.9 \& P(\bar{B} / \bar{A})=0.95$
$\therefore P(A)=1-P(\bar{A})=1-0.4=0.6 \& P(B / \bar{A})=0.05$
By the theorem of total probability

$$
P(B)=P(A) P(B / A)+P(\bar{A}) P(B / \bar{A})=0.6 \times 0.9+0.4 \times 0.05=0.56
$$

By Baye's Theorem,

$$
P(A / B)=\frac{P(A) \times P(B / A)}{P(B)}=\frac{0.6 \times 0.9}{0.56}=\frac{27}{28} .
$$

13. A given lot of IC chips contains $2 \%$ defective chips. Each chip is tested before delivery. The tester itself is not reliable. Probability of tester says the chip is good when it is really good is 0.95 and the probability of tester says chip is defective when it is actually defective is 0.94 . If a tested device is indicated to be defective, what is the probability that it is actually defective?

## Solution:

Let $A$ be the event of chip that is actually defective \& $B$ be the event of chip that is actually good.
Let D be the event of tester says it is good.
Given $P(A)=0.02, P(B)=0.98, P(D / B)=0.95$

$$
P(\bar{D} / A)=0.94, P(\bar{D} / B)=1-P(D / B)=1-0.95=0.05
$$

By the theorem of total probability

$$
P(\bar{D})=P(A) P(\bar{D} / A)+P(B) P(\bar{D} / B)=0.02 \times 0.94+0.98 \times 0.05=0.0678
$$

By Baye's rule,

$$
\begin{aligned}
& P(A / \bar{D})=\frac{P(A) P(\bar{D} / A)}{P(\bar{D})}=\frac{0.94 \times 0.02}{0.0678} \\
& P(A / \bar{D})=0.2772
\end{aligned}
$$

14. An urn contains 5 balls. Two balls are drawn and are found to be white. What is the probability of all the balls being white?

## Solution:

$$
\left.\begin{array}{cc}
A_{1} & A_{2} \\
\hline \begin{array}{ll}
W & O \\
2 & 3
\end{array} & \begin{array}{|cc}
W & O \\
3 & 2
\end{array}
\end{array} \begin{array}{|cc|}
\hline W & O \\
4 & 1
\end{array} \right\rvert\, \begin{gathered}
A_{3} \\
\hline
\end{gathered}
$$

Where $W$ denotes white ball \& $O$ denotes other colors.
Let it be $A_{1}, A_{2}, A_{3}, A_{4}$
$\therefore P\left(A_{1}\right)=P\left(A_{2}\right)=P\left(A_{3}\right)=P\left(A_{4}\right)=\frac{1}{4}$
Let $D$ be the event of selecting 2 white balls

$$
\begin{aligned}
& P\left(D / A_{1}\right)=\frac{2 C_{2}}{5 C_{2}}=\frac{1}{10} \\
& P\left(D / A_{2}\right)=\frac{3 C_{2}}{5 C_{2}}=\frac{3}{10} \\
& P\left(D / A_{3}\right)=\frac{4 C_{2}}{5 C_{2}}=\frac{3}{5} \\
& P\left(D / A_{4}\right)=\frac{5 C_{2}}{5 C_{2}}=1
\end{aligned}
$$

By the theorem of total probability

$$
\begin{aligned}
P(D) & =P\left(A_{1}\right) P\left(D / A_{1}\right)=P\left(A_{2}\right) P\left(D / A_{2}\right)+P\left(A_{3}\right) P\left(D / A_{3}\right)+P\left(A_{4}\right) P\left(D / A_{4}\right) \\
& =\frac{1}{4}\left(\frac{1}{10}+\frac{3}{10}+\frac{3}{5}+1\right)=\frac{1}{4}\left(\frac{1+3+6+10}{10}\right)=\frac{20}{40}=\frac{1}{2}
\end{aligned}
$$

By Bayer's theorem,

$$
P\left(A_{4} / D\right)=\frac{P\left(A_{4}\right) P\left(D / A_{4}\right)}{P(D)}=\frac{\frac{1}{4} \times 1}{\frac{1}{2}}=\frac{1}{2} .
$$

15. The first bag contains 3 white balls, 2 red balls and 4 black balls. Second bag contains 2 white, 3 red and 5 black balls and third bag contains 3 white, 4 red and 2 black balls. One bag is chosen at random and from it 3 balls are drawn. Out of three balls two balls are white and one is red. What are the probabilities that they were taken from first bag, second bag, third bag.

## Solution:

| $c$ | Urn I | Urn II |
| :---: | :---: | :---: |
| 3 2 4 <br> $W$ $R$ $B$ | 2 3 5 <br> $W$ $R$ $B$ | 3 4 2 <br> $W$ $R$ $B$ |

Where $\mathrm{W}, \mathrm{R}, \mathrm{B}$ denotes white, red \& black balls
Let it be $A_{1}, A_{2}, A_{3}$

$$
P\left(A_{1}\right)=P\left(A_{2}\right)=P\left(A_{3}\right)=\frac{1}{3}
$$

Let D be the event of selecting three balls taken from the selected bag that 2 are white and 1 is red

$$
\begin{aligned}
& P\left(D / A_{1}\right)=\frac{3 C_{2} \times 2 C_{1}}{9 C_{3}}=\frac{6}{84} \\
& P\left(D / A_{2}\right)=\frac{2 C_{2} \times 3 C_{1}}{10 C_{3}}=\frac{3}{120} \\
& P\left(D / A_{3}\right)=\frac{3 C_{2} \times 4 C_{1}}{9 C_{3}}=\frac{12}{84}
\end{aligned}
$$

By the theorem of total probability,

$$
\begin{aligned}
P(D) & =P\left(A_{1}\right) P\left(D / A_{1}\right)+P\left(A_{2}\right) P\left(D / A_{2}\right)+P\left(A_{3}\right) P\left(D / A_{3}\right) \\
& =\frac{1}{3} \times \frac{6}{84}+\frac{1}{3} \times \frac{3}{120}+\frac{1}{3} \times \frac{12}{84}=0.0746 .
\end{aligned}
$$

By Baye's theorem,

$$
\begin{aligned}
& P\left(A_{1} / B\right)=\frac{P\left(A_{1}\right) P\left(B / A_{1}\right)}{P(D)}=\frac{\frac{6}{84} \times \frac{1}{3}}{0.0746}=0.319 \\
& P\left(A_{2} / B\right)=\frac{P\left(A_{2}\right) P\left(B / A_{2}\right)}{P(D)}=\frac{\frac{1}{3} \times \frac{3}{120}}{0.0746}=0.0428 \\
& P\left(A_{3} / B\right)=\frac{P\left(A_{3}\right) P\left(B / A_{3}\right)}{P(D)}=\frac{\frac{1}{3} \times \frac{12}{84}}{0.0746}=0.6380
\end{aligned}
$$

16. A factory produces a certain type of outputs by three types of machine. The respective daily Production figures are: Machine I: 3,000 Units; Machine II: 2,500 Units; Machine III: 4,500 Units.Past experience shows that I percent of the output produced by machine $I$ is defective. The corresponding fractions of defectives for the other two machines are 1.2 percent and 2 percent respectively. An item is drawn at random from the day's production run and is
found to be defective. What is the probability that it comes from the output of (i) Machine I, (ii) Machine II, (iii) Machine III?

## Solution:

Let $A_{1} A_{2} \& A_{3}$ denote the events that the output is produced by machines I, II \& III respectively and let $D$ denote the event that the output is defective.
Thus

$$
\begin{aligned}
& P\left(A_{1}\right)=\frac{3000}{10,000}=0.30, P\left(A_{2}\right)=\frac{2500}{10,000}=0.25, P\left(A_{3}\right)=\frac{4500}{10,000}=0.45 \\
& P\left(D / A_{1}\right)=1 \%=0.01, P\left(D / A_{2}\right)=1.2 \%=0.012, P\left(D / A_{3}\right)=2 \%=0.02
\end{aligned}
$$

By the theorem of total probability,

$$
\begin{aligned}
P(D) & =P\left(A_{1}\right) P\left(D / A_{1}\right)+P\left(A_{2}\right) P\left(D / A_{2}\right)+P\left(A_{3}\right) P\left(D / A_{3}\right) \\
& =(0.30)(0.01)+(0.25)(0.012)+(0.45)(0.02)=0.015
\end{aligned}
$$

By Baye's rule
(i) $P\left(A_{1} / D\right)=\frac{P\left(A_{1}\right) P\left(D / A_{1}\right)}{P(D)}=\frac{0.003}{0.015}=\frac{1}{5}$
(ii) $P\left(A_{2} / D\right)=\frac{P\left(A_{2}\right) P\left(D / A_{2}\right)}{P(D)}=\frac{0.003}{0.015}=\frac{1}{5}$
(iii) $P\left(A_{3} / D\right)=\frac{P\left(A_{3}\right) P\left(D / A_{3}\right)}{P(D)}=\frac{0.009}{0.015}=\frac{3}{5}$
17. There are two boxes $B_{1}$ and $B_{2} \cdot B_{1}$ contains two red balls and one green ball. $B_{2}$ contains one red ball and two green balls.
(i)A ball is drawn from one of the boxes randomly. It is found to be red. What is the
Probability that it is from $B_{1}$ ?
(ii)Two balls are drawn randomly from one of the boxes without replacement. One is red and the other is green. What is the probability that they came from $B_{1}$ ?
(iii)A ball drawn from one of the boxes is green. What is the probability that it came from $B_{2}$ ?
(iv)A ball drawn from one of the boxes is white. What is the probability that it came from $B_{2}$ ?
Solution:
Let $B_{1}$ and $B_{2}$ be the events that the boxes $B_{1}$ and $B_{2}$ are selected respectively.
$P\left(B_{1}\right)=\frac{1}{2}, P\left(B_{2}\right)=\frac{1}{2}$
Let A be the event that a red ball is selected.
$P\left(A / B_{1}\right)=\frac{2}{3}, P\left(A / B_{2}\right)=\frac{1}{3}$
By Baye's theorem,
(i) P (ball is from $B_{1}$, given it is red)
$=P\left(A / B_{1}\right)=\frac{P\left(B_{1}\right) P\left(A / B_{1}\right)}{P\left(B_{1}\right) P\left(A / B_{1}\right)+P\left(B_{2}\right) P\left(A / B_{2}\right)}=\frac{\frac{1}{2} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{1}{3}\right)}=\frac{2}{3}$
(ii) Let C be the event that a red ball and a green ball are selected.

$$
P\left(C / B_{1}\right)=\frac{{ }^{2} C_{1} \times 1_{C_{1}}}{3_{C 2}}=\frac{2}{3}, P\left(C / B_{2}\right)=\frac{1_{C_{1}} \times 2_{C_{1}}}{3_{C 2}}=\frac{2}{3}
$$

$\mathrm{P}\left(B_{1}\right.$ was chosen given a red ball and a green ball were selected )
$=P\left(B_{1} / C\right)=\frac{P\left(B_{1}\right) P\left(C / B_{1}\right)}{P\left(B_{1}\right) P\left(C / B_{1}\right)+P\left(B_{2}\right) P\left(C / B_{2}\right)}=\frac{\frac{1}{2} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{2}{3}\right)}=\frac{1}{2}$
(iii) Let D be the event that a green ball is selected.

$$
P\left(D / B_{1}\right)=\frac{1}{3}, P\left(D / B_{2}\right)=\frac{2}{3}
$$

$=P\left(B_{2} / D\right)=\frac{P\left(B_{2}\right) P\left(D / B_{2}\right)}{P\left(B_{1}\right) P\left(D / B_{1}\right)+P\left(B_{2}\right) P\left(D / B_{2}\right)}=\frac{\frac{1}{2} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{1}{3}\right)+\left(\frac{1}{2} \times \frac{2}{3}\right)}=\frac{2}{3}$
(iv) Let E be the event that a white ball is selected.

The given two boxes does not contain a white ball, hence the probability is 0 .

## Random Variable:

A random variable is a real valued function whose domain is the sample space of a random experiment taking values on the real line $\mathbb{R}$.

## Discrete Random Variable:

A discrete random variable is one which can take only finite or countable number of values with definite probabilities associated with each one of them.
Probability mass function:
Let X be discrete random variable which assuming values $x_{1}, x_{2}, \ldots, x_{n}$ with each of the values, we associate a number called the probability $P\left(X=x_{i}\right)=p\left(x_{i}\right),(i=1,2, \ldots, n)$ this is called the probability of $x_{i}$ satisfying the following conditions
i. $p_{i} \geq 0 \forall i$ i.e., $p_{i}$ ' $s$ are all non-negative
ii. $\sum_{i=1}^{n} p_{i}=p_{1}+p_{2}+\ldots+p_{n}=1$ i.e., the total probability is one.

## Continuous random variable:

A continuous random variable is one which can assume every value between two specified values with a definite probability associated with each.

## Probability Density Function:

A function $f$ is said to be the probability density function of a continuous random variable X if it satisfies the following properties.
i. $f(x) \geq 0 ;-\infty<x<\infty$
ii. $\int_{-\infty}^{\infty} f(x) d x=1$.

## Distribution Function or Cumulative Distribution Function

i.Discrete Variable:

A distribution function of a discrete random variable X is defined as $P(X \leq x)=\sum_{x_{i} \leq x} P\left(x_{i}\right)$.
ii.Continuous Variable:

A distribution function of a continuous random variable X is defined as $F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x$.

## Mathematical Expectation

The expected value of the random variable X is defined as
i.If X is discrete random variable $E(X)=\sum_{i=1}^{\infty} x_{i} p\left(x_{i}\right)$ where $p(x)$ is the probability function of $x$.
ii.If X is continuous random variable $E(X)=\int_{-\infty}^{\infty} x f(x) d x$ where $f(x)$ is the probability density function of $x$.

## Properties of Expectation:

1. If $C$ is constant then $E(C)=C$

Proof:
Let $X$ be a discrete random variable then $E(x)=\sum x p(x)$
Now $E(C)=\sum C p(x)$
$=C \sum p(x) \quad$ since $\sum_{i=1}^{n} p_{i}=p_{1}+p_{2}+\ldots+p_{n}=1$
$=C$
2. If $a, b$ are constants then $E(a x+b)=a E(x)+b$

Proof:
Let $X$ be a discrete random variable then $E(x)=\sum x p(x)$
Now $E(a x+b)=\sum(a x+b) p(x)$
$=\sum \operatorname{axp}(x)+\sum b p(x)$
$=a \sum x p(x)+b \sum p(x) \quad$ since $\sum_{i=1}^{n} p_{i}=p_{1}+p_{2}+\ldots+p_{n}=1$
$=a E(x)+b$
3. If $a$ and $b$ are constants then $\operatorname{Var}(a x+b)=a^{2} \operatorname{Var}(x)$

Proof:
$\operatorname{Var}(a x+b)=E\left[(a x+b-E(a x+b))^{2}\right]$
$=E\left[(a x+b-a E(x)-b)^{2}\right]$
$=E\left[a^{2}(x-E(x))^{2}\right]$
$=a^{2} E\left[(x-E(x))^{2}\right]$
$=a^{2} \operatorname{Var}(x)$.
4. If $a$ is constant then $\operatorname{Var}(a x)=a^{2} \operatorname{Var}(x)$

Proof:
$\operatorname{Var}(a x)=E\left[(a x-E(a x))^{2}\right]$
$=E\left[(a x-a E(x))^{2}\right]$
$=E\left[a^{2}(x-E(x))^{2}\right]$
$=a^{2} E\left[(x-E(x))^{2}\right]$
$=a^{2} \operatorname{Var}(x)$.
5. Prove that $\operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}$

Proof:
$\operatorname{Var}(x)=E\left[(x-E(x))^{2}\right]$
$=E\left[x^{2}+(E(x))^{2}-2 x E(x)\right]$
$=E\left[x^{2}+\mu^{2}-2 x \mu\right]$
$=E\left(x^{2}\right)+E\left(\mu^{2}\right)-E(2 x \mu)$
$=E\left(x^{2}\right)+\mu^{2}-2 \mu E(x)$
$=E\left(x^{2}\right)+\mu^{2}-2 \mu^{2}$
$=E\left(x^{2}\right)-\mu^{2}$
$\operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}$

## Moment Generating Function (m.g.f)

A moment generating function of a random variable $X$ (about origin) is defined as $M_{X}(t)=E\left(e^{t X}\right)=\left\{\begin{array}{l}\int e^{t x} f(x) d x, \text { if } \mathrm{x} \text { is continuous } \\ \sum e^{t x} p(x), \text { if } \mathrm{x} \text { is discrete }\end{array}\right.$

## Properties of Moment Generating Function

1. $M_{c x}(t)=M_{x}(c t)$

Proof:
$M_{c x}(t)=E\left(e^{c x t}\right)$
$=E\left(e^{x(c t)}\right)$
$=M_{x}(c t)$
2. $M_{x+c}(t)=e^{c t} M_{x}(t)$

Proof:
$M_{x+c}(t)=E\left(e^{(x+c) t}\right)$
$=E\left(e^{x t} e^{c t}\right)$
$=e^{c t} M_{x}(t)$
3. $M_{a x+b}(t)=e^{b t} M_{x}(a t)$

Proof:
$M_{a x+b}(t)=E\left(e^{(a x+b) t}\right)$
$=E\left(e^{a x t} e^{b t}\right)$
$=e^{b t} E\left(e^{x(a t)}\right)$
$=e^{b t} M_{x}(a t)$
4. If $X$ and $Y$ are independent random variables then $M_{x+y}(t)=M_{x}(t) \cdot M_{y}(t)$

Proof:
$M_{x+y}(t)=E\left(e^{(x+y) t}\right)$
$=E\left(e^{x t} e^{v t}\right)$
$=E\left(e^{x t}\right) E\left(e^{v t}\right)$
$M_{x+y}(t)=M_{x}(t) M_{y}(t)$

## Problem. 1

If the probability distribution of $X$ is given as
$X \quad: \quad 1 \quad 2 \quad 3 \quad 4$
$\begin{array}{llllll}P X & : & 0.4 & 0.3 & 0.2 & 0.1\end{array}$

Find $P(1 / 2<X<7 / 2 / X>1)$
Solution:

$$
\begin{aligned}
P\{1 / 2<X<7 / 2 / X>1\} & =\frac{P\{(1 / 2<X<7 / 2) \cap X>1\}}{P(X>1)} \\
& =\frac{P(X=2 \text { or } 3)}{P(X=2,3 \text { or } 4)}=\frac{P(X=2)+P(X=3)}{P(X=2)+P(X=3)+P(X=4)} \\
& =\frac{0.3+0.2}{0.3+0.2+0.1}=\frac{0.5}{0.6}=\frac{5}{6} .
\end{aligned}
$$

## Problem. 2

A random variable $X$ has the following probability distribution

| $X$ | $:$ | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P X$ | $:$ | 0.1 | $K$ | 0.2 | $2 K$ | 0.3 | $3 K$ |

a) Find $K$, b) Evaluate $P(X<2)$ and $P(-2<X<2)$
b) Find the cdf of $X$ and d) Evaluate the mean of $X$.

## Solution:

$$
\begin{aligned}
& \text { a) Since } \sum P(X)=1 \\
& 0.1+K+0.2+2 K+0.3+3 K=1 \\
& 6 K+0.6=1 \\
& \qquad \begin{aligned}
6 K & =0.4 \\
K & =\frac{0.4}{6}=\frac{1}{15}
\end{aligned}
\end{aligned}
$$

b) $P(X<2)=P(X=-2,-1,0$ or 1$)$

$$
\begin{aligned}
= & P(X=-2)+P(X=-1)+P(X=0)+P(X=1) \\
= & \frac{1}{10}+\frac{1}{15}+\frac{1}{5}+\frac{2}{15}=\frac{3+2+6+4}{30}=\frac{15}{30}=\frac{1}{2} \\
P(-2<X<2) & =P(X=-1,0 \text { or } 1) \\
& =P(X=-1)+P(X=0)+P(X=1)=\frac{1}{15}+\frac{1}{5}+\frac{2}{15}=\frac{1+3+2}{15}=\frac{6}{15}=\frac{2}{5}
\end{aligned}
$$

c) The distribution function of $X$ is given by $F(x)$ defined by

| $X=x$ | $P(X=x)$ | $F(x)=P(X \leq x)$ |
| :---: | :---: | :--- |
| -2 | $\frac{1}{10}$ | $F(x)=P(X \leq-2)=\frac{1}{10}$ |
| -1 | $\frac{1}{15}$ | $F(x)=P(X \leq-1)=\frac{1}{6}$ |
| 0 | $\frac{2}{10}$ | $F(x)=P(X \leq 0)=\frac{11}{30}$ |
| 1 | $\frac{2}{15}$ | $F(x)=P(X \leq 1)=\frac{1}{2}$ |
| 2 | $\frac{3}{10}$ | $F(x)=P(X \leq 2)=\frac{4}{5}$ |
| 3 | $\frac{3}{15}$ | $F(x)=P(X \leq 3)=1$ |

d) Mean of $X$ is defined by $E(X)=\sum x P(x)$

$$
E(X)=\left(-2 \times \frac{1}{10}\right)+\left(-1 \times \frac{1}{15}\right)+\left(0 \times \frac{1}{5}\right)+\left(1 \times \frac{2}{15}\right)+\left(2 \times \frac{3}{10}\right)+\left(3 \times \frac{1}{5}\right)
$$

$$
=-\frac{1}{5}-\frac{1}{15}+\frac{2}{15}+\frac{3}{5}+\frac{3}{5}=\frac{16}{15} .
$$

## Problem. 3

A random variable $X$ has the following probability function:

| $X$ | $:$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P X$ | $:$ | 0 | $K$ | $2 K$ | $2 K$ | $3 K$ | $K^{2}$ | $2 K^{2}$ | $7 K^{2}+K$ |

Find (i) $K$, (ii) Evaluate $P(X<6), P(X \geq 6)$ and $P(0<X<5)$
(iii). Determine the distribution function of $X$.
(iv). $P(1.5<X<4.5 / X>2)$
(v). $E(3 x-4), \operatorname{Var}(3 x-4)$
(vi). The smallest value of $n$ for which $P(X \leq n)>\frac{1}{2}$.

## Solution:

(i) Since $\sum_{x=0}^{7} P(X)=1$,
$K+2 K+2 K+3 K+K^{2}+2 K^{2}+7 K^{2}+K=1$ $10 K^{2}+9 K-1=0$

$$
K=\frac{1}{10} \quad \text { or } \quad K=-1
$$

As $P(X)$ cannot be negative $K=\frac{1}{10}$
(ii) $\quad P(X<6)=P(X=0)+P(X=1)+\ldots+P(X=5)$

$$
=\frac{1}{10}+\frac{2}{10}+\frac{2}{10}+\frac{3}{10}+\frac{1}{100}+\ldots=\frac{81}{100}
$$

Now $P(X \geq 6)=1-P(X<6)$

$$
=1-\frac{81}{100}=\frac{19}{100}
$$

Now $P(0<X<5)=P(X=1)+P(X=2)+P(X=3)=P(X=4)$

$$
\begin{aligned}
& =K+2 K+2 K+3 K \\
& =8 K=\frac{8}{10}=\frac{4}{5} .
\end{aligned}
$$

(iii) The distribution of X is given by $F(x)=P(X \leq x)$

| $X=x$ | $P(X=x)$ | $F(x)=P(X \leq x)$ |
| :---: | :---: | :--- |
| 0 | 0 | $F(x)=P(X \leq 0)=0$ |
| 1 | $\frac{1}{10}$ | $F(x)=P(X \leq 1)=\frac{1}{10}$ |
| 2 | $\frac{2}{10}$ | $F(x)=P(X \leq 2)=\frac{3}{10}$ |
| 3 | $\frac{2}{10}$ | $F(x)=P(X \leq 3)=\frac{5}{10}$ |
| 4 | $\frac{3}{10}$ | $F(x)=P(X \leq 4)=\frac{8}{10}$ |
| 5 | $\frac{1}{100}$ | $F(x)=P(X \leq 5)=\frac{81}{100}$ |
| 6 | $\frac{2}{100}$ | $F(x)=P(X \leq 6)=\frac{83}{100}$ |
| 7 | $\frac{17}{100}$ | $F(x)=P(X \leq 7)=1$ |

(iv) $P(1.5<X<4.5 / X>2)=\frac{P(x=3)+P(x=4)}{1-[P(x=0)+P(x=1)+P(x=2)]}=\frac{\frac{5}{10}}{1-\left[\frac{3}{10}\right]}=\frac{5}{7}$
(v) $\quad E(x)=\sum x p(x)$
$=1 \times \frac{1}{10}+2 \times \frac{2}{10}+3 \times \frac{2}{10}+4 \times \frac{3}{10}+5 \times \frac{1}{100}+6 \times \frac{2}{100}+7 \times \frac{17}{100}$
$E(x)=3.66$
$E\left(x^{2}\right)=\sum x^{2} p(x)$
$=1^{2} \times \frac{1}{10}+2^{2} \times \frac{2}{10}+3^{2} \times \frac{2}{10}+4^{2} \times \frac{3}{10}+5^{2} \times \frac{1}{100}+6^{2} \times \frac{2}{100}+7^{2} \times \frac{17}{100}$
$E\left(x^{2}\right)=16.8$
Mean $=E(x)=3.66$
Variance $=E\left(x^{2}\right)-[E(x)]^{2}=16.8-(3.66)^{2}=3.404$
(vi) The smallest value of $n$ for which $P(X \leq n)>\frac{1}{2}$ is 4

## Problem. 4

The probability mass function of random variable $X$ is defined as $P(X=0)=3 C^{2}$, $P(X=1)=4 C-10 C^{2}, P(X=2)=5 C-1$, where $C>0$, and $P(X=r)=0$ if $r \neq 0,1,2$
. Find (i). The value of $C$.
(ii). $P(0<X<2 / x>0)$.
(iii). The distribution function of $X$.
(iv). The largest value of $x$ for which $F(x)<\frac{1}{2}$.

## Solution:

(i) Since $\sum_{x=0}^{x=2} p(x)=1$
$p(0)+p(1)+p(2)=1$
$3 C^{2}+4 C-10 C^{2}+5 C-1=1$
$7 C^{2}-9 C+2=0$
$C=1, \frac{2}{7}$
$C=1$ is not applicable
$\therefore C=\frac{2}{7}$
The Probability distribution is

$$
X: 0 \quad 1 \quad 2
$$

$$
P(X): \frac{12}{49} \quad \frac{16}{49} \quad \frac{21}{49}
$$

(ii) $P[0<x<2 / x>0]=\frac{P[(0<x<2) \cap x>0]}{P[x>0]}=\frac{P[0<x<2]}{P[x>0]}$
$=\frac{P[x=1]}{P[x=1]+P[X=2]}$

$$
P[0<x<2 / x>0]=\frac{\frac{16}{49}}{\frac{16}{49}+\frac{21}{49}}=\frac{16}{37}
$$

(iii). The distribution function of $X$ is

| $X$ | $F(X=x)=P(X \leq x)$ |
| :--- | :--- |
| 0 | $F(0)=P(X \leq 0)=\frac{12}{49}=0.24$ |
| 1 | $F(1)=P(X \leq 1)=P(X=0)+P(X=1)=\frac{12}{49}+\frac{16}{49}=0.57$ |
| 2 | $F(2)=P(X \leq 2)=P(X=0)+P(X=1)+P(X=2)=\frac{12}{49}+\frac{16}{49}+\frac{21}{49}=1$ |

(iv) The Largest value of $x$ for which $F(x)=P(X \leq x)<\frac{1}{2}$ is 0 .

## Problem. 5

If $P(x)=\left\{\begin{array}{l}\frac{x}{15} ; x=1,2,3,4,5 \\ 0 ; \text { elsewhere }\end{array}\right.$
Find (i) $P\{X=1 o r 2\}$ and (ii) $P\{1 / 2<X<5 / 2 / x>1\}$

## Solution:

i) $P(X=1$ or 2$)=P(X=1)+P(X=2)=\frac{1}{15}+\frac{2}{15}=\frac{3}{15}=\frac{1}{5}$
ii) $P\left(\frac{1}{2}<X<\frac{5}{2} / x>1\right)=\frac{P\left\{\left(\frac{1}{2}<X<\frac{5}{2}\right) \cap(X>1)\right\}}{P(X>1)}=\frac{P\{(X=1 \text { or } 2) \cap(X>1)\}}{P(X>1)}$
$=\frac{P(X=2)}{1-P(X=1)}$

$$
=\frac{2 / 15}{1-(1 / 15)}=\frac{2 / 15}{14 / 15}=\frac{2}{14}=\frac{1}{7} .
$$

## Problem. 6

A continuous random variable $X$ has a probability density function $f(x)=3 x^{2}$, $0 \leq x \leq 1$. Find ' $a$ ' such that $P(X \leq a)=P(X>a)$.

## Solution:

Since $P(X \leq a)=P(X>a)$, each must be equal to $\frac{1}{2}$ because the probability is always 1 .

$$
\begin{aligned}
& \therefore P(X \leq a)=\frac{1}{2} \\
& \Rightarrow \int_{0}^{a} f(x) d x=\frac{1}{2}
\end{aligned}
$$

$$
\int_{0}^{a} 3 x^{2} d x=\frac{1}{2} \Rightarrow 3\left[\frac{x^{3}}{3}\right]_{0}^{a}=a^{3}=\frac{1}{2}
$$

$\therefore a=\left(\frac{1}{2}\right)^{\frac{1}{3}}$

## Problem. 7

A random variable $X$ has the p.d.f $f(x)$ given by $f(x)=\left\{\begin{array}{ll}C x e^{-x} ; & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{array}\right.$ Find the value of $C$ and cumulative density function of $X$.

## Solution:

Since $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& \int_{0}^{\infty} C x e^{-x} d x=1 \\
& C\left[x\left(-e^{-x}\right)-\left(e^{-x}\right)\right]_{0}^{\infty}=1 \\
& C=1 \\
& \therefore f(x)=\left\{\begin{array}{cc}
x e^{-x} ; x>0 \\
0 & ; x \leq 0
\end{array}\right.
\end{aligned}
$$

Cumulative Distribution of $x$ is

$$
\begin{gathered}
F(x)=\int_{0}^{x} f(x) d t=\int_{0}^{x} x e^{-x} d x=\left[-x e^{-x}-e^{-x}\right]_{0}^{x}=-x e^{-x}-e^{-x}+1 \\
=1-(1+x) e^{-x}, x>0
\end{gathered}
$$

8. If a random variable $X$ has the p.d.f $f(x)=\left\{\begin{array}{c}\frac{1}{2}(x+1) ;-1<x<1 \\ 0 \quad ; \text { otherwise }\end{array}\right.$. Find the mean and variance of $X$.

## Solution:

$$
\text { Mean }=\mu_{1}^{\prime}=\int_{-1}^{1} x f(x) d x=\frac{1}{2} \int_{-1}^{1} x(x+1) d x=\frac{1}{2} \int_{-1}^{1}\left(x^{2}+x\right) d x=\frac{1}{2}\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)_{-1}^{1}=\frac{1}{3}
$$

$$
\begin{gathered}
\mu_{2}^{\prime}=\int_{-1}^{1} x^{2} f(x) d x=\frac{1}{2} \int_{-1}^{1}\left(x^{3}+x^{2}\right) d x=\frac{1}{2}\left[\frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{-1}^{1}=\frac{1}{2}\left[\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+\frac{1}{3}\right]=\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3} \\
\text { Variance }=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=\frac{1}{3}-\frac{1}{9}=\frac{3-1}{9}=\frac{2}{9} .
\end{gathered}
$$

9. A continuous random variable $X$ that can assume any value between $X=2$ and $X=5$ has a probability density function given by $f(x)=k(1+x)$. Find $P(X<4)$.

## Solution:

Given X is a continuous random variable whose pdf is $f(x)=\left\{\begin{array}{l}k(1+x), 2<x<5 \\ 0, \text { Otherwise }\end{array}\right.$.

$$
\text { Since } \begin{aligned}
\int_{-\infty}^{\infty} f(x) d x=1 & \Rightarrow \int_{2}^{5} k(1+x) d x=1 \\
& k\left[\frac{(1+x)^{2}}{2}\right]_{2}^{5}=1 \\
& k\left[\frac{(1+5)^{2}}{2}-\frac{(1+2)^{2}}{2}\right]=1
\end{aligned}
$$

$k\left[18-\frac{9}{2}\right]=1$
$k\left[\frac{27}{2}\right]=1 \Rightarrow k=\frac{2}{27}$
$\therefore f(x)=\left\{\begin{array}{l}\frac{2(1+x)}{27}, 2<x<5 \\ 0, \text { Otherwise }\end{array}\right.$
$P(X<4)=\frac{2}{27} \int_{2}^{4}(1+x) d x$

$$
=\frac{2}{27}\left[\frac{(1+x)^{2}}{2}\right]_{2}^{4}=\frac{2}{27}\left[\frac{(1+4)^{2}}{2}-\frac{(1+2)^{2}}{2}\right]=\frac{2}{27}\left[\frac{25}{2}-\frac{9}{2}\right]=\frac{2}{27} \frac{16}{2}=\frac{16}{27} .
$$

10. A random variable $X$ has density function given by $f(x)=\left\{\begin{array}{ll}2 e^{-2 x} ; x \geq 0 \\ 0 & ; x<0\end{array}\right.$. Find m.g.f

## Solution:

$$
\begin{aligned}
M_{X}(t)=E\left(e^{t x}\right)=\int_{0}^{\infty} e^{t x} f(x) d x & =\int_{0}^{\infty} e^{t x} 2 e^{-2 x} d x \\
& =2 \int_{0}^{\infty} e^{(t-2) x} d x \\
& =2\left[\frac{e^{(t-2) x}}{t-2}\right]_{0}^{\infty}=\frac{2}{2-t}, t<2
\end{aligned}
$$

11. The pdf of a random variable X is given by $f(x)=\left\{\begin{array}{l}2 x, 0 \leq x \leq b \\ 0, \text { otherwise }\end{array}\right.$. For what value of b is $f(x)$ a valid pdf? Also find the cdf of the random variable X with the above pdf.
Solution:
Given $f(x)= \begin{cases}2 x, & 0 \leq x \leq b \\ 0, & \text { otherwise }\end{cases}$
Since $\int_{-\infty}^{\infty} f(x) d x=1 \Rightarrow \int_{0}^{b} 2 x d x=1$

$$
\left[2 \frac{x^{2}}{2}\right]_{0}^{b}=1
$$

$$
\left[b^{2}-0\right]=1 \Rightarrow \mathrm{~b}=1
$$

$\therefore f(x)=\left\{\begin{array}{l}2 x, 0 \leq x \leq 1 \\ 0, \text { otherwise }\end{array}\right.$
$F(x)=P(X \leq x)=\int_{0}^{x} f(x) d x=\int_{0}^{x} 2 x d x=\left[2 \frac{x^{2}}{2}\right]_{0}^{x}=x^{2}, 0 \leq x \leq 1$
$F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x=\int_{-\infty}^{x} 0 d x=0, x<0$
$F(x)=P(X \leq x)=\int_{-\infty}^{0} f(x) d x+\int_{0}^{1} f(x) d x+\int_{1}^{x} f(x) d x \quad=\int_{-\infty}^{0} 0 d x+\int_{0}^{1} 2 x d x+\int_{1}^{x} 0 d x=$
$\left[2 \frac{x^{2}}{2}\right]_{0}^{1}=1, x>1$
$F(x)=\left\{\begin{array}{lr}0, & x<0 \\ x^{2}, & 0 \leq x \leq 1 \\ 1, & x>1\end{array}\right.$
12. A random variable $X$ has density function $f(x)=\left\{\begin{array}{cc}\frac{K}{1+x^{2}},-\infty<x<\infty \\ 0, & \text { Otherwise }\end{array}\right.$. Determine $K$ and the distribution functions. Evaluate the probability $P(x \geq 0)$.

## Solution:

$$
\begin{gathered}
\text { Since } \int_{-\infty}^{\infty} f(x) d x=1 \\
\int_{-\infty}^{\infty} \frac{K}{1+x^{2}} d x=1 \\
K \int_{\infty}^{\infty} \frac{d x}{1+x^{2}}=1 \\
K\left(\tan ^{-1} x\right)_{-\infty}^{\infty}=1 \\
K\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)=1 \\
K \pi=1 \\
K=\frac{1}{\pi} \\
F(x)=\int_{-\infty}^{x} f(x) d x=\int_{-\infty}^{x} \frac{K}{1+x^{2}} d x \\
F(x)=\frac{1}{\pi}\left[\frac{\pi}{2}+\tan ^{-1} x\right],-\infty<x<\infty \\
P(X \geq 0)=\frac{1}{\pi} \int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{1}{\pi}\left(\tan ^{-1} x\right)_{0}^{\infty} \\
\left.\left.=\frac{1}{\pi}\left(\frac{\pi}{2}-\tan ^{-1} 0\right)=\frac{\pi}{2}\right)\right]
\end{gathered}
$$

13. If $X$ has the probability density function $f(x)=\left\{\begin{array}{l}K e^{-3 x}, x>0 \\ 0 \\ \text {,otherwise }\end{array}\right.$ find $K$, $P[0.5 \leq X \leq 1]$ and the mean of $X$.

## Solution:

$$
\begin{gathered}
\text { Since } \int_{-\infty}^{\infty} f(x) d x=1 \\
\int_{0}^{\infty} K e^{-3 x} d x=1 \\
K\left[\frac{e^{-3 x}}{-3}\right]_{0}^{\infty}=1 \\
\frac{K}{3}=1 \\
K=3 \\
P(0.5 \leq X \leq 1)=\int_{0.5}^{1} f(x) d x=3 \int_{0.5}^{1} e^{-3 x} d x=\not p\left(\frac{e^{-3}-e^{-1.5}}{-\nmid}\right)=\left[e^{-1.5}-e^{-3}\right]
\end{gathered}
$$

Mean of $X=E(x)=\int_{0}^{\infty} x f(x) d x=3 \int_{0}^{\infty} x e^{-3 x} d x$

$$
=3\left[x\left(\frac{-e^{-3 x}}{3}\right)-1\left(\frac{e^{-3 x}}{9}\right)\right]_{0}^{\infty}=\frac{3 \times 1}{9}=\frac{1}{3}
$$

Hence the mean of $X=E(X)=\frac{1}{3}$.
14. If $X$ is a continuous random variable with pdf given by
$f(x)=\left\{\begin{array}{ll}K x & \text { in } 0 \leq x \leq 2 \\ 2 K & \text { in } 2 \leq x \leq 4 \\ 6 K-K x & \text { in } 4 \leq x \leq 6 \\ 0 & \text { elsewhere }\end{array}\right.$. Find the value of $K$ and also the cdf $F(x)$.

## Solution:

$$
\begin{aligned}
\text { Since } \int_{\infty}^{\infty} F(x) d x & =1 \\
\int_{0}^{2} K x d x+\int_{2}^{4} 2 K d x+\int_{4}^{6}(6 k-k x) d x & =1 \\
K\left[\left(\frac{x^{2}}{2}\right)_{0}^{2}+(2 x)_{2}^{4}+\int_{4}^{6}\left(6 x-\frac{x^{2}}{2}\right)_{4}^{6}\right] & =1 \\
K[\not 2+\not Q-4+36-18-24+8] & =1 \\
8 K & =1 \\
K & =\frac{1}{8}
\end{aligned}
$$

We know that $F(x)=\int_{-\infty}^{x} f(x) d x$

$$
\begin{aligned}
& \text { If } x<0 \text {, then } F(x)=\int_{-\infty}^{x} f(x) d x=0 \\
& \text { If } x \in(0,2) \text {, then } F(x)=\int_{-\infty}^{x} f(x) d x \\
& \qquad F(x)=\int_{-\infty}^{0} f(x) d x+\int_{0}^{x} f(x) d x \\
& =\int_{-\infty}^{0} 0 d x+\int_{0}^{x} K x d x=\int_{-\infty}^{0} 0 d x+\frac{1}{8} \int_{0}^{x} x d x \\
& \qquad F(x)=\left(\frac{x^{2}}{16}\right)_{0}^{x}=\frac{x^{2}}{16}, 0 \leq x \leq 2
\end{aligned}
$$

$$
\text { If } x \in(2,4) \text {, then } F(x)=\int_{-\infty}^{0} f(x) d x+\int_{0}^{2} f(x) d x+\int_{2}^{x} f(x) d x
$$

$$
=\int_{-\infty}^{0} 0 d x+\int_{0}^{2} K x d x+\int_{2}^{x} 2 K d x
$$

$$
=\int_{0}^{2} \frac{x}{8} d x+\int_{2}^{x} \frac{1}{4} d x=\left(\frac{x^{2}}{16}\right)_{0}^{2}+\left(\frac{x}{4}\right)_{2}^{x}
$$

$$
=\frac{1}{4}+\frac{x}{4}-\frac{1}{2}
$$

$$
\begin{gathered}
F(x)=\frac{x}{4}-\frac{4}{16}=\frac{x-1}{4}, 2 \leq x<4 \\
\text { If } x \in(4,6), \text { then } F(x)=\int_{-\infty}^{0} 0 d x+\int_{0}^{2} K x d x+\int_{2}^{4} 2 K d x+\int_{4}^{x} K(6-x) d x \\
=\int_{0}^{2} \frac{x}{8} d x+\int_{2}^{4} \frac{1}{4} d x+\int_{4}^{x} \frac{1}{8}(6-x) d x \\
=\left(\frac{x^{2}}{16}\right)_{0}^{2}+\left(\frac{x}{4}\right)_{2}^{4}+\left(\frac{6 x}{8}-\frac{x^{2}}{16}\right)_{4}^{x} \\
=\frac{1}{4}+1-\frac{1}{2}+\frac{6 x}{8}-\frac{x^{2}}{16}-3+1 \\
=\frac{4+16-8+12 x-x^{2}-48+16}{16} \\
F(x)=\frac{-x^{2}+12 x-20}{16}, 4 \leq x \leq 6 \\
\text { If } x>6, \text { then } F(x)=\int_{-\infty}^{0} 0 d x+\int_{0}^{2} K x d x+\int_{2}^{4} 2 K d x+\int_{4}^{6} K(6-x) d x+\int_{6}^{\infty} 0 d x \\
F(x)=1, x \geq 6 \\
\quad ; x \leq 0 \\
\frac{16}{0} \begin{array}{ll}
\frac{x^{2}}{16} & ; 0 \leq x \leq 2 \\
\frac{1}{16}\left(20-12 x+x^{2}\right) ; 4 \leq x \leq 6 \\
1 & ; x \geq 6
\end{array}
\end{gathered}
$$

15. A random variable $X$ has the P.d.f $f(x)=\left\{\begin{array}{l}2 x, 0<x<1 \\ 0, \text { Otherwise }\end{array}\right.$ Find (i) $P\left(X<\frac{1}{2}\right)$ (ii) $P\left(\frac{1}{4}<x<\frac{1}{2}\right)$ (iii) $P\left(X>\frac{3}{4} / X>\frac{1}{2}\right)$

## Solution:

$$
\text { (i) } P\left(x<\frac{1}{2}\right)=\int_{0}^{1 / 2} f(x) d x=\int_{0}^{1 / 2} 2 x d x=2\left(\frac{x^{2}}{2}\right)_{0}^{1 / 2}=\frac{2 \times 1}{8}=\frac{1}{4}
$$

(ii) $P\left(\frac{1}{4}<x<\frac{1}{2}\right)=\int_{1 / 4}^{1 / 2} f(x) d x=\int_{1 / 4}^{1 / 2} 2 x d x=2\left(\frac{x^{2}}{2}\right)_{1 / 4}^{1 / 2}$

$$
=2\left(\frac{1}{8}-\frac{1}{32}\right)=\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{3}{16} .
$$

(iii) $P\left(X>\frac{3}{4} / X>\frac{1}{2}\right)=\frac{P\left(X>\frac{3}{4} \cap X>\frac{1}{2}\right)}{P\left(X>\frac{1}{2}\right)}=\frac{P\left(X>\frac{3}{4}\right)}{P\left(X>\frac{1}{2}\right)}$
$P\left(X>\frac{3}{4}\right)=\int_{3 / 4}^{1} f(x) d x=\int_{3 / 4}^{1} 2 x d x=2\left(\frac{x^{2}}{2}\right)_{3 / 4}^{1}=1-\frac{9}{16}=\frac{7}{16}$
$P\left(X>\frac{1}{2}\right)=\int_{1 / 2}^{1} f(x) d x=\int_{1 / 2}^{1} 2 x d x=2\left(\frac{x^{2}}{2}\right)_{1 / 2}^{1}=1-\frac{1}{4}=\frac{3}{4}$

$$
P\left(X>\frac{3}{4} / X>\frac{1}{2}\right)=\frac{\frac{7}{16}}{\frac{3}{4}}=\frac{7}{16} \times \frac{4}{3}=\frac{7}{12} .
$$

16. Let the random variable $X$ have the p.d.f $f(x)=\left\{\begin{array}{ll}\frac{1}{2} e^{-\frac{x}{2}} & , x>0 \\ 0 & , \text { otherwise. }\end{array}\right.$.Find the moment generating function, mean \& variance of $X$.

## Solution:

$M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{0}^{\infty} e^{t x} \frac{1}{2} e^{-x / 2} d x$

$$
=\frac{1}{2} \int_{0}^{\infty} e^{-\left(\frac{1}{2}-t\right) x} d x=\frac{1}{2}\left[\frac{e^{-\left(\frac{1}{2}-t\right) x}}{-\left(\frac{1}{2}-t\right)}\right]_{0}^{\infty}=\frac{1}{1-2 t} \text {, if } t<\frac{1}{2} .
$$

$E(X)=\left[\frac{d}{d t} M_{X}(t)\right]_{t=0}=\left[\frac{2}{(1-2 t)^{2}}\right]_{t=0}=2$
$E\left(X^{2}\right)=\left[\frac{d^{2}}{d t^{2}} M_{X}(t)\right]_{t=0}=\left[\frac{8}{(1-2 t)^{3}}\right]_{t=0}=8$
$\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=8-4=4$.
17. The first four moments of a distribution about $x=4$ are $1,4,10$ and 45 respectively. Show that the mean is 5 , variance is $3, \mu_{3}=0$ and $\mu_{4}=26$.

## Solution:

Given $\mu_{1}^{\prime}=1, \mu_{2}^{\prime}=4, \mu_{3}^{\prime}=10, \mu_{4}^{\prime}=45$ $\mu_{r}^{\prime}=r^{\text {th }}$ moment about to value $x=4$
Here $A=4$
Here Mean $=A+\mu_{1}^{\prime}=4+1=5$

$$
\begin{aligned}
\text { Variance } & =\mu_{2}=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
& =4-1=3 . \\
& \begin{aligned}
\mu_{3} & =\mu_{3}^{\prime}-3 \mu_{2}^{\prime} \mu_{1}^{\prime}+2\left(\mu_{1}^{\prime}\right)^{3} \\
& =10-3(4)(1)+2(1)^{3}=0 \\
\mu_{4} & =\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime}\left(\mu_{1}^{\prime}\right)^{2}-3\left(\mu_{1}^{\prime}\right)^{4} \\
& =45-4(10)(1)+6(4)(1)^{2}-3(1)^{4} \\
\mu_{4} & =26 .
\end{aligned}
\end{aligned}
$$

18. Find the moment generating function and $\mathrm{r}^{\text {th }}$ moments for the distribution. Whose p.d.f is $f(x)=K e^{-x}, 0 \leq x \leq \infty$. Find also standard deviation.

## Solution:

Total Probability=1

$$
\therefore \int_{0}^{\infty} k e^{-x} d x=1
$$

$$
\begin{gathered}
k\left[\frac{e^{-x}}{-1}\right]_{0}^{\infty}=1 \\
k=1 \\
M_{X}(t)=E\left[\frac{\left.e^{t x}\right]=\int_{0}^{\infty} e^{t x} e^{-x} d x=\int_{0}^{\infty} e^{(t-1) x} d x}{t-1}\right]_{0}^{(t-1) x}=\frac{1}{1-t}, t<1 \\
=(1-t)^{-1}=1+t+t^{2}+\ldots+t^{r}+\ldots \infty \\
\mu_{r}^{\prime}=\operatorname{coeff} . \text { of } \frac{t^{r}}{r!}=r!
\end{gathered}
$$

When $r=1, \mu_{1}^{\prime}=1!=1$

$$
r=2, \mu_{2}^{\prime}=2!=2
$$

Variance $=\mu_{2}^{\prime}-\mu_{1}^{\prime}=2-1=1$
$\therefore$ Standard deviation=1.
19. A continuous random variable X has the p.d.f $f(x)=k x^{2} e^{-x}, x \geq 0$. Find the $\mathrm{r}^{\text {th }}$ moment of X about the origin. Hence find mean and variance of X .

## Solution:

Since $\int_{0}^{\infty} K x^{2} e^{-x} d x=1$

$$
\begin{aligned}
K\left[x^{2}\left(\frac{e^{-x}}{-1}\right)-2 x\left(\frac{e^{-x}}{1}\right)+2\left(\frac{e^{-x}}{-1}\right)\right]_{0}^{\infty} & =1 \\
2 K & =1 \\
K & =\frac{1}{2} .
\end{aligned}
$$

$$
\begin{aligned}
\mu_{r}^{\prime} & =\int_{0}^{\infty} x^{r} f(x) d x \\
& =\frac{1}{2} \int_{0}^{\infty} x^{r+2} e^{-x} d x \\
& =\frac{1}{2} \int_{0}^{\infty} e^{-x} x^{(r+3)-1} d x=\frac{(r+2)!}{2}
\end{aligned}
$$

Putting $n=1, \mu_{1}^{\prime}=\frac{3!}{2}=3$

$$
n=2, \mu_{2}^{\prime}=\frac{4!}{2}=12
$$

$\therefore$ Mean $=\mu_{1}^{\prime}=3$
Variable $=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}$

$$
\text { i.e. } \mu_{2}=12-(3)^{2}=12-9
$$

$$
\therefore \mu_{2}=3 .
$$

20. Find the moment generating function of the random variable $X$, with probability density function $f(x)=\left\{\begin{array}{ll}x & \text { for } 0 \leq x<1 \\ 2-x & \text { for } 1 \leq x<2 \\ 0 & \text { otherwise }\end{array}\right.$. Also find $\mu_{1}^{\prime}, \mu_{2}^{\prime}$.

## Solution:

$$
\begin{array}{rl}
M_{X}(t)=\int_{-\infty}^{\infty} e^{t x} & f(x) d x \\
& =\int_{0}^{1} e^{t x} x d x+\int_{1}^{2} e^{t x}(2-x) d x \\
& =\left(\frac{x e^{t x}}{t}-\frac{e^{t x}}{t^{2}}\right)_{0}^{1}+\left[(2-x) \frac{e^{t x}}{t}-(-1) \frac{e^{t x}}{t^{2}}\right]_{1}^{2} \\
& =\frac{e^{t}}{t}-\frac{e^{t}}{t^{2}}+\frac{1}{t^{2}}+\frac{e^{2 t}}{t^{2}}-\frac{e^{t}}{t}-\frac{e^{t}}{t^{2}} \\
& =\left(\frac{e^{t}-1}{t}\right)^{2} \\
& =\left[1+\frac{t}{1!}+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots-1\right]^{2} \\
& =\left[1+\frac{t}{2!}+\frac{t^{2}}{3!}+\frac{t^{3}}{4!}+\ldots\right]^{2} \\
\mu_{1}^{\prime}=\text { coeff. of } & \frac{t}{1!}=1 \\
\mu_{2}^{\prime}= & \text { coeff. of } \frac{t^{2}}{2!}=\frac{7}{6} .
\end{array}
$$

21. The p.d.f of the r.v. $X$ follows the probability law: $f(x)=\frac{1}{2 \theta} e^{-\frac{|x-\theta|}{\theta}},-\infty<x<\infty$.

Find the m.g.f of $X$ and also find $E X$ and $V X$.

## Solution:

$$
\begin{aligned}
& M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{-\infty}^{\infty} \frac{1}{2 \theta} e^{\frac{-|x-\theta|}{\theta}} e^{t x} d x \\
& =\int_{-\infty}^{\theta} \frac{1}{2 \theta} e^{\frac{(x-\theta)}{\theta}} e^{t x} d x+\int_{\theta}^{\infty} \frac{1}{2 \theta} e^{\frac{-(x-\theta)}{\theta}} e^{t x} d x \\
& M_{X}(t)=\frac{e^{-1}}{2 \theta} \int_{-\infty}^{\theta} e^{x\left(t+\frac{1}{\theta}\right)} d x+\frac{e}{2 \theta} \int_{\theta}^{\infty} e^{-x\left(\frac{1}{\theta}-t\right)} d x \\
& =\frac{e^{-1}}{2 \theta} \frac{e^{\theta\left(t+\frac{1}{\theta}\right)}}{\left(t+\frac{1}{\theta}\right)}+\frac{e}{2 \theta} \frac{e^{-\theta\left(\frac{1}{\theta}-1\right)}}{\left(\frac{1}{\theta}-t\right)} \\
& =\frac{e^{\theta_{t}}}{2(\theta t+1)}+\frac{e^{\theta t}}{2(1-\theta t)}=\frac{e^{\theta_{t}}}{1-\theta^{2} t^{2}}=e^{\theta_{t}}\left[1-(\theta t)^{2}\right]^{-1} \\
& =\left[1+\theta t+\frac{\theta^{2} t^{2}}{2!}+\ldots\right]\left[1+\theta^{2} t^{2}+\theta^{4} t^{4}+\ldots\right] \\
& =1+\theta t+\frac{3 \theta^{2} t^{2}}{2!}+\ldots \\
& E(X)=\mu_{1}^{\prime}=\text { coeff. of } \operatorname{tin} M_{X}(t)=\theta \\
& \mu_{2}^{\prime}=\text { coeff. of } \frac{t^{2}}{2!} \text { in } M_{X}(t)=3 \theta^{2} \\
& \operatorname{Var}(X)=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=3 \theta^{2}-\theta^{2}=2 \theta^{2} .
\end{aligned}
$$

22. The elementary probability law of a continues random variable is
$f(x)=y_{0} e^{-b(x-a)}, \quad a \leq x \leq \infty, b>0$ where $\mathrm{a}, \mathrm{b}$ and $y_{0}$ are constants. Find $y_{0}$ the $\mathrm{r}^{\text {th }}$ moment about point $x=a$ and also find the mean and variance.

## Solution:

Since the total probability is unity,

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

$$
\begin{aligned}
y_{0} \int_{0}^{\infty} e^{-b(x-a)} d x & =1 \\
y_{0}\left[\frac{e^{-b(x-a)}}{-b}\right]_{0}^{\infty} & =1 \\
y_{0}\left(\frac{1}{b}\right) & =1 \\
y_{0} & =b
\end{aligned}
$$

$\mu_{r}^{\prime}\left(\mathrm{r}^{\text {th }}\right.$ moment about the point $\left.x=a\right)=\int_{-\infty}^{\infty}(x-a)^{r} f(x) d x$

$$
=b \int_{a}^{\infty}(x-a)^{r} e^{-b(x-a)} d x
$$

Put $x-a=t, d x=d t$, when $x=a, t=0, x=\infty, t=\infty$

$$
\begin{aligned}
=b \int_{0}^{\infty} t^{r} e^{-b t} d t & \\
& =b \frac{\Gamma(r+1)}{b^{(r+1)}}=\frac{r!}{b^{r}}
\end{aligned}
$$

In particular $r=1$

$$
\begin{aligned}
& \mu_{1}^{\prime}=\frac{1}{b} \\
& \mu_{2}^{\prime}=\frac{2}{b^{2}}
\end{aligned}
$$

Mean $=a+\mu_{1}^{\prime}=a+\frac{1}{b}$
Variance $=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}$

$$
=\frac{2}{b^{2}}-\frac{1}{b^{2}}=\frac{1}{b^{2}} .
$$

23. The lifetime (in hours) of a certain piece of equipment is a continuous r.v. having range $0<x<\infty$ and p.d.f.is $f(x)=\left\{\begin{array}{l}x e^{-k x}, 0<x<\infty \\ 0 \\ 0\end{array}\right.$,otherwise. . Determine the constant $K$ and evaluate the probability that the life time exceeds 2 hours.

## Solution:

Let $X$ the life time of a certain piece of equipment.
Then the p.d.f. $f(x)= \begin{cases}x e^{-k x}, 0<x<\infty \\ 0 & , \text { Otherwise }\end{cases}$

$$
\begin{array}{r}
\text { To find } K, \int_{0}^{\infty} f(x) d x=1 \\
\int_{0}^{\infty} e^{-k x} x^{2-1} d x=1
\end{array}
$$

$$
\begin{aligned}
& \frac{\Gamma(2)}{K^{2}} \\
&=1 \Rightarrow K^{2}=1 \therefore K=1 \\
& \therefore f(x)= \begin{cases}x e^{-x}, 0<x<\infty \\
0 & , \text { Otherwise }\end{cases}
\end{aligned}
$$

$\mathrm{P}[$ Life time exceeds 2 hours $]=P[X>2]$

$$
\begin{aligned}
& =\int_{2}^{\infty} f(x) d x \\
& =\int_{2}^{\infty} x e^{-x} d x \\
& =\left[x\left(-e^{-x}\right)-\left(e^{-x}\right)\right]_{2}^{\infty} \\
& =2 e^{-2}+e^{-2}=3 e^{-2}=0.4060
\end{aligned}
$$

24. If the continuous random variable $X$ has ray Leigh density $F(x)=\left(\frac{x}{\alpha^{2}} e^{-\frac{x^{2}}{2 \alpha^{2}}}\right) \times U(x)$ find $E\left(x^{n}\right)$ and deduce the values of $E(X)$ and $\operatorname{Var}(X)$.

## Solution:

$$
\begin{aligned}
& \text { Here } U(x)=\left\{\begin{array}{lll}
1 & \text { if } & x>0 \\
0 & \text { if } & x \leq 0
\end{array}\right. \\
& E\left(x^{n}\right)=\int_{0}^{\infty} x^{n} f(x) d x \\
& =\int_{0}^{\infty} x^{n} \frac{x}{\alpha^{2}} e^{\frac{-x^{2}}{2 \alpha^{2}}} d x \\
& \text { Put } \frac{x^{2}}{2 \alpha^{2}}=t, \quad x=0, t=0 \\
& \frac{x}{\alpha^{2}} d x=d t \quad x=\alpha, t=\infty \\
& =\int_{0}^{\infty}\left(2 \alpha^{2} t\right)^{n / 2} e^{-t} d t \quad[\because x=\sqrt{2 \alpha} \cdot \sqrt{t}] \\
& =2^{n / 2} \alpha^{n} \int_{0}^{\infty} t^{n / 2} e^{-t} d t \\
& E\left(x^{n}\right)=2^{n / 2} \alpha^{n} \Gamma\left(\frac{n}{2}+1\right)-(1)
\end{aligned}
$$

Putting $n=1$ in (1) we get

$$
\begin{aligned}
E(x)=2^{1 / 2} \alpha \Gamma\left(\frac{3}{2}\right) & =\sqrt{2} \alpha \Gamma\left(\frac{1}{2}+1\right) \\
& =\sqrt{2} \alpha \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \\
& =\frac{\alpha}{\sqrt{2}} \sqrt{\pi} \quad\left[\because \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\right. \\
\therefore E(x) & =\alpha \sqrt{\frac{\pi}{2}}
\end{aligned}
$$

Putting $n=2$ in (1), we get

$$
\begin{aligned}
E\left(x^{2}\right)= & 2 \alpha^{2} \Gamma(2)
\end{aligned}=2 \alpha^{2} \quad[\because \Gamma(2)=1] ~=~ V a r(X)=E\left(X^{2}\right)-[E(X)]^{2} .
$$

$$
\begin{aligned}
& =2 \alpha^{2}-\alpha^{2} \frac{\pi}{2} \\
& =\left(2-\frac{\pi}{2}\right) \alpha^{2}=\left(\frac{4-\pi}{2}\right) \alpha^{2} .
\end{aligned}
$$

## Standard Distributions

## Discrete type

## Binomial distribution:

A random variable $X$ is said to follow binomial distribution if it assumes only non negative values and its probability mass function is given by $P(X=x)=p(x)=\left\{\begin{array}{l}n C_{x} p^{x} q^{n-x}, x=0,1,2, \ldots, n ; q=1-p \\ 0, \text { otherwise }\end{array}\right.$
Notation: $X \sim B(n, p)$ read as $X$ is following binomial distribution with parameter $n$ and $p$.

1. Find m.g.f. of Binomial distribution and find its mean and variance.

## Solution:

M.G.F.of Binomial distribution:-

$$
\begin{aligned}
& M_{X}(t)=E\left[e^{t x}\right]=\sum_{x=0}^{n} e^{t x} P(X=x) \\
& =\sum_{x=0}^{n} n C_{x} x P^{x} q^{n-x} e^{t x} \\
& =\sum_{x=0}^{n} n C_{x}\left(p e^{t}\right)^{x} q^{n-x} \\
& \quad M_{X}(t)=\left(q+p e^{t}\right)^{n}
\end{aligned}
$$

Mean of Binomial distribution

$$
\begin{aligned}
& \text { Mean }=E(X)=M_{X}{ }^{\prime}(0) \\
& =\left[n\left(q+p e^{t}\right)^{n-1} p e^{t}\right]_{t=0}=n p \text { Since } q+p=1 \\
& \begin{aligned}
E\left(X^{2}\right)=M_{X}^{\prime \prime} & (0) \\
= & {\left[n(n-1)\left(q+p e^{t}\right)^{n-2}\left(p e^{t}\right)^{2}+n p e^{t}\left(q+p e^{t}\right)^{n-1}\right]_{t=0} }
\end{aligned} \\
& \begin{aligned}
& E\left(X^{2}\right)=n(n-1) p^{2}+n p \\
&=n^{2} p^{2}+n p(1-p)=n^{2} p^{2}+n p q \\
& \text { Variance }= E\left(X^{2}\right)-[E[X]]^{2}=n p q \\
& \text { Mean }=n p ; \text { Variance }=n p q
\end{aligned}
\end{aligned}
$$

2. Comment the following: "The mean of a binomial distribution is 3 and variance is 4

## Solution:

In binomial distribution, mean $>$ variance but Variance $<$ Mean
Since Variance $=4 \&$ Mean $=3$, the given statement is wrong.
3.If $X$ and $Y$ are independent binomial variates $B\left(5, \frac{1}{2}\right)$ and $B\left(7, \frac{1}{2}\right)$ find $P[X+Y=3]$

## Solution:

$X+Y$ is also a binomial variate with parameters $n_{1}+n_{2}=12 \& p=\frac{1}{2}$

$$
\therefore P[X+Y=3]=12 C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{9}=\frac{55}{2^{10}}
$$

4. (i). Six dice are thrown 729 times. How many times do you expect atleast 3 dice show 5 or 6 ?
(ii) Six coins are tossed 6400 times. Using the Poisson distribution, what is the approximate probability of getting six heads 10 times?

## Solution:

(i). Let $X$ be the number of times the dice shown 5 or 6 $P[5$ or 6$]=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$
$\therefore P=\frac{1}{3}$ and $q=\frac{2}{3}$
Here $n=6$
By Binomial theorem,
$P[X=x]=6 C_{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{6-x}$ where $x=0,1,2 \ldots 6$.
$P[X \geq 3]=P(3)+P(4)+P(5)+P(6)$
$=6 C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{3}+6 C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}+6 C_{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)+6 C_{6}\left(\frac{1}{3}\right)^{6}$
$=0.3196$
$\therefore$ Expected number of times atleast 3 dies to show 5 or $6=N \times P[X \geq 3]$
$=729 \times 0.3196=233$.
(ii). Probability of getting six heads in one toss of six coins is $p=\left(\frac{1}{2}\right)^{6}$,
$\lambda=n p=6400 \times\left(\frac{1}{2}\right)^{6}=100$
Let $X$ be the number of times getting 6 heads $P(X=10)=\frac{e^{-100}(100)^{10}}{10!}=1.025 \times 10^{-30}$

## Poisson distribution:

A random variable $X$ is said to follow Poisson distribution if it assumes only non negative values and its probability mass function is given by

$$
P(X=x)=\left\{\begin{array}{l}
\frac{e^{-\lambda} \lambda^{x}}{x!} ; x=0,1,2, \ldots ; \lambda>0 \\
0, \text { otherwise }
\end{array}\right.
$$

Notation: $X \sim P(\lambda)$ read as $X$ is following Poisson distribution with parameter $\lambda$.

## Poisson distribution as limiting form of binomial distribution:

Poisson distribution is a limiting case of Binomial distribution under the following conditions:
(i). $n$ the number of trials is indefinitely large, (i.e.) $n \rightarrow \infty$
(ii). $p$ the constant probability of success in each trial is very small (i.e.) $p \rightarrow 0$
(iii). $n p=\lambda$ is finite.

Proof:
$P(X=x)=p(x)=n c_{x} p^{x} q^{n-x}$
Let $n p=\lambda$
$\therefore \quad p=\frac{\lambda}{n}, q=1-\frac{\lambda}{n}$
$\therefore \quad p(x)=n c_{x}\left(\frac{\lambda}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{n-x}$

$$
\begin{aligned}
& =\frac{n!}{x!(n-x)!}\left(\frac{\lambda}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{n-x} \\
& =\frac{n(n-1) \cdots(n-(x-1))(n-x)!}{x!(n-x)!}\left(\frac{\lambda}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{n-x} \\
& =\frac{1 .\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{x-1}{n}\right)}{x!} \not x^{x x} \frac{\lambda^{x}}{x^{x x}}\left(1-\frac{\lambda}{n}\right)^{n-x} \\
& p(x)=1 .\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{x-1}{n}\right) \frac{\lambda^{x}}{x!}\left(1-\frac{\lambda}{n}\right)^{n-x}
\end{aligned}
$$

Taking limit $n \rightarrow \infty$ on both sides

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p(x)=\frac{\lambda^{x}}{x!} \lim _{n \rightarrow \infty}\left[\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{x-1}{n}\right)\left(1-\frac{\lambda}{n}\right)^{n-x}\right] \\
& \quad=\frac{\lambda^{x}}{x!} \lim _{n \rightarrow \infty}\left[\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{x-1}{n}\right)\right] \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{-x} \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n} \\
& P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} ; x=0,1,2, \ldots
\end{aligned}
$$

Problem. 1Criticise the following statement: "The mean of a Poisson distribution is 5 while the standard deviation is 4 ".

## Solution:

For a Poisson distribution mean and variance are same. Hence this statement is not true.
Problem. 2If $X$ is a Poisson variate $P(X=2)=9 P(X=4)+90 P(X=6)$, find mean and variance of $X$.

## Solution:

$$
\begin{gathered}
\qquad P(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}, x=0,1,2, \ldots \\
P(X=2)=9 P(X=4)+90 P(X=6) \\
\frac{e^{-\lambda} \lambda^{2}}{2!}=9 \frac{e^{-\lambda} \lambda^{4}}{4!}+90 \frac{e^{-\lambda} \lambda^{6}}{6!} \\
\frac{1}{2!}=\frac{9 \lambda^{2}}{4!}+90 \frac{\lambda^{4}}{6!} \\
\frac{1}{2}=\frac{3}{8} \lambda^{2}+\frac{\lambda^{4}}{8} \\
1=\frac{3 \lambda^{2}}{4}+\frac{\lambda^{4}}{4} \\
\lambda^{4}+3 \lambda^{3}-4=0 \\
\text { Put } \lambda^{2}=t, \quad t^{2}+3 t-4=0 \\
\quad(t+4)(t-1)=0 \\
\quad t=1,-4 \quad \lambda^{2}=-4 \\
\therefore \quad \lambda^{2}=1, \quad \lambda= \pm 1, \quad \lambda= \pm 2 i \\
\quad \quad \quad \text { Mean }=\lambda=1 \quad(\because \lambda>0) \\
\text { Variance }=\lambda=1 .
\end{gathered}
$$

Problem. 3 If $X$ is a Poisson rv such that $P(X=1)=0.3$ and $P(X=2)=0.2$. Find $P(X=0)$.

## Solution:

Given $X$ is a Poisson rv, $p(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}, x=0,1, \ldots$

$$
\begin{align*}
& P(X=1)=\frac{e^{-\lambda} \lambda^{1}}{1!}=0.3  \tag{1}\\
& P(X=2)=\frac{e^{-\lambda} \lambda^{2}}{2!}=0.2  \tag{2}\\
& \frac{(1)}{(2)} \Rightarrow \quad \frac{e^{-\lambda} \lambda^{1}}{e^{-\lambda} \lambda^{2}} 2=\frac{0.3}{0.2} \\
& \frac{1}{\lambda}=\frac{0.3}{2(0.2)} \\
& \lambda=1.3333 \\
& \therefore \quad P(X=x)=e^{-1.3333} \frac{(1.3333)^{x}}{x!} \\
& \therefore \quad P(X=0)=e^{-1.3333} \frac{(1)}{1}=0.2636 \text {. }
\end{align*}
$$

Problem. 4 Out of 800 families with 4 children each, how many families would be expected to have (i) 2 boys and 2 girls, (ii) at least 1 boy, (iii) at most 2 girls and (iv) children of both sexes. Assume equal probabilities for boys and girls.

## Solution:

Considering each child as a trial, $n=4$. Assuming that birth of a boy is a success,

$$
p=\frac{1}{2} \quad \therefore q=\frac{1}{2} \text {. }
$$

Let $X$ denote the number of successes (boys)
(i) $\quad P(2$ boys and 2 girls $)=P(X=2)$

$$
\begin{aligned}
& =4 c_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2} \\
& =0.375
\end{aligned}
$$

$\therefore$ No. of families having 2 boys and 2 girls $=N . P(X=2)$

$$
\begin{aligned}
& =800(0.375) \\
& =300
\end{aligned}
$$

(ii) $\quad P($ at least 1 boy $)=P(X \geq 1)$

$$
=1-P(X<1)
$$

$$
=1-P(X=0)
$$

$$
\begin{aligned}
& =1-4 c_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{4} \\
& =0.9375
\end{aligned}
$$

$\therefore$ No. of families having at least 1 boy $=N . P(X \geq 1)$

$$
\begin{aligned}
& =800(0.9375) \\
& =750 .
\end{aligned}
$$

(iii) $\quad P($ atmost 2 girls $)=P($ exactly 0 girl, 1 girl, 2 girls $)$

$$
\begin{aligned}
& =P(X=4)+P(X=3)+P(X=2) \\
& =4 c_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{0}+4 c_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{1}+4 c_{4}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2} \\
& =0.6875 .
\end{aligned}
$$

$\therefore$ No. of families having atmost 2 girls $=800(0.6875)=550$.
(iv) $\quad P$ (Children of both genders $)=1-P($ Children of the same gender $)$

$$
\begin{aligned}
& =1-\{P(\text { all are boys })+P(\text { all are girls })\} \\
& =1-\{P(X=4)+P(X=0)\} \\
& =1-\left[4 c_{4}\left(\frac{1}{2}\right)^{4}+4 c_{0}\left(\frac{1}{2}\right)^{4}\right] \\
& =0.875
\end{aligned}
$$

$\therefore$ No. of families having children of both genders $=800(0.875)=700$.

## Continuous type

## Uniform (or) Rectangular distribution:

A continuous random variable $X$ is said to have a uniform distribution over an interval $(a, b)$ if its probability density function is given by
$f(x)=\left\{\begin{array}{l}\frac{1}{b-a}, a<x<b \\ 0, \text { otherwise }\end{array}\right.$
Problem. 1 If $X$ is uniformly distributed with Mean 1 and Variance $\frac{4}{3}$, find $P[X>0]$

## Solution:

If $X$ is uniformly distributed over $(a, b)$, then

$$
\begin{aligned}
E(X)= & \frac{b+a}{2} \text { and } V(X)=\frac{(b-a)^{2}}{12} \\
& \therefore \frac{b+a}{2}=1 \Rightarrow a+b=2 \\
& \Rightarrow \frac{(b-a)^{2}}{12}=\frac{4}{3} \Rightarrow(b-a)^{2}=16 \\
& \Rightarrow a+b=2 \& b-a=4 \text { We get } b=3, a=-1
\end{aligned}
$$

$\therefore a=-1 \& b=3$ and probability density function of $x$ is

$$
\begin{array}{r}
f(x)=\left\{\begin{array}{l}
\frac{1}{4} ;-1<x<3 \\
0 ; \text { Otherwise }
\end{array}\right. \\
P[x<0]=\int_{-1}^{0} \frac{1}{4} d x=\frac{1}{4}[x]_{-1}^{0}=\frac{1}{4} .
\end{array}
$$

## Normal distribution:

A random variable $X$ is said to have a Normal distribution with parameters $\mu$ (mean) and $\sigma^{2}$ (variance) if its probability density function is given by the probability law
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}},-\infty<x<\infty,-\infty<\mu<\infty, \sigma>0$
Notation: $X \sim N\left(\mu, \sigma^{2}\right)$ read as $X$ is following normal distribution with mean $\mu$ and variance $\sigma^{2}$ are called parameter.
Problem. 1 Prove that "For standard normal distribution $N(0,1), M_{X}(t)=e^{\frac{t^{2}}{2}}$.

## Solution:

Moment generating function of Normal distribution

$$
=M_{X}(t)=E\left[e^{t x}\right]
$$

$$
=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x
$$

$$
\text { Put } z=\frac{x-\mu}{\sigma} \text { then } \sigma d z=d x,-\infty<Z<\infty
$$

$$
\therefore M_{X}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t(\sigma z+\mu)-\frac{z^{2}}{2}} d z
$$

$$
=\frac{e^{\mu t}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left(\frac{z^{2}}{2}-t \sigma z\right)} d z
$$

$$
=\frac{e^{\mu t}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(z-t \sigma)^{2}+\left(\frac{\sigma^{2} t^{2}}{2}\right)} d z
$$

$$
=\frac{e^{\mu t} e^{\frac{\sigma^{2} t^{2}}{2}}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(z-t \sigma)^{2}} d z
$$

$\because$ the total area under normal curve is unity, we have $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(z-t \sigma)^{2}} d z=1$
Hence $M_{X}(t)=e^{\mu t+\frac{\sigma^{2} t^{2}}{2}} \therefore$ For standard normal variable $N(0,1)$

$$
M_{X}(t)=e^{\frac{t^{2}}{2}}
$$

Problem. 2 State and prove the additive property of normal distribution.

## Solution:

Statement:
If $X_{1}, X_{2}, \ldots, X_{n}$ are $n$ independent normal random variates with mean $\left(\mu_{1}, \sigma_{1}^{2}\right)$, $\left(\mu_{2}, \sigma_{2}{ }^{2}\right), \ldots\left(\mu_{n}, \sigma_{n}{ }^{2}\right)$ then $X_{1}+X_{2}+\ldots+X_{n}$ also a normal random variable with mean

$$
\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

Proof:
We know that. $M_{X_{1}+X_{2}+\ldots+X_{n}}(t)=M_{X_{1}}(t) M_{X_{2}}(t) \ldots M_{X_{n}}(t)$
But $M_{X_{i}}(t)=e^{\mu_{i t} t \frac{t^{2} \sigma_{i}^{2}}{2}}, i=1,2 \ldots n$
$M_{X_{1}+X_{2}+\ldots+X_{n}}(t)=e^{\mu_{1} t+\frac{t^{2} \sigma_{1}^{2}}{2}} e^{\mu_{2} t+\frac{\sigma^{2} \sigma_{2}^{2}}{2}} \ldots e^{\mu_{n} t+\frac{t^{2} \sigma_{n}^{2}}{2}}$
$=e^{\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right) t+\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{n}^{2}\right) t^{2}}{2}}$

$$
=e^{\sum_{i=1}^{n} \mu_{t}+\frac{\sum_{i=1}^{n} \sigma_{i}^{2} t^{2}}{2}}
$$

By uniqueness MGF, $X_{1}+X_{2}+\ldots+X_{n}$ follows normal random variable with parameter $\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$.

This proves the property.
Problem. $3 X$ is a normal variate with mean $=30$ and $S . D=5$ Find the following $P[26 \leq X \leq 40]$

## Solution:

$X \sim N\left(30,5^{2}\right)$
$\therefore \mu=30 \& \sigma=5$
Let $Z=\frac{X-\mu}{\sigma}$ be the standard normal variate

$$
\begin{aligned}
P[26 \leq X \leq 40] & =P\left[\frac{26-30}{5} \leq Z \leq \frac{40-30}{5}\right] \\
& =P[-0.8 \leq Z \leq 2]=P[-0.8 \leq Z \leq 0]+P[0 \leq Z \leq 2] \\
& =P[0 \leq Z 0.8]+[0 \leq z \leq 2]
\end{aligned}
$$

$$
=0.2881+0.4772=0.7653 .
$$

Problem. 4 The average percentage of marks of candidates in an examination is 45 will a standard deviation of 10 the minimum for a pass is $50 \%$.If 1000 candidates appear for the examination, how many can be expected marks. If it is required, that double that number should pass, what should be the average percentage of marks?

## Solution:

Let $X$ be marks of the candidates

$$
\begin{aligned}
& \text { Then } X \sim N\left(42,10^{2}\right) \\
& \text { Let } z=\frac{X-42}{10} \\
& \begin{aligned}
P[X>50] & =P[Z>0.8] \\
& =0.5-P[0<z<0.8] \\
& =0.5-0.2881=0.2119
\end{aligned}
\end{aligned}
$$

Since 1000 students write the test, nearly 212 students would pass the examination.
If double that number should pass, then the no of passes should be 424.
We have to find $z_{1}$, such that $P\left[Z>z_{1}\right]=0.424$

$$
\therefore P\left[0<z<z_{1}\right]=0.5-0.424=0.076
$$

From tables, $z=0.19$
$\therefore z_{1}=\frac{50-x_{1}}{10} \Rightarrow x_{1}=50-10 z_{1}$

$$
=50-1.9=48.1
$$

The average mark should be 48 nearly.
Problem. 5 Given that $X$ is normally distribution with mean 10 and probability $P[X>12]=0.1587$. What is the probability that $X$ will fall in the interval $(9,11)$.

## Solution:

Given $X$ is normally distributed with mean $\mu=10$.
Let $z=\frac{x-\mu}{\sigma}$ be the standard normal variate.
For $X=12, z=\frac{12-10}{\sigma} \Rightarrow z=\frac{2}{\sigma}$
Put $z_{1}=\frac{2}{\sigma}$
Then $P[X>12]=0.1587$

$$
P\left[Z>Z_{1}\right]=0.1587
$$

$$
\therefore 0.5-p\left[0<z<z_{1}\right]=0.1587
$$

$$
\Rightarrow P\left[0<z<z_{1}\right]=0.3413
$$

From area table $P[0<z<1]=0.3413$

$$
\therefore Z_{1}=1 \Rightarrow \frac{2}{\sigma}=1
$$

To find $P[9<x<11]$
For $X=9, z=-\frac{1}{2}$ and $X=11, z=\frac{1}{2}$

$$
\begin{aligned}
\therefore P[9<X<11] & =P[-0.5<z<0.5] \\
& =2 P[0<z<0.5] \\
& =2 \times 0.1915=0.3830
\end{aligned}
$$

Problem. 6 In a normal distribution $31 \%$ of the items are under 45 and $8 \%$ are over 64.Find the mean and standard deviation of the distribution.

## Solution:

Let $\mu$ be the mean and $\sigma$ be the standard deviation.
Then $P[X \leq 45]=0.31$ and $P[X \geq 64]=0.08$
When $X=45, Z=\frac{45-\mu}{\sigma}=-z_{1}$
$\therefore z_{1}$ is the value of $z$ corresponding to the area $\int_{0}^{z_{1}} \phi(z) d z=0.19$
$\therefore z_{1}=0.495$
$45-\mu=-0.495 \sigma--(1)$
When $X=64, Z=\frac{64-\mu}{\sigma}=z_{2}$
$\therefore z_{2}$ is the value of $z$ corresponding to the area $\int_{0}^{z_{2}} \phi(z) d z=0.42$
$\therefore z_{2}=1.405$
$64-\mu=1.405 \sigma--(2)$
Solving (1) \& (2) We get $\mu=10$ (approx) \& $\sigma=50$ (approx)

## UNIT -II : SAMPLING DISTRIBUTION \& ESTIMATION

## Population:

The group of individuals under study is called population. The population may be finite or infinite.

## Sample and Sample Size:

A finite subset of statistical individuals in a population is called Sample. The number of individuals in a sample is called Sample Size(n).

## Parameter and Statistic:

A numerical measure of a population is called a population parameter or simply a parameter.
A numerical measure of the sample is called a sample statistic or simply a statistic.

## Sampling distribution:

The sampling distribution of a statistic is the probability distribution of all possible values the statistic may take, when computed from random samples of same size, drawn from a specified population. Like any other distribution, a sampling distribution will have its mean, standard deviation and moments of higher order.

## Standard Error:

The standard deviation of the sampling distribution of a statistic is known as itsstandard error.

## Uses of Standard Error:

The magnitude of the standard error gives an index of the reliability of the estimate of the parameter. The greater the standard error of the estimate, lesser will be the reliability of the sample.
Standard error is useful for determining the probable limits or confidence limits for an unknown parameter with a specified confidence co-efficient.Standard error is also used for testing of hypothesis.

## Type I error and Type II error:

Type I error: If we reject a hypothesis when it should be accepted, we say that type I error has been made.
Type II error: If we accept a hypothesis when it should be rejected, we say that a type II error has been made.

## Critical region:

A region corresponding to a test statistic in the sample space which tends to rejection of $\mathrm{H}_{0}(\mathrm{Null}$ Hypothesis) is called critical region or region of rejection.
The region complementary to the critical region is called the region of acceptance.

## Level of significance:

The probability ' $\alpha$ ' (the probability of making type I error) that a random value of the test statistic belongs to the critical region is known as the level of significance. In other words, level of significance is the size of the type I error.
The levels of significance usually employed in testing of hypothesis are $5 \%$ and $1 \%$.

## Critical values or significant values:

The value of test statistic which divides the critical (or rejection) region and acceptance region is called the critical value or significant value. It depends on the level of significance used and the alternative hypothesis.

## Different types of sampling:

Non probability Samples: Judgment sample, Quota sample, Chunk sample.
Probability samples: Simple random sample, stratified sample, systematic sample, Cluster sample.

## One tailed test:

When the hypothesis about the population parameter is rejected only for the value of sample statistic falling into one of the tails of the sampling distribution, then it is known as one-tailed test.
If it is right tail then it is called right-tailed test or one-sided alternative to the right and if it is on the left tail, then it is one-sided alternative to the left and called left-tailed test.

## Two tailed test:

Two tailed test is one where the hypothesis about the population parameter is rejected for the value of sample statistic falling into the either tails of the sampling distribution.

## Systematic sampling:

In a systematic sample, the N items in the population are partitioned into k groups by dividing the size of the population by the desired sample size n .

## Stratified Sampling:

In a stratified sample, then N items in the population are first subdivided into separate subpopulations, or strata, according to some common characteristic.

## Cluster Sampling:

In a cluster sample, the N items in the population are divided into several clusters so that each cluster is representative of the entire population.

## Sampling Error:

Sampling errors have their origin in sampling and arise due to the fact that only a part of the population has been used to estimate populations parameters and draw inferences about them.

## Estimator:

An estimator of a population parameter is a sample statistic used to estimate the parameter. An estimate of the parameter is a particular numerical value of the estimator obtained by sampling.

## Different types of estimation:

There are two types of estimation. They are Point estimation and Interval estimation.

## Point estimation:

When a single value is used as an estimate, the estimate is called a point estimate of the population parameter. For example, the sample mean is the sample statistic used as an estimate of population mean $\mu$.

## Interval estimation:

An estimate of a population parameter given by two numbers between which the parameter may be considered to lie is called an interval estimate of the parameter.
The interval estimate or a confidence interval consists of an upper confidence limit and lower confidence limit and we assign a probability that this interval contains the unknown population parameter.
Characteristics of a good estimator:
The important properties of good statistical estimators are (i) unbiasedness (ii) efficiency (iii) consistency (iv) sufficiency.

Unbiased estimator:
An estimator is said to be unbiased if its expected value is equal to the population parameter it estimates. Consistent estimator:
An estimator is said to be consistent if its probability of being close to the parameter it estimates increases as the sample size increases.

## Efficient estimator:

An estimator is efficient if it has a relatively smaller variance.
Sufficient estimator:
An estimator is said to be sufficient if it contains all the information in the data about the parameter it estimates.

## FORMULAS:

1. Write the confidence interval for the population mean for large samples when $\sigma$ is known.

The confidence interval for $\mu$ when $\sigma$ is known and sampling is done from a normal population or with a large sample, is $\bar{x} \pm Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$.
Here $\bar{x}$-sample mean, $\sigma$ - standard deviation, $\mathrm{n}-$ size of the sample
2. Write the confidence interval for the population mean for small samples when $\sigma$ is unknown.

The confidence interval for $\mu$ when $\sigma$ is not known is $\bar{x} \pm t_{\alpha / 2} \frac{s}{\sqrt{n}}$, where $S^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}$

## Here $\bar{x}$-sample mean, s - standard deviation, n - size of the sample

3. Write the confidence interval for the difference between two population means for large samples when $\sigma$ is known.
The confidence limits for the difference between two population means are given by
$\left(\overline{x_{1}}-\overline{x_{2}}\right) \pm Z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
4. Write the confidence interval for the difference between two population means for small samples when $\sigma$ is unknown.
The confidence limits for the difference between two population means are given by
$\left(\overline{x_{1}}-\overline{x_{2}}\right) \pm t_{\alpha / 2} S \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$, where $S^{2}=\frac{1}{n_{1}+n_{2}-2}\left[\sum\left(x_{i}-\bar{x}\right)^{2}+\sum\left(y_{i}-\bar{y}\right)^{2}\right]$
5. Write the confidence interval for the population proportion for large samples.

The confidence interval for the population proportion P is $p \pm Z_{\alpha / 2} \sqrt{\frac{p q}{n}}$, where $\mathrm{q}=1$ - p .
6. Write the confidence interval for the difference between two population proportions for large samples.
Confidence limits for the difference between two population proportions are
$\left(p_{1}-p_{2}\right) \pm Z_{\alpha / 2} \sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}$
7. Write the confidence interval for a mean when a finite population $\mathbf{N}$ is known?
$\mu=\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$
8. What is the sample size for estimating a population mean when the sample standard deviation and standard error is known?
$n=\left(\frac{Z_{\alpha} \cdot \sigma}{E}\right)^{2}, E-$ standard error
9. What is the sample size for estimating a population proportion when the sample standarddeviation and standard error is known?
$n=\frac{Z_{\alpha}{ }^{2} \cdot p q}{E^{2}}, E-$ standard error

## PROBLEMS:

1. A machine produces components, which have a standard deviation of 1.6 cm in length. A random sample of 64 parts is selected from the output and this sample has a mean length of 90 cm . The customer will reject the part if it is either less than 88 cm or more than 92 cm . Does the $\mathbf{9 5 \%}$ confidence interval for the true mean length of all the components produced ensure acceptance by the customer?
Solution:
Formula for confidence interval is $\overline{\mathrm{x}}-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \overline{\mathrm{x}}+z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
where $\sigma=1.6, z_{\frac{\alpha}{2}}=1.96, \overline{\mathrm{x}}=90$ and $n=64$.
$\therefore 89.61 \leq \mu \leq 90.39$.
This implies that theprobability that thetrue value of the populationmean length of the components will faill in this interval is $95 \%$.
2. A server channel monitored for an hour was found to have an estimated mean of 20 transactions transmitted per minute. The variance is known to be 4. Find the standard error. Establish an interval estimate that includes a population mean $95 \%$ of the time and $99 \%$ of the time.
Solution:

$$
\begin{align*}
& \text { Standard error }=\frac{\sigma}{\sqrt{\mathrm{n}}}=0.2582  \tag{i}\\
& Z_{\frac{\alpha}{2}}=1.96 .95 \% \text { confidence interval is } \mu=\overline{\mathrm{x}} \pm Z_{\frac{\alpha}{2}} \sigma_{\bar{x}}=(19.4939,20.5061) \\
& Z_{\frac{\alpha}{2}}=2.58^{\circ} .99 \% \text { confidence interval is } \mu=\overline{\mathrm{x}} \pm Z_{\frac{\alpha}{2}} \sigma_{\bar{x}}=(19.33,20.67)
\end{align*}
$$

3. A management consulting agency needs to estimate the average number of years of experience of executives in a given branch of management. A random sample of 28 executives gives sample mean as 6.7 years and standard deviation as 2.4 years. Give a $99 \%$ confidence interval for the average number of years of experience for all executives in this branch.
Solution:
Given $\mathrm{n}=28, \overline{\mathrm{x}}=6.7$ and $s=2.4$.
$t_{\frac{\alpha}{2}}=2.861 \therefore .99 \%$ confidence interval is $\mu=\overline{\mathrm{x}} \pm t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}=(5.402,7.998)$
4. In order to compare the intelligent quotient of students, two schools were selected. A random sample of 90 students was selected from each school. At school A, the mean I.Q. is 109 and standard deviation is 11. At school $B$, the mean I.Q. is 98 and standard deviation is 9 . Construct $\mathbf{9 5 \%}$ confidence interval for the difference between mean I.Q. of two schools.
Solution:

$$
\begin{aligned}
& \text { Given } \mathrm{n}_{1}=n_{2}=90, \overline{\mathrm{x}_{1}}=109, S_{1}=11, \overline{\mathrm{x}_{2}}=98, S_{2}=9 \\
& z_{\frac{\alpha}{2}}=1.96 .95 \% \text { confidence interval is }\left(\overline{\mathrm{x}_{1}}-\overline{\mathrm{x}_{2}}\right) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}=(8.06,13.94)
\end{aligned}
$$

5. A sample poll of 100 voters chosen at random from all voters in a given district indicated that $55 \%$ of them were in favour of a particular candidate. Find (i) $\mathbf{9 5 \%}$ and (ii) $\mathbf{9 9 \%}$ confidence limits for the proportion of all the voters in favour of this candidate.

$$
\text { We have } n=100
$$

Solution: Sample proportion $p=0.55$ and $q=0.45 \quad Z_{\alpha / 2}=1.96$
(a) $Z_{\alpha / 2}=1.96: 95 \%$ Confidenceintervalfor $\mathrm{p}=\mathrm{p} \pm Z_{\alpha / 2} \sqrt{\frac{p q}{n}}=(0.4526,0.6474)$
(b) $Z_{\alpha / 2}=2.58: 99 \%$ Confidenceinterval for $\mathrm{p}=\mathrm{p} \pm Z_{\alpha / 2} \sqrt{\frac{p q}{n}}=(0.4218,0.6782)$
6. Two operators perform the same operation of applying a plastic coating to a part. A random sample of 100 parts from the first operator shows that 6 are non-conforming. A random sample of 200 parts from the second operator shows that 8 are non-conforming. Find a $90 \%$ confidence interval for the difference in the proportion of non-conforming parts produced by the two operators.
Solution:
Given $n_{1}=100, n_{2}=200, p_{1}=0.06, q_{1}=0.94, p_{2}=0.04, q_{2}=0.96, Z_{\alpha / 2}=1.645$.
$90 \%$ confidence interval for the difference in the proportionof non - conforming parts produced is
$\left(\mathrm{p}_{1}-p_{2}\right) \pm Z_{\alpha / 2} \sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}=(0.0275,0.0652)$
7. The operations manager for a large newspaper wants to determine the proportion of newspapers printed that have a non conforming attribute, such as excessive rub off, missing pages, and duplicate pages. The operations manager determines that a random sample of 200 newspapers should be selected for analysis. Suppose that, of this sample of 200 , thirty five contain same type of non conformance. If the operations manager wants to have $90 \%$ confidence in estimating the true population proportion, set up the confidence interval estimate.
Solution:
We have $x=35$ and $n=200$.
Sample proportion $p=\frac{x}{n}=0.175, q=0.825$ and $Z_{\alpha / 2}=1.645$
$90 \%$ confidence interval for $\mathrm{p}=\mathrm{p} \pm Z_{\alpha / 2} \sqrt{\frac{p q}{n}}=(0.1308,0.2192)$
8. The following are the average weekly losses of worker-hours due to accidents in 10 industrial plants before and after a certain safety program were put into operation:

| Before | $\mathbf{4 5}$ | $\mathbf{7 3}$ | $\mathbf{4 6}$ | $\mathbf{1 2 4}$ | $\mathbf{3 3}$ | $\mathbf{5 7}$ | $\mathbf{8 3}$ | $\mathbf{3 4}$ | $\mathbf{2 6}$ | $\mathbf{1 7}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| After | $\mathbf{3 6}$ | $\mathbf{6 0}$ | $\mathbf{4 4}$ | $\mathbf{1 1 9}$ | $\mathbf{3 5}$ | $\mathbf{5 1}$ | $\mathbf{7 7}$ | $\mathbf{2 9}$ | $\mathbf{2 4}$ | $\mathbf{1 1}$ |

Find a $90 \%$ confidence interval for the mean improvement in lost worker hours.
Null Hypothesis $\mathrm{H}_{0}$ : There is no improvement between before and after the safety program.
Alternative Hypothesis $\mathrm{H}_{1}$ : There is an improvement in the performance between before and after the safety program.
From the given data

$$
\text { Group } 1 \text { Group } 2
$$

$$
\begin{array}{lll}
\text { Mean } & 53.8 & 48.6
\end{array}
$$

Variance 1027.7333962 .9333

| Stand. Dev. | 32.0583 | 31.0312 |
| :---: | :---: | :---: |
| n | 10 | 10 |
| t | 4.0333 |  |
| degrees of freedom | 9 |  |
| critical value | 4.297 |  |

Since the calculated $t$ value is smaller than critical value (4.0333<4.297), we reject $\mathrm{H}_{0}$. So the means are not significantly different.
9. In a test given to two groups of students the marks obtained were as follows

| I group | $\mathbf{1 8}$ | $\mathbf{2 0}$ | $\mathbf{3 6}$ | $\mathbf{5 0}$ | $\mathbf{4 9}$ | $\mathbf{3 6}$ | $\mathbf{3 4}$ | $\mathbf{4 9}$ | $\mathbf{6 1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| II group | $\mathbf{2 9}$ | $\mathbf{2 8}$ | $\mathbf{2 6}$ | $\mathbf{3 5}$ | $\mathbf{3 0}$ | $\mathbf{4 4}$ | $\mathbf{4 6}$ |  |  |

Construct a 95\% confidence interval on the mean marks secured by students of the above two groups.
Solution:
Given $\mathrm{n}_{1}=9, n_{2}=7, \overline{\mathrm{x}_{1}}=37, \overline{\mathrm{x}_{2}}=34$
$S^{2}=\frac{1}{n_{1}+n_{2}-2}\left[\sum_{i}\left(x_{i}-x_{1}\right)^{2}+\sum_{j}\left(x_{i}-x_{2}\right)^{2}\right]=108.57 . \Rightarrow S=10.42$.
$t_{\frac{\alpha}{2}}=1.76 .95 \%$ confidence interval is $\left(\overline{\mathrm{x}_{1}}-\overline{\mathrm{x}_{2}}\right) \pm t_{\frac{\alpha}{2}} S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=(6.24,12.24)$
10. The diameter of component produced on a semi-automatic machine is known to be distributed normally with a mean of 10 mm and a standard deviation of 0.1 mm . If we pick up a random sample of size 5 , what is the probability that the sample mean will be between 9.95 mm and 10.05 mm ?

Solution:
$P(9.95<\bar{x}<10.05)=P(-1.12<z<1.12)=2 P(0<z<1.12)=0.7372$
11. For a particular brand of T.V. picture tube, it is known that the mean operating life of the tubes is $\mathbf{1 0 0 0}$ hours with a standard deviation of $\mathbf{2 5 0}$ hours. What is the probability that the mean for a random sample of size 25 will be between 950 and 1050 hours?
Solution:
$P(950<\bar{x}<1050)=P(-1<z<1)=2 P(0<z<1)=0.6826$
12. Strength of wire were produced by company $A$ has a mean of 4500 kg and a standard deviation of 200 kg , company $B$ has a mean of 4000 kg and a S.D. of 300 kg . If 50 wires of company $A$ and 100 wires of company $B$ are selected at random and tested for strength. What is the probability that the sample mean strength of $A$ will be atleast 600 kg more than that of $B$.
Solution:
$P(\bar{x}>600)=P(z>2.425)=0.5-0.4925=0.0075$
13. Car stereo manufacturer of $A$ have mean life time of 1400 hours with a S.D. of 200 hours while those of manufacturer B have mean lifetime of $\mathbf{1 2 0 0}$ hours with a S.D. of $\mathbf{1 0 0}$ hours. If a random
sample of 120 stereos of each manufacturer are tested. (i) What is the probability that the manufacturer of A's stereo's will have a mean life time of atleast $\mathbf{1 6 0}$ hours more than the manufacturer B's stereos (ii) and $\mathbf{2 5 0}$ hours more than the manufacturer $B$ stereos.
Solution:

$$
\begin{equation*}
P(\bar{x}>160)=P(z>-1.95)=0.5+0.4750=0.9750 \tag{i}
\end{equation*}
$$

(ii) $\quad P(\bar{x}>250)=P(z>2.45)=0.5-0.4929=0.0071$
14. If two proportions $10 \%$ of machine produced by a company $A$ are defective and $5 \%$ of machine produced by a company $B$ are defective. A random sample of 250 machines is taken from company $A$ and has the random sample of 300 machines from company $B$. What is the probability that the difference in sample proportion is less than or equal to $\mathbf{0 . 0 2}$.
Solution:
$P\left(p_{1}-p_{2}<0.02\right)=P(z<-1.32)=0.5-P(0<z<1.32)=0.5-0.4066=0.0934$
15. A random sample of 500 toys was taken from a consignment and 65 were found to be defective. Find the percentage of defective toys in the consignment.
Solution:
$n=500 ; X=65 . p=0.13$
The limits for the population proportionP are given by $\mathrm{p} \pm 1.96 \sqrt{\frac{\mathrm{pq}}{\mathrm{n}}}=(0.159,0.101)$
The percentage of defective toy $\sin$ the consignment lies betwwen and $10.1 \%$ and $15.9 \%$.

## 16. What are the different types of sampling methods? Also write short notes on different types of sampling?

Solution:
Simple random sampling, Stratified sampling, Cluster sampling, Judgment sampling and Quota sampling.

| Technique | Descriptions | Advantages | Disadvantages |
| :--- | :--- | :--- | :--- |
| Simple <br> random | Random sample from <br> whole population | Highly representative if all <br> subjects participate; the ideal | Not possible without complete list <br> of population members; potentially <br> uneconomical to achieve; can be <br> disruptive to isolate members from <br> a group; time-scale may be too <br> long, data/sample could change |
| Stratified <br> random | Random sample from <br> identifiable groups (strata), <br> subgroups, etc. | Can ensure that specific groups <br> are represented, even <br> proportionally, in the sample(s) <br> (e.g., by gender), by selecting <br> individuals from strata list | More complex, requires greater <br> effort than simple random; strata <br> must be carefully defined |
| Cluster | Random samples of <br> successive clusters of <br> subjects (e.g., by <br> institution) until small <br> groups are chosen as units | Possible to select randomly <br> when no single list of <br> population members exists, but <br> local lists do; data collected on <br> groups may avoid introduction <br> of confounding by isolating <br> members | Clusters in a level must be <br> equivalent and some natural ones <br> are not for essential characteristics <br> (e.g., geographic: numbers equal, <br> but unemployment rates differ) |


| Stage | Combination of cluster <br> (randomly selecting <br> clusters) and random or <br> stratified random sampling <br> of individuals | Can make up probability <br> sample by random at stages <br> and within groups; possible to <br> select random sample when <br> population lists are very <br> localized | Complex, combines limitations of <br> cluster and stratified random <br> sampling |
| :--- | :--- | :--- | :--- |
| Purposive | Hand-pick subjects on the <br> basis of specific <br> characteristics | Ensures balance of group sizes <br> when multiple groups are to be <br> selected | Samples are not easily defensible as <br> being representative of populations <br> due to potential subjectivity of <br> researcher |
| Quota | Select individuals as they <br> come to fill a quota by <br> characteristics <br> proportional to <br> populations | Ensures selection of adequate <br> numbers of subjects with <br> appropriate characteristics | Not possible to prove that the <br> sample is representative of <br> designated population |
| Snowball | Subjects with desired traits <br> or characteristics give <br> names of further <br> appropriate subjects | Possible to include members of <br> groups where no lists or <br> identifiable clusters even exist <br> (e.g., drug abusers, criminals) | No way of knowing whether the <br> sample is representative of the <br> population |
| Volunteer, <br> accidental, <br> convenience | Either asking for <br> volunteers, or the <br> consequence of not all <br> those selected finally <br> participating, or a set of <br> subjects who just happen <br> to be available | Inexpensive way of ensuring <br> sufficient numbers of a study | Can be highly unrepresentative |

17. Given a sample mean of 83 , a sample standard deviation of 12.5 and a sample size of 22 , test the hypothesis that the value of the population mean is 70 against the alternative that it is more than $\mathbf{7 0}$. Use the $\mathbf{0 . 0 2 5}$ level of significance.
Here the sample size, $\mathrm{n}=22$ <30. Hence the sample is small sample. Given $\bar{x}=83, \mu=70, s=12.5$
Null Hypothesis $\mathrm{H}_{0}$ : There is no significant different between sample mean and population mean.
Alternative Hypothesis $\mathrm{H}_{1}: \mu>70$.
Degrees of freedom: $\mathrm{n}-1=21$.
The teststatistic is, $t=\frac{\bar{x}-\mu}{s / \sqrt{n-1}}$
$=\frac{83-70}{12.5 / \sqrt{21}}=4.7659$
Tabulated value of $t$ at $5 \%$ level with 21 degrees of freedom for single tailed test is 1.72 . Here calculated value > tabulated value, we reject $\mathrm{H}_{0}$.
Therefore $\mu>70$.
18. All the 0.10 level of significance, can we conclude that the following 400 observations follow a Poisson distribution with $\lambda=3$ ?

| No of arrivals per hr | 0 | 1 | 2 | 3 | $\mathbf{4}$ | $\mathbf{5}$ or more |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No of hrs | 20 | $\mathbf{5 7}$ | $\mathbf{9 8}$ | $\mathbf{8 5}$ | $\mathbf{7 8}$ | $\mathbf{6 2}$ |

Given $\lambda=3, \mathrm{~N}=400$. The expected frequency is $P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} * N$
Null Hypothesis $\mathrm{H}_{0}$ : The given data fit Poisson distribution
Alternative Hypothesis H1: The given data does not fit Poisson distribution

| X | O | E | $(\mathrm{O}-\mathrm{E})^{2}$ | $(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}$ |
| ---: | :--- | ---: | ---: | ---: |
| 0 | 20 | 19.912 | 0.0077 | 0.0004 |
| 1 | 57 | 59.736 | 7.4857 | 0.1313 |
| 2 | 98 | 89.604 | 70.4928 | 0.7193 |
| 3 | 85 | 89.604 | 21.1968 | 0.2494 |
| 4 | 78 | 67.203 | 116.5752 | 1.4946 |
| 5 | 62 | 40.3218 | 469.9444 | 7.5797 |
|  | Total |  |  |  | $10.17471 \quad$.

Degrees of freedom , $\mathrm{n}-2=6-2=4$
Tabulated value $=7.779$
Since the calculated value is greater than the tabulated value, we reject $\mathrm{H}_{0}$.
Therefore the given data does not fit Poisson distribution.
19. If $X_{1}, X_{2}, \ldots, X_{n}$ are Poisson variates with parameter $\lambda=2$, use the central limit theorem to estimate $P\left(120 \leq s_{n} \leq 160\right)$ where $s_{n}=X_{1}+X_{2}+\ldots+X_{n}$ and $\mathrm{n}=75$

## Sol:

Given $\mu=2, \sigma^{2}=2$ (For poisson distribution, mean $=\operatorname{var}$ iance $=\lambda$ )
Now, $n \mu=75 \times 2=150$, \& $n \sigma^{2}=75 \times 2=150 \Rightarrow \sigma \sqrt{n}=\sqrt{150}$
By Central limit theorem, $S_{n}: N(n \mu, \sigma \sqrt{n}) \approx N(150, \sqrt{150})$
To find $\mathrm{P}\left(120<S_{n}<160\right)$ :
Let $z=\frac{S_{n}-n \mu}{\sigma \sqrt{n}}=\frac{S_{n}-150}{\sqrt{150}}$, (since z is standard normal variate)
If $S_{n}=120$, then $z=\frac{120-150}{\sqrt{150}}=-2.45$ and if $S_{n}=160, z=\frac{160-150}{\sqrt{150}}=0.85$,
$\therefore \mathrm{P}\left(120<S_{n}<160\right)=\mathrm{P}(-2.45<z<0.85)$
$=P(-2.45<z<0)+P(0<z<0.85)$
$=P(0<z<2.45)+P(0<z<0.85)$
$=0.4927+0.2939$
$=0.7866$

## Unit-III Testing of Hypothesis

## Population:

A population in statistics means a set of object. The population is finite or infinite according to the number of elements of the set is finites or infinite.

## Sampling:

A sample is a finite subset of the population. The number of elements in the sample is called size of the sample.
Large and small sample:
The number of elements in a sample is greater than or equal to 30 then the sample is called a large sample and if it is less than 30 , then the sample is called a small sample.

## Parameters:

Statistical constant like mean $\mu$, variance $\sigma^{2}$, etc., computed from a population are called parameters of the population.

## Statistics:

Statistical constants like $\bar{x}$, variance $S^{2}$, etc., computed from a sample are called samlple staticts or statistics.

| POPULATION (PARAMETER) | SAMPLE (STATISTICS) |
| :--- | :--- |
| Population size $=\mathrm{N}$ | Sample size $=\mathrm{n}$ |
| Population mean $=\mu$ | Sample mean $=\bar{x}$ |
| Population s.d. $=\sigma$ | Sample s.d. $=\mathrm{S}$ |
| Population proportion $=\mathrm{P}$ | Sample proportion= p |

## Tests of significance or Hypothesis Testing:

## Statistical Hypothesis:

In making statistical decision, we make assumption, which may be true or false are called Statistical Hypothesis.
Null Hypothesis ( $H_{0}$ ):
For applying the test of significance, we first setup a hypothesis which is a statement about the population parameter. This statement is usually a hypothesis of no true difference between sample statistics and population parameter under consideration and so it is called null hypothesis and is denoted by $H_{0}$.

## Alternative Hypothesis ( $H_{1}$ ):

Suppose the null hypothesis is false, then something else must be true. This is called an alternative hypothesis and is denoted by $H_{1}$.
Eg. If $H_{0}$ is population mean $\mu=300$, then $H_{1}$ is $\mu \neq 300$ (ie. $\mu<300$ or $\mu>300$ ) or $H_{1}$ is $\mu>300$ or $H_{1}$ is $\mu<300$. So any of these may be taken as alternative hypothesis.

## Error in sampling:

After applying a test of significance a decision is to be taken to accept or reject the null hypothesis $H_{0}$.
Type I error: The rejection of the null hypothesis $H_{0}$ when it is true is called type I error.
Type II error: The acceptance of the null hypothesis $H_{0}$ when it is false is called type II error.

## Level of significance:

The probability of type I error is called level of significance of the test and it is denoted by $\alpha$. We usually take either $\alpha=5 \%$ or $\alpha=1 \%$.

## One tailed and Two tailed test:

If $\theta_{0}$ is a population parameter and $\theta$ is the corresponding sample statistics and if we setup the null hypothesis $H_{0}: \theta=\theta_{0}$, then the alternative hypothesis which is complementary to $H_{0}$ can be anyone of the following:
(i) $H_{1}: \theta \neq \theta_{0}\left(\theta<\theta_{0}\right.$ or $\left.\theta>\theta_{0}\right)$ (ii) $H_{1}: \theta<\theta_{0}$ (iii) $H_{1}: \theta>\theta_{0}$

Alternative hypotheis, whereas $H_{1}$ given in (ii) is called a left-tailed test. And (iii) is called a right tailed test.

## Level of significance:

The probability of Type I error is called the level of significance of the test and is denoted by $\alpha$.

## Critical region:

For a test statistic, the area under the probability curve, which is normal is divided into two region namely the region of acceptance of $H_{0}$ and the region of rejection of $H_{0}$. The region in which $H_{0}$ is rejected is called critical region. The region in which $H_{0}$ is accepted is called acceptance region.

## Procedure of Testing of Hypothesis:

(i) State the null hypothesis $H_{0}$
(ii) Decide the alternative hypothesis $H_{1}$ (ie, one tailed or two tailed)
(iii) Choose the level of significance $\alpha$ ( $\alpha=5 \%$ or $\alpha=1 \%$ ).
(iv) Determine a suitable test statistic.

$$
\text { Test statistic }=\frac{t-E(t)}{S \cdot E \text { of }(t)}
$$

(v) Compute the computed value of $|z|$ with the table value of z and decide the acceptane or the rejection of $H_{0}$.

If $|z|<1.96, H_{0}$ may be accepted at $5 \%$ level of significance. If $|z|>1.96, H_{0}$ may be rejection at 5\% level of significance.

If $|z|<2.58, H_{0}$ may be accepted at $1 \%$ level of significance. If $|z|>2.58, H_{0}$ may be rejection at $1 \%$ level of significance.

For a single tail test(right tail or left tail) we compare the computed value of $|z|$ with 1.645 (at $5 \%$ level) and 2.33(at $1 \%$ level) and accept or reject $H_{0}$ accordingly.

## Test of significance of small sample:

When the size of the sample (n) is less than 30 , then that sample is called a small sample.
The following are some important tests for small sample,
(I) students t test
(II) F-test
(III) $\chi^{2}$-test

## I Student t test

(i). Test of significance of the difference between sample mean and population mean (ii). Test of significance of the difference between means of two small samples
(i) Test of significance of the difference between sample mean and population mean:

The studemts ' t ' is defined by the statistic $t=\frac{\bar{x}-\mu}{S / \sqrt{n}}$ where $\bar{x}=$ sample mean, $\mu=$ population mean, $S=$ standard deviation of sample, $\mathrm{n}=$ sample size.

## Note:

If standard deviation of sample is not given directly then, the static is given by $t=\frac{\bar{x}-\mu}{S / \sqrt{n}}$, where
$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}, S^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$

## Confident Interval:

The confident interval for the population mean for small sample is $\bar{x} \mp t_{\alpha} \frac{s}{\sqrt{n}}$
$\Rightarrow\left(\bar{x}-t_{\alpha} \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha} \frac{s}{\sqrt{n}}\right)$

## Working Rule:

(i) Let $H_{0}: \mu=\bar{x}$ (there is no significant difference between sample mean and population mean)
$H_{1}: \mu \neq \bar{x}$ (there is no significant difference between sample mean and population mean)(Two tailed test)
Find $t=\frac{\bar{x}-\mu}{S / \sqrt{n-1}}$.
Let $t_{\alpha}$ be the table value of t with $\mathrm{v}=\mathrm{n}-1$ degrees of freedom at $\alpha \%$ level of significance.

## Conclusion:

If $|t|<t_{\alpha}, H_{0}$ is accepted at $\alpha \%$ level of significance.
If $|t|>t_{\alpha}, H_{0}$ is rejected at $\alpha \%$ level of significance.

## Problem:

1. The mean lifetime of a sample of 25 bulbs is found as 1550 h , with standard deviation of $\mathbf{1 2 0 h}$. The company manufacturing the bulbs claims that the average life of their bulbs is 1600 h . Is the claim acceptable at $5 \%$ level of significance?

## Solution:

Given sample size $\mathrm{n}=25$, mean $\bar{x}=1550$, S.D.(S) $=120$, population mean $\mu=1600$
Let $H_{0}: \mu=1600$ ( the claim is acceptable)
$H_{1}: \mu \neq 1600(\mu \neq \bar{x})($ two tailed test $)$
Under $H_{0}$, the test statistic is $t=\frac{\bar{x}-\mu}{S / \sqrt{n}}=\frac{1550-1600}{120 / \sqrt{25}}=-2.0833$
$\therefore|t|=2.0833$
From the table, for $v=24, t_{0.05}=2.064$. Since $|t|>t_{0.05}$
$\therefore H_{0}$ is rejected
Conclusion: The claim is not acceptable.
2. Test made on the breaking strength of 10 pieces of a metal gave the following results: $578,572,570,568,572,570,570,572,596$, and 584 kg . Test if the mean breaking strength of the wire can be assumed as 577 kg .

## Solution:

let us first compute sample mean $\bar{x}$ and sample standard deviation S and then test if $\bar{x}$ differs significantly from the population mean $\mu=577$.

| $\mathbf{x}$ | $x-\bar{x}$ | $(x-\bar{x})^{2}$ |
| :---: | :---: | :---: |
| 578 | 2.8 | 7.84 |
| 572 | -3.2 | 10.24 |
| 570 | -5.2 | 27.04 |
| 568 | -7.2 | 51.84 |
| 572 | -3.2 | 10.24 |
| 570 | -5.2 | 27.04 |
| 570 | -5.2 | 27.04 |
| 572 | -3.2 | 10.24 |
| 596 | 20.8 | 432.64 |
| 584 | 8.8 | 77.44 |
| $\mathbf{5 7 5 2}$ | $\mathbf{0}$ | $\mathbf{6 8 1 . 6}$ |

Where
$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{5752}{10}=575.2$,
$S^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{681.6}{9}=75.733$
Let $H_{0}: \mu=\bar{x}$,
$H_{1}: \mu \neq \bar{x}$
Under $H_{0}$, the test statistic is $t=\frac{\bar{x}-\mu}{S / \sqrt{n}}=\frac{572.2-577}{\sqrt{75.733} / \sqrt{10}}=-1.74$
$\therefore|t|=1.74$
Tabulated value of t for $\mathrm{v}=9$ degrees of freedom $t_{0.05}=2.262$
Since $|t|<t_{0.05} \quad \therefore H_{0}$ is accepted
Conclusion:
$\therefore$ The mean breaking strength of the wire can be assumed as 577 kg at $5 \%$ level of significance.
3. A random sample of 10 boys had the following $I . Q$ 's: 70, $120,110,101,88,83,95$, $\mathbf{9 8}, \mathbf{1 0 7}, 100$. Do these data support the assumption of a population mean I.Q of 100 ? Find a reasonable range in which most of the mean I.Q. values of samples of $\mathbf{1 0}$ boys lie.
Solution:
Given $\mu=100, n=10$
Null Hypothesis:
$H_{0}: \mu=100$ i.e., The data are consist with the assumption of men IQ of 100 in the population

## Alternate Hypothesis:

$H_{1}: \mu \neq 100$ i.e., The data are consist with the assumption of men IQ of 100 in the population
Level of Significance : $\alpha=5 \% \Rightarrow \alpha=0.05$
Test Statistic :
$t=\frac{\bar{x}-\mu}{S / \sqrt{n}}$
where $S^{2}=\frac{1}{n-1} \sum(x-\bar{x})^{2}$
$\bar{x}=\frac{\sum x}{n}=\frac{70+120+110+101+88+83+95+98+107+100}{10}=\frac{972}{10}=97.2$
$S^{2}=\frac{1}{10-1}\left[\begin{array}{l}(70-97.2)^{2}+(120-97.2)^{2}+(110-97.2)^{2}+(101-97.2)^{2}+(88-97.2)^{2} \\ +(83-97.2)^{2}+(95-97.2)^{2}+(98-97.2)^{2}+(107-97.2)^{2}+(100-97.2)^{2}\end{array}\right]$
$S^{2}=\frac{1}{9}(1833.6)=203.73 \Rightarrow S=14.2734$
$t=\frac{97.2-100}{14.2734 / \sqrt{10}}=\frac{2.8}{4.5136}=0.6203$
Table value : $t_{\alpha, n-1}=t_{5 \%, 10-1}=t_{0.05,9}=2.262$ (Two-tailed test)

## Conclusion :

Here $t>t_{\alpha}$
i.e., The table value >calculated value,
$\therefore$ we accept the null hypothesis and conclude that the data are consistent with the assumption of mean I.Q of 100 in the population.
To find the confidence limit:
$\left(\bar{x} \mp t_{\alpha} \frac{S}{\sqrt{n}}\right)=\left(97.2 \mp 2.262 \times \frac{14.2734}{\sqrt{10}}\right)=(97.2 \mp(2.262)(4.514))=(86.99,107.41)$
A reasonable range in which most of the mean I.Q. values of samples of 10 boys lies (86.99,107.41)
4. A random sample of 16 values from a normal population showed a mean of $\mathbf{4 1 . 5}$ inches and the sum of squares of deviations from this mean equal to $\mathbf{1 3 5}$ square inches. Show that the assumption of a mean of 43.5 inches for the population is not reasonable. Obtain 95 percent and 99 percent confidence limits for the same.

## Solution:

Given $\bar{x}=41.5, \mu=43.5, n=16$
Sum of squares of deviations from mean $=\sum(x-\bar{x})^{2}=135$
The parameter of interest is $\mu$.
Null Hypothesis $\mathbf{H}_{0}: \mu=43.5$ i.e., the assumption of a mean of 43.5 inches for the population is reasonable.
Alternative Hypothesis $\mathbf{H}_{1}: \mu \neq 43.5$ i.e., the assumption of a mean of 43.5 inches for the population is not reasonable.
Level of significance: (i) $\alpha=5 \%=0.05$, degrees of freedom $=16-1=15$
(ii) $\alpha=1 \%=0.01$, degrees of freedom $=16-1=15$

Test Statistic : $t=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}}$
where $S^{2}=\frac{1}{n-1} \sum(x-\bar{x})^{2}=\frac{1}{16-1} 135=9 \Rightarrow S=9$
$t=\frac{41.5-43.5}{\frac{3}{\sqrt{16}}}=\frac{-8}{3}=-2.667 \Rightarrow|t|=2.667$

## Conclusion:

(i) Since $|t|=2.667>2.131$ so we reject $\mathrm{H}_{0}$ at $5 \%$ level of significance.

So we conclude that the assumption of mean of 43.5 inches for the population is not reasonable.
(ii) Since $|t|=2.667<2.947$ so we accept $\mathrm{H}_{0}$ at $1 \%$ level of significance.

So we conclude that the assumption is reasonable.

95\% confidence limits:
$\left(\bar{x} \mp t_{\alpha} \frac{S}{\sqrt{n}}\right)=\left(41.5 \mp\left(2.947 \times \frac{3}{4}\right)\right)=(41.5 \mp 1.5983)=(39.9,43.09)$
$\therefore 39.902<\mu<43.098$
$99 \%$ confidence limits:
$\left(\bar{x} \mp t_{\alpha} \frac{S}{\sqrt{n}}\right)=\left(41.5 \mp\left(2.947 \times \frac{3}{4}\right)\right)=(41.5 \mp 2.2101)=(39.29,43.71)$
$\therefore 39.29<\mu<43.71$
5. Ten oil tins are taken at random from an automatic filling machine. The mean weight of the tins is 15.8 kg and standard deviation is 0.5 kg . Does the sample mean differ significantly from the intended weight of 16 kg ?
Solution:
Given $\bar{x}=15.8, \mu=16, s=0.50, n=10$
Null Hypothesis $\mathbf{H}_{0}: \mu=16$ the sample mean weight is not different from the intended weight.
Alternative Hypothesis $H_{1}: \mu \neq 16$ i.e., the sample mean weight is not different from the intended weight.
Level of significance: $\alpha=5 \%=0.05$, degrees of freedom $=10-1=9$
Test Statistic : $t=\frac{\frac{\bar{x}-\mu}{s}}{\frac{s}{\sqrt{n}}}$
$t=\frac{15.8-16}{\frac{0.50}{\sqrt{10}}}=\frac{-0.2}{0.1581}=-1.27 \Rightarrow|t|=1.27$
Critical value : The critical value of $t$ at $5 \%$ level of significance with degrees of freedom 9 is 2.26

## Conclusion:

Here calculated value < table value.
so we accept $\mathrm{H}_{0}$ at $5 \%$ level of significance.
Hence the sample mean weight is not different from the intended weight.
(ii) Test of significance of the difference between means of two small samples:

To test the significance of the difference between the means $\overline{x_{1}}$ and $\overline{x_{2}}$ of sample of size $n_{1}$ and $n_{2}$.
Under $H_{0}$, the test statistic is $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$,
where $S=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}-2}}$ or $S^{2}=\frac{\sum\left(x_{1}-\overline{x_{1}}\right)^{2}+\sum\left(x_{2}-\overline{x_{2}}\right)^{2}}{n_{1}+n_{2}-2}$ (if $s_{1}, s_{2}$ is not given directly)
Degrees of freedom(df) $\mathrm{v}=n_{1}+n_{2}-2$
Note:
If $n_{1}=n_{2}=\mathrm{n}$ and if the pairs of values $x_{1}$ and $x_{2}$ are associated in some way (or correlated).

Then we use the statistic is $t=\frac{\bar{d}}{S / \sqrt{n-1}}$, where $\bar{d}=\frac{\sum d}{n}$ and $S^{2}=\frac{\sum(d-\bar{d})^{2}}{n}$
Degrees of freedom $v=n-1$

## Confident Interval:

The confident interval for difference between two population means for small sample is $\left(\bar{x}_{1}-\bar{x}_{2}\right) \mp t_{\alpha} S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$

## Problem:

1. Samples of two types of electric bulbs were tested for length of life and the following data were obtainded.

| Sample | Size | Mean | S.D |
| :--- | :--- | :--- | :--- |
| I | $\mathbf{8}$ | 1234h | 36h |
| II | 7 | 1036h | 40h |

Is the difference in the means sufficient to warrant that type I bulbs are superior type II bulbs?
Solution:
Here $\overline{x_{1}}=1234, \overline{x_{2}}=1036, n_{1}=8, n_{2}=7, s_{1}=36, s_{2}=40$
Let $H_{0}: \overline{x_{1}}=\overline{x_{2}}$,
$H_{1}: \overline{x_{1}}>\overline{x_{2}}$ (ie. Type I bulbs are superior to type II bulbs) (one tail test)
Under $H_{0}$, the test statistic is $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$,
where $S=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}-2}}=40.7317$
$\therefore t=\frac{1234-1036}{40.7317 \sqrt{\frac{1}{8}+\frac{1}{7}}}=9.39$
Degrees of freedom $\mathrm{v}=n_{1}+n_{2}-2=13$
Tabulated value of t for 13 d.f. at $5 \%$ level of significance is $t_{0.05}=1.77$
Since $|t|>t_{0.05} . \therefore H_{0}$ is rejected. $H_{1}$ is accepted.
Conclusion:
Type I bulbs may be regarded superior to type II bulbs at 5\% level of significance.
2. Two independent sample of size 8 and 7 contained the following value:

| Sample I | 19 | 17 | 15 | 21 | 16 | 18 | 16 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sample <br> II | 15 | 14 | 15 | 19 | 15 | 18 | 16 |  |

Is the difference between the sample means significant?

## Solution:

| $x_{1}$ | $x_{1}-\overline{x_{1}}$ | $\left(x_{1}-\overline{x_{1}}\right)^{2}$ | $x_{2}$ | $x_{2}-\overline{x_{2}}$ | $\left(x_{2}-\overline{x_{2}}\right)^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | 2 | 4 | 15 | -1 | 1 |
| 17 | 0 | 0 | 14 | -2 | 4 |
| 15 | -2 | 4 | 15 | -1 | 1 |
| 21 | 4 | 16 | 19 | 3 | 9 |
| 16 | -1 | 1 | 15 | -1 | 1 |
| 18 | 1 | 1 | 18 | 2 | 4 |
| 16 | -1 | 1 | 16 | 0 | 0 |
| 14 | -3 | 9 |  |  |  |
| $\mathbf{1 3 6}$ | $\mathbf{0}$ | $\mathbf{3 6}$ | $\mathbf{1 1 2}$ | $\mathbf{0}$ | $\mathbf{2 0}$ |

$\overline{x_{1}}=\frac{\sum x_{1}}{n_{1}}=\frac{136}{8}=17, \overline{x_{2}}=\frac{\sum x_{2}}{n_{2}}=\frac{112}{7}=16$
$S^{2}=\frac{\sum\left(x_{1}-\overline{x_{1}}\right)^{2}+\sum\left(x_{2}-\overline{x_{2}}\right)^{2}}{n_{1}+n_{2}-2}=\frac{36+20}{8+7-2}=4.3076 \Rightarrow S=2.0754$
Let $H_{0}: \overline{x_{1}}=\overline{x_{2}}$,
$H_{1}: \overline{x_{1}} \neq \overline{x_{2}}$ (Two tailed test)
Under $H_{0}$, the test statistic is $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{17-16}{2.0754 \sqrt{\frac{1}{8}+\frac{1}{7}}}=0.9309$
$|t|=0.9309$
Degrees of freedom $\mathrm{v}=\mathrm{v}=n_{1}+n_{2}-2=13$
From the ' $t$ ' table, $v=13$ degrees freedom at $5 \%$ level of significance is $t_{0.05}=2.16$
Since $|t|<t_{0.05} \therefore H_{0}$ is accepted
Conclusion:
The two sample mean do not differ significantly at 5\% level of significance.
3. The following data represent the biological values of protein from cow's milk and buffalo's milk:

| Cow's milk | $\mathbf{1 . 8 2}$ | $\mathbf{2 . 0 2}$ | $\mathbf{1 . 8 8}$ | $\mathbf{1 . 6 1}$ | $\mathbf{1 . 8 1}$ | 1.54 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Buffalo's milk | 2.00 | 1.83 | 1.86 | 2.03 | 2.19 | 1.88 |

Examine whether the average values of protein in the two samples significantly differ at 5\% level.

## Solution:

Given $n_{1}=n_{2}=6$
$H_{0}: \mu_{1}=\mu_{2}$ There is no significant difference between the means of the two samples.
$H_{1}: \mu_{1} \neq \mu_{2}$ There is a significant difference between the means of the two samples.

Test Statistic: $t=\frac{\bar{x}-\bar{y}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$

| $x$ | $y$ | $x-\bar{x}$ <br> $x-1.78$ | $(x-\bar{x})^{2}$ | $y-\bar{y}$ <br> $y-1.965$ | $(y-\bar{y})^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.82 | 2 | 0.04 | 0.0016 | 0.035 | 0.00123 |
| 2.02 | 1.83 | 0.24 | 0.0576 | -0.135 | 0.01823 |
| 1.88 | 1.86 | 0.1 | 0.01 | -0.105 | 0.01102 |
| 1.61 | 2.03 | -0.17 | 0.0289 | 0.065 | 0.00425 |
| 1.81 | 2.19 | 0.03 | 0.0009 | 0.225 | 0.0506 |
| 1.54 | 1.88 | -0.24 | 0.0576 | -0.085 | 0.00723 |
| Total <br> 10.68 | 11.79 |  | 0.1566 |  | 0.09256 |

$\bar{x}=\frac{\sum x}{n_{1}}=\frac{10.68}{6}=1.78 ; \bar{y}=\frac{\sum y}{n_{2}}=\frac{11.79}{6}=1.965$
$S^{2}=\frac{1}{6+6-2}[0.1566+0.09256]=(0.1)(0.2492)=0.0249 \Rightarrow S=0.1578$
$t=\frac{1.78-1.956}{(0.1578) \sqrt{\frac{1}{6}+\frac{1}{6}}}=\frac{-0.176}{(0.1578)(0.5774)}=\frac{-0.176}{0.0911}=1.9319$
Critical value:The critical value of $t$ at $5 \%$ level of significance with degrees of freedom 10 is 2.228

Here calculated value < table value, we accept $H_{0}$
(i.e,) The difference between the mean protein values of the two varieties of milk is not significant at 5\% level.
4. The following data relate to the marks obtaind by 11 students in 2 test, one held at the beginning of a year and the other at the end of the year intensive coaching.

| Test 1 | 19 | $\mathbf{2 3}$ | $\mathbf{1 6}$ | $\mathbf{2 4}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{2 0}$ | $\mathbf{1 8}$ | $\mathbf{2 1}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Test 2 | $\mathbf{1 7}$ | $\mathbf{2 4}$ | $\mathbf{2 0}$ | $\mathbf{2 4}$ | $\mathbf{2 0}$ | $\mathbf{2 2}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{1 8}$ | $\mathbf{2 2}$ | $\mathbf{1 9}$ |

## Do the data indicate that the students have benefited by coaching?

## Solution:

The given data relate to the marks obtained in 2 tests by the same set of students. Hence the marks in the 2 set can be regarded as correlated.
We use t -test for paired values.
Let $H_{0}: \overline{x_{1}}=\overline{x_{2}}$,
$H_{1}: \overline{x_{1}}<\overline{x_{2}}$ (one tailed test)

| $x_{1}$ | $x_{2}$ | $\mathrm{~d}=x_{1}-x_{2}$ | $d^{2}=\left(\overline{x_{1}}-\overline{x_{2}}\right)^{2}$ | $\mathrm{~d}-\bar{d}$ | $(d-\bar{d})^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | 17 | 2 | 4 | 3 | 9 |
| 23 | 24 | -1 | 1 | 0 | 0 |
| 16 | 20 | -4 | 16 | -3 | 9 |
| 24 | 24 | 0 | 0 | 1 | 1 |
| 17 | 20 | -3 | 9 | -2 | 4 |
| 18 | 22 | -4 | 16 | -3 | 9 |
| 20 | 20 | 0 | 0 | 1 | 1 |
| 18 | 20 | -2 | 4 | -1 | 1 |
| 21 | 18 | 3 | 9 | 4 | 16 |
| 19 | 22 | -3 | 9 | -2 | 4 |
| 20 | 19 | 1 | 1 | 2 | 4 |
|  |  | $\mathbf{- 1 1}$ |  |  | $\mathbf{5 8}$ |

$$
\bar{d}=\frac{\sum d}{n}=\frac{-11}{11}=1 \quad S^{2}=\frac{\sum(d-\bar{d})^{2}}{n}=\frac{58}{11}=5.272
$$

the test statistic is $t=\frac{\bar{d}}{S / \sqrt{n-1}}=\frac{-1}{\sqrt{5.272} / \sqrt{10}}=-1.377 \Rightarrow|t|=1.377$
from the table, $\mathrm{v}=\mathrm{n}-1=10$ (d.f.), $t_{0.05}=1.812$
Since $|t|<t_{0.05} \therefore H_{0}$ is accepted
Conclusion:
The students have not benefitted by coaching.
5. Ten Persons were appointed in the officer cadre in an office. Their performance was noted by giving a test and the marks were recorded out of 100 .

| Employee | A | B | C | D | E | F | G | H | I | J |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Before training | $\mathbf{8 0}$ | $\mathbf{7 6}$ | $\mathbf{9 2}$ | $\mathbf{6 0}$ | $\mathbf{7 0}$ | $\mathbf{5 6}$ | $\mathbf{7 4}$ | $\mathbf{5 6}$ | $\mathbf{7 0}$ | $\mathbf{5 6}$ |
| After training | $\mathbf{8 4}$ | $\mathbf{7 0}$ | $\mathbf{9 6}$ | $\mathbf{8 0}$ | $\mathbf{7 0}$ | $\mathbf{5 2}$ | $\mathbf{8 4}$ | $\mathbf{7 2}$ | $\mathbf{7 2}$ | $\mathbf{5 0}$ |

By applying the t-test, can it be concluded that the employees have been benefited by the training?
Solution:
Null Hypothesis $\mathbf{H}_{0}: \mu_{1}=\mu_{2}$ i.e., the employees have not been benefited by the training.
Alternative Hypothesis $\mathbf{H}_{\mathbf{1}}: \mu_{1} \neq \mu_{2}$ i.e., the employees have been benefited by the training.
Level of significance: $\alpha=5 \%=0.05$ (one tailed test)
Test Statistic : $t=\frac{\bar{d}}{\frac{S}{\sqrt{n}}}$
where $S^{2}=\frac{1}{n-1} \sum(\mathrm{~d}-\bar{d})^{2} \& \bar{d}=\frac{\sum d}{n}$

| Employees | Before | After | $\mathbf{d}$ | $(d-\bar{d})^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| A | 80 | 84 | -4 | 0 |
| B | 76 | 70 | 6 | 100 |
| C | 92 | 96 | -4 | 0 |
| D | 60 | 80 | -20 | 256 |
| E | 70 | 70 | 0 | 16 |
| F | 56 | 52 | 4 | 64 |
| G | 74 | 84 | -10 | 36 |
| H | 56 | 72 | -16 | 144 |
| I | 70 | 72 | -2 | 4 |
| J | 50 | 50 | 6 | 100 |
| Total |  |  | 44 | 44.4 |

$\bar{d}=\frac{\sum d}{n}=\frac{-40}{10}=-4$
$S^{2}=\frac{1}{n-1} \sum(\mathrm{~d}-\bar{d})^{2}=\frac{1}{9}(720)=80$
$t=\frac{\bar{d}}{\frac{S}{\sqrt{n}}}=\frac{-4}{8.94 / \sqrt{10}}=-1.414 \Rightarrow|t|=1.414$
Critical value : The critical value of tat $5 \%$ level of significance with degrees of freedom 9 is 1.83

## Conclusion:

Here calculated value < table value.
so we accept $\mathrm{H}_{0}$
Hence the employees have not been benefited by the training.
6. The weight gains in pounds under two systems of feeding of calves of $\mathbf{1 0}$ pairs of identical twins is given below.

| Twin pair | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Weight gains under <br> System A | $\mathbf{4 3}$ | $\mathbf{3 9}$ | $\mathbf{3 9}$ | $\mathbf{4 2}$ | $\mathbf{4 6}$ | $\mathbf{4 3}$ | $\mathbf{3 8}$ | $\mathbf{4 4}$ | $\mathbf{5 1}$ | $\mathbf{4 3}$ |
| Sytem B | $\mathbf{3 7}$ | $\mathbf{3 5}$ | $\mathbf{3 4}$ | $\mathbf{4 1}$ | $\mathbf{3 9}$ | $\mathbf{3 7}$ | $\mathbf{3 7}$ | $\mathbf{4 0}$ | $\mathbf{4 8}$ | $\mathbf{3 6}$ |

Discuss whether the difference between the two systems of feeding is significant.

## Solution:

Null Hypothesis $\mathbf{H}_{0}: \mu_{1}=\mu_{2}$ i.e., there is no significance difference between the two system of feedings
Alternative Hypothesis $\mathbf{H}_{1}: \mu_{1} \neq \mu_{2}$ i.e., there is significance difference between the two systems of feedings.
Level of significance: $\alpha=5 \%=0.05$ ( Two tailed test)
Test Statistic : $t=\frac{\bar{d}}{\frac{S}{\sqrt{n}}}$
where $S^{2}=\frac{1}{n-1} \sum(\mathrm{~d}-\bar{d})^{2} \& \bar{d}=\frac{\sum d}{n}$

| Twin <br> Pair | System <br> A <br> x | System <br> B <br> y | $d=x-y$ | $(d-\bar{d})^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 43 | 37 | 6 | 2.56 |
| 2 | 39 | 35 | 4 | 0.16 |
| 3 | 39 | 34 | 5 | 0.36 |
| 4 | 42 | 41 | 1 | 11.56 |
| 5 | 46 | 39 | 7 | 6.76 |
| 6 | 43 | 37 | 6 | 2.56 |
| 7 | 38 | 37 | 1 | 11.56 |
| 8 | 44 | 40 | 4 | 0.16 |
| 9 | 51 | 48 | 3 | 1.96 |
| 10 | 43 | 36 | 7 | 6.76 |
| Total |  |  | 44 | 44.4 |

$\bar{d}=\frac{\sum d}{n}=\frac{44}{10}=4.4$
$S^{2}=\frac{1}{n-1} \sum(\mathrm{~d}-\bar{d})^{2}=\frac{1}{9}(44.4)=4.93 \quad \Rightarrow S=2.08$
$t=\frac{\bar{d}}{\frac{S}{\sqrt{n}}}=\frac{4.4}{2.08 / \sqrt{10}}=6.68$
Critical value : The critical value of tat 5\% level of significance with degrees of freedom 9 is 2.62

## Conclusion:

Here calculated value < table value.
so we accept $\mathrm{H}_{0}$
Hence there is no significance difference between the two systems of feedings.
II F-test
(i) To test whether if there is any significant difference between two estimates of population variance
(ii) To test if the two sample have come from the same population.

We use F-test:
The test statistic is given by $F=\frac{S_{1}^{2}}{S_{2}^{2}}$, if $S_{1}^{2}>S_{2}^{2}$
Where $S_{1}^{2}=\frac{n_{1} s_{1}^{2}}{n_{1}-1}$ [ $n_{1}$ is the first sample size] and $S_{2}^{2}=\frac{n_{2} s_{2}^{2}}{n_{2}-1}$ [ $n_{2}$ is the second sample size $]$
The degrees of freedom $\left(v_{1}, v_{2}\right)=\left(n_{1}-1 n_{2}-1\right)$

## Note :

1. If $S_{1}^{2}<S_{2}^{2}$ then $F=\frac{S_{2}^{2}}{S_{1}^{2}} \quad$ (always $\mathrm{F}>1$ )
2. To test whether two independent samples have been drawn from the same normal population, we have to test
i) Equality of population means using t-test or z-test, according to sample size.
ii) Equality of population variances using F-test

## Problem:

1. A sample of size 13 gave an estimated population variance of 3.0 , while another sample of size 15 gave an estimate of 2.5 . Could both sample be from population with the same variance?

## Solution:

Given $n_{1}=13, n_{2}=15, S_{1}^{2}=3.0, S_{2}^{2}=2.5$
Let $H_{0}: S_{1}^{2}=S_{2}^{2}$ (the two samples have been drawn from populations with same variance)
$H_{1}: S_{1}^{2} \neq S_{2}^{2}$
The test statistics is $F=\frac{S_{1}^{2}}{S_{2}^{2}}=\frac{3}{2.5}=1.2$
From the table, with degrees of freedom $\mathrm{v}=\left(n_{1}-1 n_{2}-1\right)=(12,14)$
$F_{0.05}=2.53$ Since $F<F_{0.05} \therefore H_{0}$ is accepted
Conclusion:
The two sample could have come from two normal population with the same variance.
2. Two sample of size 9 and 8 give the sums of squares of deviations from their respective means equal to 160 and 91 respectively. Could both samples be from populations with the same variance?

## Solution:

Given $n_{1}=9, n_{2}=8, \sum(x-\bar{x})^{2}=160, \sum(y-\bar{y})^{2}=91$

$$
S_{1}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{1}-1}=\frac{160}{8}=20, S_{2}^{2}=\frac{\sum(y-\bar{y})^{2}}{n_{2}-1}=\frac{91}{7}=13
$$

Let $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ (the two normal populations have the same variance $\}$
$H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$
The test statistics is $F=\frac{S_{1}^{2}}{S_{2}^{2}}=\frac{20}{13}=1.538$
From the table, with degrees of freedom $\mathrm{v}=\left(n_{1}-1 n_{2}-1\right)=(8,7)$
$F_{0.05}=3.73$ Since $F<F_{0.05} \therefore H_{0}$ is accepted
Conclusion:
The two sample could have come from two populations with the same variance.
3. Two random samples gave the following data:

| Sample | Size | Mean | Variance |
| :---: | :---: | :---: | :---: |
| I | 8 | 9.6 | 1.2 |
| II | 11 | 16.5 | 2.5 |

Cane we conclude that the two samples have been drawn from the same normal population?

## Solution:

The two samples have been drawn from the same normal population we have to check
(i) the variance of the population do not differ significantly by F-test.
(ii) the sample means do not differ significantly by t-test.
(i) F-test:

Given $n_{1}=8, n_{2}=11, s_{1}^{2}=1.2, s_{2}^{2}=2.5, \overline{x_{1}}=9.6, \overline{x_{2}}=16.5$

$$
S_{1}^{2}=\frac{n_{1} s_{1}^{2}}{n_{1}-1}=\frac{8(1.2)}{7}=1.37 \quad S_{2}^{2}=\frac{n_{2} s_{2}^{2}}{n_{2}-1}=\frac{11(2.5)}{10}=2.75
$$

Let $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$

$$
H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

The test statistics is $F=\frac{S_{2}^{2}}{S_{1}^{2}}\left(\sin c e S_{1}^{2}<S_{2}^{2}\right)$

$$
=\frac{2.75}{1.37}=2.007
$$

From the table, $F_{0.05}\left(n_{2}-1, n_{1}-1\right)=F_{0.05}(10,7)=3.63$
Since $F<F_{0.05} \therefore H_{0}$ is accepted
(ii) $\underline{\text { t-test: }}$ (Equality of means)

Let $H_{0}: \mu_{1}=\mu_{2}$

$$
H_{1}: \mu_{1} \neq \mu_{2}
$$

Under $H_{0}$, the test statistic is $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$,
where $S=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{8(1.2)+11(2.5)}{8+11-2}}=1.4772$
$t=\frac{9.6-16.5}{1.4772 \sqrt{\frac{1}{8}+\frac{1}{11}}}=-10.0525 \Rightarrow|t|=10.0525$
From the table, with degrees of freedom $n_{1}+n_{2}-2=17, t_{0.05}=2.110$
$\sin c e|t|>t_{0.05} \therefore H_{0}$ is rejected ie. $\mu_{1} \neq \mu_{2}$
Conclusion:
$\therefore$ The two samples could not have been drawn from the same normal population.
4. Two independent samples of 5 and 6 items respectively had the following values of the following values of the variable:

| Sameple1: | 21 | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | 27 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sameple2: | $\mathbf{2 2}$ | 27 | $\mathbf{2 8}$ | $\mathbf{3 0}$ | $\mathbf{3 1}$ | $\mathbf{3 6}$ |

Can you say that the two samples came from the same population?

## Solution:

Let $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ and $\mu_{1}=\mu_{2}$ ( the two samples have been drawn from the same population) $H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ and $\mu_{1} \neq \mu_{2}$
(i) F-test: (Equality of variance)

| $x_{1}$ | $x_{1}-\overline{x_{1}}$ | $\left(x_{1}-\overline{x_{1}}\right)^{2}$ | $x_{2}$ | $x_{2}-\overline{x_{2}}$ | $\left(x_{2}-\overline{x_{2}}\right)^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | -3.6 | 12.96 | 22 | -7 | 49 |
| 24 | -0.6 | 0.36 | 27 | -2 | 4 |
| 25 | 0.4 | 0.16 | 28 | -1 | 1 |
| 26 | 1.4 | 1.96 | 30 | 1 | 1 |
| 27 | 2.4 | 5.76 | 31 | 2 | 4 |
|  |  |  | 36 | 7 | 49 |
| 123 |  | 21.2 | 174 |  | 108 |

$$
\begin{aligned}
& \overline{x_{1}}=\frac{\sum x_{1}}{n_{1}}=\frac{123}{5}=24.6, \overline{x_{2}}=\frac{\sum x_{2}}{n_{2}}=\frac{174}{6}=29 \\
& s_{1}^{2}=\frac{\sum(x-\bar{x})^{2}}{n_{1}-1}=\frac{21.2}{4}=5.3, s_{2}^{2}=\frac{\sum\left(x_{2}-\overline{x_{2}}\right)^{2}}{n_{2}-1}=\frac{108}{5}=21.6 \\
& S_{1}^{2}=\frac{n_{1} s_{1}^{2}}{n_{1}-1}=\frac{5(5.3)}{4}=6.625 \quad S_{2}^{2}=\frac{n_{2} s_{2}^{2}}{n_{2}-1}=\frac{6(21.6)}{5}=25.92
\end{aligned}
$$

The test statistics is $F=\frac{S_{2}^{2}}{S_{1}^{2}}\left(\sin c e S_{1}^{2}<S_{2}^{2}\right)$

$$
=\frac{25.92}{6.625}=3.912
$$

From the table, $F_{0.05}\left(n_{2}-1, n_{1}-1\right)=F_{0.05}(5,4)=6.26$
Since $F<F_{0.05} \therefore H_{0}$ is accepted
(ii) $t$-test:(Equality of means)

Under $H_{0}$, the test statistic is $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$,
where $S=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{5(5.3)+6(21.6)}{5+6-2}}=4.164$
$t=\frac{24.6-29}{4.16 \sqrt{\frac{1}{5}+\frac{1}{6}}}=-1.746 \Rightarrow|t|=1.746$
From the table, with degrees of freedom $n_{1}+n_{2}-2=9, t_{0.05}=2.262$
$\sin c e|t|<t_{0.05} \quad \therefore H_{0}$ is accepted ie. $\mu_{1} \neq \mu_{2}$
Conclusion: $\therefore$ The two samples could have been drawn from the same normal population.
5. Two random samples gave the following results:

| Sample | Size | Sample <br> mean | Sum of squares of <br> deviations from the <br> mean |
| :---: | :---: | :---: | :---: |
| 1 | 10 | 15 | 90 |
| 2 | 12 | 14 | 108 |

Test whether the samples come from the same normal population at $5 \%$ level of significance.

## Solution:

A normal population has 2 parameters namely mean $\mu$ and variance $\sigma^{2}$. To test if independent samples have been drawn from the same normal population, we have to test

1) Equality of population means using t-test or z-test, according to sample size.
2) Equality of population variances using F-test.

Given $\bar{x}=15, \bar{y}=14, n_{1}=10, n_{2}=12, \sum(x-\bar{x})^{2}=90, \sum(y-\bar{y})^{2}=108$

## i) $\mathbf{t}$-test to test equality of population means:

Null hypothesis $H_{0}: \mu_{1}=\mu_{2}$ there is no difference between the two population means.
Alternate Hypothesis $H_{1}$ : $\mu_{1} \neq \mu_{2}$ there is difference between the two population means.
Level of Significance : $\alpha=5 \%=0.05$ (Two tailed test )
Test statistic: $t=\frac{\bar{x}-\bar{y}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$
Where $S^{2}=\frac{1}{n_{1}+n_{2}-2}\left[\sum(x-\bar{x})^{2}+\sum(y-\bar{y})^{2}\right]=\frac{1}{10+12-2}(90+108)=9.9$
$S=\sqrt{9.9}=3.146$
$t=\frac{15-14}{3.146 \sqrt{\frac{1}{10}+\frac{1}{12}}}=0.742$
Critical value: The critical value of $t$ at $5 \%$ level of significance with degrees of freedom $n_{1}+n_{2}-2=10+12-2=20$ is 2.086
Conclusion: calculated value < table value
$H_{0}$ is Accepted.

## ii) F-test to test equality of populations variances:

Null Hypothesis $\mathbf{H}_{0}$ : $\sigma_{1}^{2}=\sigma_{2}^{2}$ The population Variances are equal
Alternative Hypothesis $\mathbf{H}_{\mathbf{1}}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ The population Variances are not equal
Level of significance: $\alpha=5 \%$
Test Statistics:
$F=\frac{S_{1}{ }^{2}}{S_{2}{ }^{2}}$
Where $S_{1}^{2}=\frac{1}{n_{1}-1} \sum(x-\bar{x})^{2}=\frac{1}{10-1}(90)=10$
$S_{1}^{2}=\frac{1}{n_{1}-1} \sum(y-\bar{y})^{2}=\frac{1}{12-1}(108)=9.818$
Here $S_{1}{ }^{2}>S_{2}{ }^{2} \quad \therefore F=\frac{S_{1}{ }^{2}}{S_{2}{ }^{2}}=\frac{10}{9.818}=1.02$
Critical value:The critical value of $F$ at $5 \%$ level of significance with degrees of freedom $\left(n_{1}-1, n_{2}-1\right)=(9,11)$ is 2.90
Here calculated value < table value, we accept $H_{0}$
Conclusion: Both null hypothesis $\mu_{1} \neq \mu_{2}$ and $\sigma_{1}^{2}=\sigma_{2}^{2}$ are accepted.
Hence we may conclude the two samples are drawn from same normal population.
III $\chi^{2}$-test:
(i). $\chi^{2}$-Test for a specified population variance
(ii). $\chi^{2}$-test is used to test whether differences between observed and expected frequencies are significant (goodness of fit).
(iii). $\chi^{2}$-test is used to test the independence of attributes.
$\chi^{2}$-Test for a specified population variance:
The test statistics $\chi^{2}=\frac{n s^{2}}{\sigma^{2}}$
Which follows $\chi^{2}$ - distribution with $(\mathrm{n}-1)$ degrees of freedom

## Problem:

1. The lapping process is used to grind certain silicon wafers to the proper thickness is acceptable only $\sigma$, the population S.D. of the thickness of dice cut from the wafers, is at most 0.5 mil . Use the 0.05 level of significance to test the null hypothesis $\sigma=0.5$ against the alternative hypothesis $\sigma>0.5$, if the thickness of 15 dice cut from such wafers have S.D of 0.64mil.

## Solution:

Given $n=15, \mathrm{~s}=0.64, \sigma=0.5$
$H_{0}: \sigma=0.5, H_{1}: \sigma>0.5$
Under $H_{0}$, The test statistics $\chi^{2}=\frac{n s^{2}}{\sigma^{2}}=\frac{15(0.64)^{2}}{(0.5)^{2}}=24.576$
From $\chi^{2}$ table, with degrees of freedom $=14, \chi_{0.05}^{2}=23.625$
$\therefore \chi^{2}>\chi_{0.05}^{2} \quad H_{0}$ is rejected. Hence $\sigma>0.5$
$\chi^{2}$-test is used to test whether differences between observed and expected frequencies are significant (goodness of fit):
The test statistics $\chi^{2}=\sum_{i}\left[\frac{\left(O_{i}-E_{i}\right)^{2}}{O_{i}}\right]$
Where $O_{i}$ is observed frequency, and $E_{i}$ is the expected frequency.
If the data given in a series of $n$ number, then degree of freedom $=n-1$.
Note: In case of binomial distribution d. $f=n-1$, poisson distribution d.f $=n-2$, normal distribution d. $\mathrm{f}=\mathrm{n}-3$.

## Problem:

1. The following data give the number of aircraft accident that occurred during the various days of a week:

| Days | $:$ | Mon | Tue | Wed | Thu | Fri | Sat |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| No | of | 15 | 19 | 13 | 12 | 16 | 15 | accidents:

Test the whether the accident are uniformly distributed over the week.

## Solution:

The expected number of accident on any day $=\frac{90}{6}=15$
Let $H_{0}$ : Accidents occur uniformly over the week
$H_{1}$ : Accidents not occur uniformly over the week

| Days | Observed <br> Freqency <br> $\left(O_{i}\right)$ | Expected <br> Frequency <br> $\left(E_{i}\right)$ | $\left(O_{i}-E_{i}\right)$ | $\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Mon | 15 | 15 | 0 | 0 |
| Tue | 19 | 15 | 4 | 1.066 |
| Wed | 13 | 15 | -2 | 0.266 |
| Thu | 12 | 15 | -3 | 0.6 |
| Fri | 16 | 15 | 1 | 0.066 |
| Sat | 15 | 15 | 0 | 0 |
|  |  | 90 |  | 1.998 |

Now, $\chi^{2}=\sum_{i}\left[\frac{\left(O_{i}-E_{i}\right)^{2}}{O_{i}}\right]=1.998$
Here 6 observations are given, degrees of freedom $=n-1=6-1=5$
From $\chi^{2}$ table, with degrees of freedom $=5, \chi_{0.05}^{2}=11.07$
$\therefore \chi^{2}<\chi_{0.05}^{2} \quad H_{0}$ is accepted.
Conclusion: $\therefore$ Accidents occur uniformly over the week
2. A survey of 320 families with 5 children each revealed the following distribution:

| No. of <br> Boys: | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of <br> Girls: | 0 | 1 | 2 | 3 | 4 | 5 |
| No. of <br> families: | 14 | 56 | 110 | 88 | 40 | 12 |

Is the result consistent with the hypothesis that male and female births are equally probable?
Solution:
Let $H_{0}$ : Male and female births are equally probable
$H_{1}$ : Male and female births are not equally probable
Probability of male birth $=p=\frac{1}{2}$, Probability of female birth $=q=\frac{1}{2}$
The probability of x male births in a family of 5 is $p(x)=5 C_{x} p^{x} q^{5-x}, x=0,1,2 \ldots 5$
Expected number of families with x male births $=320 \times 5 C_{x} p^{x} q^{5-x}, x=0,1,2 \ldots 5$

$$
\begin{aligned}
& =320 \times 5 C_{x}\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right)^{5-x} \\
& =320 \times 5 C_{x}\left(\frac{1}{2}\right)^{5}=10 \times 5 C_{x}
\end{aligned}
$$

The $\chi^{2}$ is calculated using the following table:

| No. of <br> Boys | Observed <br> Freqency <br> $\left(O_{i}\right)$ | Expected <br> Frequency <br> $E_{i}=10 \times 5 C_{x}$ | $\left(O_{i}-E_{i}\right)$ | $\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 14 | 10 | 4 | 1.6 |
| 4 | 56 | 50 | 6 | 0.72 |
| 3 | 110 | 100 | 10 | 1 |
| 2 | 88 | 100 | -12 | 1.44 |
| 1 | 40 | 50 | -10 | 2 |
| 0 | 12 | 10 | 2 | 0.4 |
| Total | 320 | 320 |  | 7.16 |

$$
\therefore \chi^{2}=7.16
$$

The tabulated value of $\chi^{2}$ for $n-1=6-1=5$ degrees of freedom at $5 \%$ level of significance $=\chi_{0.05}^{2}=11.07$

Since $\chi^{2}<\chi_{0.05}^{2}$. So we accepted $H_{0}$.
Conclusion: $\therefore$ The male and female births are equally probable.
3. Fit a poisson distribution to the following data and test the goodness of fit.

| $\mathbf{x :}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | 5 | $\mathbf{6}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{f ( x ) :}$ | 275 | 72 | $\mathbf{3 0}$ | 7 | 5 | $\mathbf{2}$ | $\mathbf{1}$ |

## Solution:

Mean of the given distribution $=\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{189}{392}=0.482$
To fit a poisson distribution to the given data:
We take the parameter of the poisson distribution equal to the mean of the given distribution. $=\lambda=\bar{x}=0.482$
The poisson distribution is given by $P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} ; x=0,1,2 \ldots \infty$
and the expected frequencies are obtained by $f(x)=\left(\sum f_{i}\right) \times \frac{e^{-\lambda} \lambda^{x}}{x!}=392 \times \frac{e^{-0.482}(0.482)^{x}}{x!}$
we get $f(0)=392 \times \frac{e^{-0.482}(0.482)^{0}}{0!}=242.1, f(1)=392 \times \frac{e^{-0.482}(0.482)^{1}}{1!}=116.69$
$f(3)=4.518, f(4)=0.544, f(5)=0.052 \approx 0.1, f(6)=0.004 \approx 0$

| $\mathrm{x}:$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Expected <br> Frequency: | 242.1 | 116.69 | 28.12 | 4.518 | 0.544 | 0.052 | 0.004 | 392 |

$H_{0}$ : The poisson distribution fit well into the data.
$H_{1}$ : The poisson distribution does not fit well into the data.
The $\chi^{2}$ is calculated using the following table:

| $\mathbf{x}$ | Observed <br> Freqency <br> $\left(O_{i}\right)$ | Expected <br> Frequency <br> $\left(E_{i}\right)$ | $\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$ |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| 0 | 275 | 242.1 | 4.471 |  |  |
| 1 | 72 | 116.7 | 17.122 |  |  |
| 2 | 30 | 28.1 | 0.128 |  |  |
| 3 | $\mathbf{7}$ | $\mathbf{4 . 5}$ |  |  |  |
| 4 | $\mathbf{5}$ | $\mathbf{1 5}$ | $\mathbf{0 . 5}$ |  |  |
| 5 | $\mathbf{5}$ | $\mathbf{0 . 1}$ | $\mathbf{1 9 . 2 1 8}$ |  |  |
| 6 | $\mathbf{1}$ | $\mathbf{0}$ |  |  |  |
| Total | 392 | 392 |  |  |  |
| $\therefore \chi^{2}=40.939$ |  |  |  |  | 40.939 |

The tabulated value of $\chi^{2}$ for $=7-1-1-3=2$ degrees of freedom at $5 \%$ level of significance $=\chi_{0.05}^{2}=5.991$

Since $\chi^{2}>\chi_{0.05}^{2}$. So we rejected $H_{0}$.

## Conclusion: $\therefore$

The Poisson distribution is not a good fit to the given data.

## $\chi^{2}$-test is used to test the independence of attributes:

An attributes means a equality or characteristic. $\chi^{2}$ - test is used to test whether the two attributes are associated or independent. Let us consider two attributes A and $\mathrm{B} . \mathrm{A}$ is divided into three classes and B is divided into three classes.

|  |  | Attribute B |  |  |  |
| :--- | :--- | ---: | ---: | ---: | :---: |
|  |  | $\mathrm{B}_{1}$ | $\mathrm{~B}_{2}$ |  | $\mathrm{~B}_{3}$ |
| Total |  |  |  |  |  |
|  | $\mathrm{A}_{1}$ | $a_{11}$ | $a_{12}$ | $a_{13}$ | $R_{1}$ |
|  | $\mathrm{~A}_{2}$ | $a_{21}$ | $a_{22}$ | $a_{23}$ | $R_{2}$ |
|  | $\mathrm{~A}_{3}$ | $a_{31}$ | $a_{32}$ | $a_{33}$ | $R_{3}$ |
|  |  | $C_{1}$ | $C_{2}$ | $C_{3}$ | $\mathbf{N}$ |

Now, under the null hypothesis $H_{0}$ : The attributes A and B are independent and we calculate the expected frequency $E_{i j}$ for varies cells using the following formula.

$$
\begin{aligned}
& E_{i j}=\frac{R_{i} \times C_{j}}{N}, i=1,2, \ldots r, j=1,2, \ldots s \\
& \qquad \begin{array}{|c|c|c|c|}
\hline E\left(a_{11}\right)=\frac{R_{1} \times C_{1}}{N} & E\left(a_{12}\right)=\frac{R_{1} \times C_{2}}{N} & E\left(a_{13}\right)=\frac{R_{1} \times C_{3}}{N} & R_{1} \\
\hline E\left(a_{21}\right)=\frac{R_{2} \times C_{1}}{N} & E\left(a_{22}\right)=\frac{R_{2} \times C_{2}}{N} & E\left(a_{23}\right)=\frac{R_{2} \times C_{3}}{N} & R_{2} \\
\hline E\left(a_{31}\right)=\frac{R_{3} \times C_{1}}{N} & E\left(a_{32}\right)=\frac{R_{3} \times C_{2}}{N} & E\left(a_{33}\right)=\frac{R_{3} \times C_{3}}{N} & R_{3} \\
\hline C_{1} & C_{2} & C_{3} & \mathbf{N} \\
\hline
\end{array}
\end{aligned}
$$

and we compute $\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Which follows $\chi^{2}$ distribution with $\mathrm{n}=(\mathrm{r}-1)(\mathrm{s}-1)$ degrees of freedom at $5 \%$ or $1 \%$ level of significance.

1. Calculate the expected frequencies for the following data presuming two attributes viz., conditions of home and condition of child as independent.

| Condition of Child | Condition of home |  |  |
| :--- | :--- | :---: | :---: |
|  |  | Clean | Dirty |
|  | Clean | 70 | 50 |
|  | Fair | 80 | 20 |
|  | Dirty | 35 | 45 |

Use Chi-Square test at $5 \%$ level of significance to state whether the two attributes are independent.

## Solution:

Null hypothesis $H_{0}$ : Conditions of home and conditions of child are independent.
Alternate hypothesis $H_{1}$ : Conditions of home and conditions of child are not independent.
Level of significance: $\alpha=0.05$

The test statistics: $\chi^{2}=\sum_{i=1}^{r} \sum_{i=1}^{s} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Analysis:

| Condition of Child | Condition of home |  |  | Total |
| :--- | :--- | :---: | :---: | :---: |
|  |  | Clean | Dirty |  |
|  | Clean | 70 | 50 | 120 |
|  | Fair | 80 | 20 | 100 |
|  | Dirty | 35 | 45 | 80 |
| Total |  | 185 | 115 | 300 |

Expected Frequency $=\frac{\text { Corresponding row total } \times \text { Column total }}{\text { Grand Total }}$
Expected Frequency for $70=\frac{120 \times 185}{300}=74$, Expected Frequency for $80=\frac{100 \times 185}{300}=61.67$,
Expected Frequency for $35=\frac{80 \times 185}{300}=49.33$, Expected Frequency for $50=\frac{120 \times 115}{300}=46$,
Expected Frequency for $20=\frac{100 \times 115}{300}=38.33$, Expected Frequency for $45=\frac{80 \times 115}{300}=30.67$

| $O_{i j}$ | $E_{i j}$ | $O_{i j}-E_{i j}$ | $\left(O_{i j}-E_{i j}\right)^{2}$ | $\frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 70 | 74 | -4 | 16 | $\frac{16}{74}=0.216$ |
| 50 | 46 | 4 | 16 | 0.348 |
| 80 | 61.67 | 18.33 | 335.99 | 5.448 |
| 20 | 38.33 | -18.33 | 335.99 | 8.766 |
| 35 | 49.33 | -14.33 | 205.35 | 4.163 |
| 45 | 30.67 | 14.33 | 205.35 | 6.695 |
| Total |  |  |  | 25.636 |

$\therefore \chi^{2}=25.636$
$\alpha=0.05$ Degrees of freedom $=(r-1)(c-1)=(3-1)(2-1)=2 \quad \therefore \chi_{\alpha}^{2}=5.991$

## Conclusion:

Since $\chi^{2}>\chi_{\alpha}^{2}$, we Reject our Null Hypothesis $H_{0}$. Hence, Conditions of home and conditions of child are not independent.
2. The following contingency table presents the reactions of legislators to a tax plan according to party affiliation. Test whether party affiliation influences the reaction to the tax plan at 0.01 level of signification.

| Reaction |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Party | In favour | Neutral | Opposed | Total |
| Party A | $\mathbf{1 2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{1 6 0}$ |
| Party B | $\mathbf{5 0}$ | $\mathbf{3 0}$ | $\mathbf{6 0}$ | 140 |
| Party C | $\mathbf{5 0}$ | $\mathbf{1 0}$ | $\mathbf{4 0}$ | $\mathbf{1 0 0}$ |
| Total | $\mathbf{2 2 0}$ | $\mathbf{6 0}$ | $\mathbf{1 2 0}$ | $\mathbf{4 0 0}$ |

## Solution:

Null hypothesis $H_{0}$ : Party affiliation and tax plan are independent.
Alternate hypothesis $H_{1}$ : Party affiliation and tax plan are not independent.
Level of significance: $\alpha=0.05$
The test statistic: $\chi^{2}=\sum_{i=1}^{r} \sum_{i=1}^{s} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Analysis:

| Reaction |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Party | Infavour | Neutral | Opposed | Total |
| Party A | 120 | 20 | 20 | 160 |
| Party B | 50 | 30 | 60 | 140 |
| Party C | 50 | 10 | 40 | 100 |
| Total | 220 | 60 | 120 | $\mathbf{4 0 0}$ |

$$
\begin{array}{lll}
\mathrm{E}(120)=\frac{160 \times 220}{400}=88 ; & \mathrm{E}(20)=\frac{160 \times 60}{400}=24 ; & \mathrm{E}(20)=\frac{160 \times 120}{400}=48 \\
\mathrm{E}(50)=\frac{140 \times 220}{400}=77 ; & \mathrm{E}(30)=\frac{140 \times 60}{400}=21 ; & \mathrm{E}(60)=\frac{140 \times 120}{400}=42 \\
\mathrm{E}(50)=\frac{100 \times 220}{400}=55 ; & \mathrm{E}(10)=\frac{100 \times 60}{400}=15 ; & \mathrm{E}(40)=\frac{120 \times 100}{400}=30
\end{array}
$$

| $O_{i j}$ | $E_{i j}$ | $O_{i j}-E_{i j}$ | $\left(O_{i j}-E_{i j}\right)^{2}$ | $\frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$ |
| :--- | :--- | :--- | :--- | :--- |
| 120 | 88 | 32 | 1024 | 11.64 |
| 20 | 24 | -4 | 16 | 0.67 |
| 20 | 48 | -28 | 784 | 16.33 |
| 50 | 77 | -27 | 729 | 9.47 |
| 30 | 21 | 9 | 81 | 3.86 |
| 60 | 42 | 18 | 324 | 7.71 |
| 50 | 55 | -5 | 25 | 0.45 |
| 10 | 15 | -5 | 25 | 1.67 |
| 40 | 30 | 10 | 100 | 3.33 |
| Total |  |  |  |  |

$\therefore \chi^{2}=55.13$
$\alpha=0.05$ Degrees of freedom $=(r-1)(s-1)=(3-1)(3-1)=4 \quad \therefore \chi_{0.05}^{2}=13.28$
Conclusion: Since $\chi^{2}>\chi_{\alpha}^{2}$, we Reject our Null Hypothesis $H_{0}$
Hence, the Party Affiliation and tax plan are dependent.
3. From a poll of $\mathbf{8 0 0}$ television viewers, the following data have been accumulated as to, their levels of education and their preference of television stations. We are interested in determining if the selection of a TV station is independent of the level of education

| Educational Level |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Public | High School | Bachelor | Graduate | Total |
| Broadcasting | $\mathbf{5 0}$ | $\mathbf{1 5 0}$ | $\mathbf{8 0}$ | $\mathbf{2 8 0}$ |
| Commercial Stations | $\mathbf{1 5 0}$ | $\mathbf{2 5 0}$ | $\mathbf{1 2 0}$ | $\mathbf{5 2 0}$ |
| Total | $\mathbf{2 0 0}$ | $\mathbf{4 0 0}$ | 200 | $\mathbf{8 0 0}$ |

(i) State the null and alternative hypotheses.
(ii) Show the contingency table of the expected frequencies. (iii) Compute the test statistic.
(iv) The null hypothesis is to be tested at $\mathbf{9 5 \%}$ confidence. Determine the critical value for this test.

Solution:
(i)Null Hypothesis: Selection of TV station is independent of level of education

Alternative Hypothesis: Selection of TV station is not independent of level of education
(ii) Level of significance: $\alpha=0.05$

| Educational Level |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Public | High School | Bachelor | Graduate | Total |
| Broadcasting | 50 | 150 | 80 | 280 |
| Commercial Stations | 150 | 250 | 120 | 520 |
| Total | 200 | 400 | 200 | $\mathbf{8 0 0}$ |

## To Find Expected frequency:

Expected Frequency $=\frac{\text { Corresponding row total } \times \text { Column total }}{\text { Grand Total }}$
Expected Frequency for $50=\frac{280 \times 200}{800}=70$, Expected Frequency for $150=\frac{280 \times 400}{800}=140$
Expected Frequency for $80=\frac{280 \times 200}{800}=70$, Expected Frequency for $150=\frac{520 \times 200}{800}=130$
Expected Frequency for $250=\frac{520 \times 400}{800}=260$, Expected Frequency for $120=\frac{520 \times 200}{800}=130$
The test statistic: $\chi^{2}=\sum_{i=1}^{r} \sum_{i=1}^{s} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Analysis:

| $O_{i j}$ | $E_{i j}$ | $O_{i j}-E_{i j}$ | $\left(O_{i j}-E_{i j}\right)^{2}$ | $\frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 50 | 70 | -20 | 400 | 5.714 |
| 150 | 140 | 10 | 100 | 0.174 |
| 80 | 70 | 10 | 100 | 1.428 |
| 150 | 130 | 20 | 400 | 3.076 |
| 250 | 260 | -10 | 100 | 0.385 |
| 120 | 130 | -10 | 100 | 0.769 |
| TOTAL |  |  |  | 11.546 |

(iii) Test statistic $=11.546$
(iv) Critical Chi-Square $=5.991$,

Conclusion: Calculated value > table value Hence, we reject Null Hypothesis.

## Large sample:

If the size of the sample $n>30$, then that samplw is said to be large sample. There are four important test to test the significance of large samples.
(i). Test of significance for single mean.
(ii). Test of significance for difference of two means.
(iii). Test of significance for single proportion
(iv). Test of significance for difference of two proportions.

## Note:

(i). The sampling distribution of a static is approximately normal, irrespective of whether the distribution of the population is normal or not.
(ii). The sample statistics are sufficiently close to the corresponding population parameters and hence may be used to calculate the standard errors of the sampling distribution.
(iii). Critical values for some standard LOS's (For Large Samples)

| Nature of test | $\mathbf{1 \% ( 0 . 0 1 )}$ <br> $(\mathbf{9 9 \%})$ | $\mathbf{2 \% ( 0 . 0 2 )}$ <br> $\mathbf{( 9 8 \% )}$ | $\mathbf{5 \% ( 0 . 0 5 )}$ <br> $\mathbf{( 9 5 \% )}$ | $\mathbf{1 0 \% ( 0 . 1 )}$ <br> $\mathbf{( 9 0 \% )}$ |
| :--- | :---: | :---: | :---: | :--- |
| Two Tailed Test | $\left\|z_{\alpha}\right\|=2.58$ | $\left\|z_{\alpha}\right\|=2.33$ | $\left\|z_{\alpha}\right\|=1.96$ | $\left\|z_{\alpha}\right\|=1.645$ |
| One Tailed Test <br> (Right tailed Test) | $z_{\alpha}=2.33$ | $z_{\alpha}=2.055$ | $z_{\alpha}=1.645$ | $z_{\alpha}=1.28$ |
| One Tailed Test <br> (Left tailed Test) | $z_{\alpha}=-2.33$ | $z_{\alpha}=-2.055$ | $z_{\alpha}=-1.645$ | $z_{\alpha}=-1.28$ |

## Problem based on Test of significance for single mean:

The test statistic $z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$ where $\bar{x}=$ sample mean, $\mu=$ population mean, $\sigma=$ standard deviation of population, $n=$ sample size.

## Note:

If standard deviation of population is not known then the static is $z=\frac{\bar{x}-\mu}{S / \sqrt{n}}$,
where $S=$ standard deviation of sample.

## Confident Interval:

The confident interval for $\mu$ when $\sigma$ is known and sampling is done from a normal population or with a large sample is $\bar{x} \mp z_{\alpha} \frac{\sigma}{\sqrt{n}}$
$\Rightarrow\left(\bar{x}-z_{\alpha} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$
If s is known ( $\sigma$ is not known): $\bar{x} \mp z_{\alpha} \frac{s}{\sqrt{n}}$

1. A sample of $\mathbf{1 0 0}$ students is taken from a large population, the mean height in the sample is 160 cm . Can it be reasonable regarded that in the population the mean height is 165 cm , and s.d. is 10 cm . and find confident limit. Use an level of significance at $\mathbf{1 \%}$

## Solution:

Given $\mathrm{n}=100, \bar{x}=160 \mathrm{~cm}, \mu=165 \mathrm{~cm}, \sigma=10 \mathrm{~cm}$
Let $H_{0}: \mu=165$
$H_{1}: \mu \neq 165$ (two tailed test)
Under $H_{0}$, the test statistic is $z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{160-165}{10 / \sqrt{100}}=-5$
$\therefore|z|=-5$
From the table, $z_{0.01}=2.58$. Since $|z|>z_{0.01} \therefore H_{0}$ is rejected. hence $\mu \neq 165$.
Confident Interval:
$\left(\bar{x}-z_{\alpha} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)=\left(160-2.58 \frac{10}{\sqrt{100}}, 160+2.58 \frac{10}{\sqrt{100}}\right)=(157.42,162.58)$
2. The mean breaking strength of the cables supplied by a manufacture is $\mathbf{1 8 0 0}$ with a S.D of 100. By a new techniques in the manufacturing process, it it claimed that the breaking strength of the cable has increased. In order to test this claim, a sample of 50 cables is tested and it is found that the mean breaking strength is 1850 . Can we support the claim at $\mathbf{1 \%}$ level of significance?
Solu:
Given $\mathrm{n}=50, \bar{x}=1850, \mu=1800, \sigma=100$
Let $H_{0}: \bar{x}=\mu$
$H_{1}: \bar{x}>\mu$ (one tailed test)
Under $H_{0}$, the test statistic is $z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{1850-1800}{100 / \sqrt{50}}=3.535$
$\therefore|z|=3.535$
From the table, $z_{0.01}=2.33$. Since $|z|>z_{0.01} \therefore H_{0}$ is rejected. hence $\bar{x}>\mu$.
3. A sample of 900 members has a mean of $3.4 \mathbf{c m s}$ and $\mathrm{s} . \mathrm{d}$ is 2.61 cms . Is the sample from a large population of mean 3.25 cm and $s . d$ is 2.61 cms . If the population is normal and its mean is unknown find the $95 \%$ confidence limits of true mean.
Solution:
Given $n=900, \mu=3.25, \bar{x}=3.4 \mathrm{~cm}, \sigma=2.61, s=2.61$
Null Hypothesis $\mathbf{H}_{0}$ : Assume that there is no significant difference between sample mean and population mean. (i.e) $\mu=3.25$
Alternative Hypothesis $\mathbf{H}_{1}$ : Assume that there is a significant difference between sample mean and population mean. (i.e) $\mu \neq 3.25$

Level of significance : $\alpha=5 \%$

Test Statistic :

$$
z=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{3.4-3.25}{\frac{2.61}{\sqrt{900}}}=1.724
$$

Critical value: The critical value of $z$ for two tailed test at $5 \%$ level of significance is 1.96

## Conclusion:

$$
\text { i.e., } \quad z=1.724<1.96 \Rightarrow \text { calculated value }<\text { tabulated value }
$$

Therefore We accept the null hypothesis $\mathrm{H}_{0}$.
i.e., The sample has been drawn from the population with mean $\mu=3.25$

To find confidence limit:
$95 \%$ confidence limits are

$$
\bar{x} \mp 1.96 \frac{\sigma}{\sqrt{n}}=3.4 \mp 1.96\left(\frac{2.61}{\sqrt{900}}\right)=3.4 \mp 0.1705=(3.57,3.2295)
$$

4. A lathe is set to cut bars of steel into lengths of $\mathbf{6}$ centimeters. The lathe is considered to be in perfect adjustment if the average length of the bars it cuts is $\mathbf{6}$ centimeters. A sample of $\mathbf{1 2 1}$ bars is selected randomly and measured. It is determined that the average length of the bars in the sample is 6.08 centimeters with a standard deviation of 0.44 centimeters.
(i) Formulate the hypotheses to determine whether or not the lathe is in perfect adjustment.
(ii) Compute the test statistic.
(iii) What is your conclusion?

## Solution:

Given $n=121, \bar{x}=6.08, \mu=6, S=0.44$
Null Hypothesis $\mathbf{H}_{0}: \mu=6$ i.e., Assume that the lathe is in perfect adjustment
Alternative Hypothesis $\mathbf{H}_{1}: \mu \neq 6$ i.e., Assume that the lathe is not in perfect adjustment.
Level of Significance : $\alpha=0.05$
ii) Test Statistic :

$$
z=\frac{\bar{x}-\mu}{\frac{S}{\sqrt{n}}}=\frac{6.08-6}{\frac{0.44}{\sqrt{121}}}=\frac{0.08}{0.04}=2
$$

Table value: Table value at $5 \%$ level of significance is 1.96

## iii) Conclusion:

Here calculated value > tabulated value
Hence we reject $H_{0}$.
5. The mean life time of a sample of 100 light tubes produced by a company is found to be 1580 hours with standard deviation of 90 hours. Test the hypothesis that the mean lifetime of the tubes produced by the company is $\mathbf{1 6 0 0}$ hours.
Solution:
Given $n=100, \bar{x}=1580, \mu=1600, S=90$
Null Hypothesis $\mathbf{H}_{0}: \mu=1600$ i.e., There is no significance difference between the sample mean
and population mean
Alternative Hypothesis $\mathbf{H}_{1}: \mu \neq 1600$ i.e., There is a significance difference between the sample mean and population mean
Level of Significance : $\alpha=5 \%=0.05$
Test Statistic :
$z=\frac{\frac{x-\mu}{\frac{S}{\sqrt{n}}}}{}=\frac{1580-1600}{\frac{90}{\sqrt{100}}}=\frac{-20}{9}=-2.22$
$|z|=2.22$
Table value: Table value at 5\% level of significance is 1.96 (two tailed test)

## Conclusion:

Here calculated value > tabulated value
Hence we reject $H_{0}$.
Hence the mean life time of the tubes produced by the company may not be 1600 hrs .
Problem based on Test of significance for difference of two means:
The test statistic $z=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$ where $\sigma_{1}, \sigma_{2}$ are S.D. of populations.
Test Statistic:
i) $Z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \quad$ If $\sigma$ is known and $\sigma_{1}=\sigma_{2}$
ii) $Z=\frac{\bar{x}-\bar{y}}{\sqrt{\frac{S_{1}{ }^{2}}{n_{1}}+\frac{S_{2}{ }^{2}}{n_{2}}}}$ If $\sigma$ is not known and $\sigma_{1} \neq \sigma_{2}, S_{1}{ }^{2}, S_{2}{ }^{2}$ are known.

## Confident Interval:

The confident interval for difference between two population mean for large sample,
(1) when $\sigma\left(\sigma_{1}, \sigma_{2}\right)$ is known is $\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm z_{\alpha} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
(2). when $\mathrm{s}\left(s_{1}, s_{2}\right)$ is known is $\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm z_{\alpha} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$

1. In a random sample of size 500 , the mean is found to be 20 . In another independent sample of size 400, the mean is 15 . Could the samples have been drawn from the same population with S.D 4?
Solution:
Given $\bar{x}_{1}=20, \bar{x}_{2}=15, n_{1}=500, n_{2}=400, \sigma=4$
Null hypothesis $H_{0}: \mu_{1}=\mu_{2}$ The samples have been drawn from the same population.
Alternate Hypothesis $H_{1}: \mu_{1}<\mu_{2}$ The samples could not have been drawn from same population.
Level of Significance : $\alpha=5 \%=0.05$ (Two tailed test )

Test statistic: $z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sigma \sqrt{\frac{1}{n_{2}}+\frac{1}{n_{1}}}}=\frac{20-15}{4 \sqrt{\frac{1}{500}+\frac{1}{400}}}=18.6$
Critical value: The critical value of $t$ at $1 \%$ level of significance is 2.58
Conclusion: calculated value $>$ table value
$H_{0}$ is rejected
The samples could not have been drawn from same population.
2. Test significance of the difference between the means of the samples, drawn from two normal populations with the same SD using the following data:

|  | Size | Mean | Standard Deviation |
| :--- | :--- | :--- | :--- |
| Sample I | 100 | 61 | 4 |
| Sample II | 200 | 63 | 6 |

## Solution:

Given $\bar{x}_{1}=60, \bar{x}_{2}=63, s_{1}=4, s_{2}=6, n_{1}=100, n_{2}=200$
Null hypothesis $H_{0}: \mu_{1}=\mu_{2}$ there is no significance difference between the means of the samples.
Alternate Hypothesis $H_{1}: \mu_{1} \neq \mu_{2}$ there is a significance difference between the means of the samples.
Level of Significance : $\alpha=5 \%=0.05$ (two tailed test )
Test statistic: $z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{2}}+\frac{s_{2}{ }^{2}}{n_{1}}}}=\frac{61-63}{\sqrt{\frac{4^{2}}{200}+\frac{6^{2}}{100}}}=-3.02 \Rightarrow|z|=3.02$
Critical value: The critical value of $t$ at $5 \%$ level of significance is 1.96
Conclusion: calculated value $>$ table value
$H_{0}$ is rejected. Therefore the two normal populations, from which the samples are drawn, may not have the same mean though they may have the same S.D.
3. A sample of heights of 6400 Englishmen has a mean of 170 cm and a $S . D$ of 6.4 cm , while a simple sample of heights of 1600 Americans has a mean of 172 cm and a $S . D$ of 6.3 cm . D the data indicate that Americans are on the average, taller than Englishmen?

## Solution:

Given $\bar{x}_{1}=170, \bar{x}_{2}=172, s_{1}=6.4, s_{2}=6.3, n_{1}=6400, n_{2}=1600$
Null hypothesis $H_{0}: \mu_{1}=\mu_{2}$ there is no significance difference between the heights of Americans and Englishmen.
Alternate Hypothesis $H_{1}: \mu_{1}<\mu_{2}$ Americans are on the average, taller than Englishmen
Level of Significance : $\alpha=5 \%=0.05$ (one tailed test)
Test statistic: $z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{2}}+\frac{s_{2}{ }^{2}}{n_{1}}}}=\frac{170-172}{\sqrt{\frac{6.4^{2}}{6400}+\frac{6.3^{2}}{1600}}}=-11.32 \Rightarrow|z|=11.32$
Critical value: The critical value of $t$ at $5 \%$ level of significance is 1.645

Conclusion: calculated value > table value
$H_{0}$ is rejected. We conclude that the data indicate that Americans are on the average, taller than Englishmen.
4. The aveage marks scored by 32 boys is 72 with a S.D of 8 , while that for 36 girls is 70 with a S.D of 6 . Test at $\mathbf{1 \%}$ level of significance whether the boys perform beter than girls.

## Solution:

Given $\bar{x}_{1}=72, \bar{x}_{2}=70, s_{1}=8, s_{2}=6, n_{1}=32, n_{2}=36$
$H_{0}: \mu_{1}=\mu_{2}$ (Both perfom are equal)
$H_{0}: \mu_{1}>\mu_{2}$ (Boys are better than girls) (one tailed test)
The test statistic: $z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{2}}+\frac{s_{2}{ }^{2}}{n_{1}}}}=\frac{72-70}{\sqrt{\frac{8^{2}}{32}+\frac{6^{2}}{36}}}=1.15$
Critical value: The critical value of $t$ at $1 \%$ level of significance is 2.33
Conclusion: calculated value < table value
$H_{0}$ is accepted. Hence both are equal.

## Problem based on Test of significance for single proportion:

To test the significant difference between the sample proportion p and the population proportion P , then we use the test statistic
$z=\frac{p-P}{\sqrt{\frac{P Q}{n}}}$, where $\mathrm{Q}=1-\mathrm{P}$

## Confident Interval:

The confident interval for population proportion for large sample is $p \mp z_{\alpha} \sqrt{\frac{P Q}{n}}$

1. In a big city 325 men out of 600 men were found to be smokers. Does this information support the conclusion that the majority of men in this city are smokers?

## Solution:

Given $\mathrm{n}=600$, Number of smokers $=325$
$\mathrm{p}=$ sample proportion of smokers $\Rightarrow p=325 / 600=0.5417$
$\mathrm{P}=$ Population proportion of smokers in the city $=1 / 2=0.5 \Rightarrow Q=0.5$
Null Hypothesis $\mathbf{H}_{\mathbf{0}}$ : The number of smokers and non-smokers are equal in the city.
Alternative Hypothesis $\mathbf{H}_{1}: ~ P>0.5$ (Right Tailed)

## Test Statistic:

$z=\frac{p-P}{\sqrt{\frac{P Q}{n}}}=\frac{0.5417-0.5}{\sqrt{\frac{0.5 * 0.5}{600}}}=2.04$

## Critical value:

Tabulated value of z at $5 \%$ level of significance for right tail test is 1.645.

## Conclusion:

Since Calculated value of $\mathrm{z}>$ tabulated value of z .
We reject the null hypothesis. The majority of men in the city are smokers.
2. 40 people were attacked by a disease and only 36 survived. Will you reject the hypothesis that the survival rate, if attacked by this disease, is $\mathbf{8 5 \%}$ at $5 \%$ level of significance?

## Solution:

Given
The Sample proportion, $p=\frac{36}{40}=0.90$
Population proportion $P=0.85 \Rightarrow Q=1-P=1-0.85=0.15$
Null Hypothesis $\mathbf{H}_{0}: P=0.85$ i.e., There is no significance difference in survival rate
Alternative Hypothesis $\mathbf{H}_{1}: P \neq 0.85$
i.e., There is a significance difference in survival rate.

Level of Significance : $\alpha=0.05$
Test Statistic :

$$
z=\frac{p-P}{\sqrt{\frac{P Q}{n}}}=\frac{0.90-0.85}{\sqrt{\frac{0.85 \times 0.15}{40}}}=0.886
$$

Table value: Tabulated value of z at $5 \%$ level of significance is 1.96

Conclusion : The table value >calculated value
Hence we accept the null hypothesis
Conclude that the survival rate may be taken as $85 \%$.
3. A Manufacturer of light bulbs claims that an average $2 \%$ of the bulbs manufactured by his firm are defective. A random sample of 400 bulbs contained 13 defective bulbs. On the basis of this sample, can you support the manufacturer's claim at $5 \%$ level of significance?

## Solution:

Given $n=400$
$p=$ Sample proportion of defectives $=\frac{X}{n}=\frac{13}{400}=0.0325$
Null Hypothesis $\mathbf{H}_{0}: P=2 \%=0.02$ i.e., Assume that $2 \%$ bulbs are defective.
Alternative Hypothesis $\mathbf{H}_{1}: P \neq 2 \% \neq 0.02$ i.e., Assume that $2 \%$ bulbs are non-defective.
Level of significance: $\alpha=5 \%=0.05$
Test Statistic : $z=\frac{p-P}{\sqrt{\frac{P Q}{n}}}$
$z=\frac{0.0325-0.02}{\sqrt{\frac{0.02 \times 0.98}{400}}}=\frac{0.0125}{0.0007}=1.7857$
Critical value : The critical value of tat 5\% level of significance is 1.645 (one tailed test)

## Conclusion:

Here calculated value > table value.
So we accept $\mathrm{H}_{0}$. Hence the manufacturers claim cannot be supported.
4. A salesman in a departmental store claims that at most 60 percent of the shoppers entering the store leave without making a purchase. A random sample of 50 shoppers should that $\mathbf{3 5}$ out of them left without making a purchase. Are these sample reults consistent with the claim of the salesman? Use an LOS of 0.05 .
Solution:
Let $\mathrm{p}=$ Sample proportion of shoppers not making a purchase $=\frac{35}{50}=0.7$
$\mathrm{P}=$ Population proportion of shoppers not making a purchase $=60 \%=\frac{60}{100}=0.6$,
and $\mathrm{Q}=1-\mathrm{P}=0.4$
$\mathbf{H}_{\mathbf{0}}: P=0.6$ i.e., The claim is accepted
$\mathbf{H}_{1}: P \neq 0.6$ (two tailed test)
The test Statistic is $z=\frac{p-P}{\sqrt{\frac{P Q}{n}}}=\frac{0.7-0.6}{\sqrt{\frac{0.6 \times 0.4}{50}}}=1.445$
From the table, $z_{0.05}=1.96$. Since $|z|<z_{0.05} \therefore H_{0}$ is accepted

## Conclusion:

The sample reults are consistent with the claim of the salesman.
Problem based on Test of significance for Two proportion:
To test the significant difference between the sample proportion $p_{1}$ and $p_{2}$ and the population proportion P , then we use the test statistic
$z=\frac{p_{1}-p_{2}}{\sqrt{P Q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$, where $\mathrm{Q}=1-\mathrm{P}$
If P is not known, then $P=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}$

## Confident Interval:

The confident interval for difference between two population proportion for large sample is $\left(p_{1}-p_{2}\right) \mp z_{\alpha} \sqrt{P Q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$

1. Before an increase in excise duty on tea, 800 people out of a sample of 1000 were consumers of tea. After the increase in duty, 800 people were consumers of tea in a sample of 1200 persons. Find whether there is significant decrease in the consumption of tea after the increase in duty. Also find confident limit.

## Solution:

Given $n_{1}=1000, n_{2}=1200$
$p_{1}=$ proportion of tea drinkers before increase inexcise duty $=\frac{800}{1000}=0.8$
$p_{2}=$ proportion of tea drinkers before increase inexcise duty $=\frac{800}{1200}=0.6667$
Null hypothesis: $H_{0}: P_{1}=P_{2}$ there is no significance difference in the consumption of tea before after increase in excise duty
Alternate hypothesis: $H_{1}: P_{1} \neq P_{2}$ there is a significance difference in the consumption of tea before after increase in excise duty
Level of significance: $\alpha=5 \%=0.05$
Test Statistic: $z=\frac{p_{1}-p_{2}}{\sqrt{P Q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$
Where

$$
\begin{aligned}
& P=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}=\frac{(0.8)(1000)+(0.67)(1200)}{1000+1200}=0.7273 \Rightarrow Q=1-P=1-0.7273=0.2727 \\
& z=\frac{0.8-0.6667}{\sqrt{(0.7273)(0.2727)\left(\frac{1}{1000}+\frac{1}{1200}\right)}}=\frac{0.1333}{0.01907}=6.99
\end{aligned}
$$

Critical value: the critical value of z at $5 \%$ level of significance is 1.645

## Conclusion:

Here calculated value > table value
$\therefore$ We reject $H_{0}$
Hence there is no significance difference in the consumption of tea before after increase in excise duty.

## Confident Interval:

The confident interval for difference between two population proportion for large sample is

$$
\begin{aligned}
\left(p_{1}-p_{2}\right) \mp z_{\alpha} \sqrt{P Q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} & =\left[(0.8-0.667) \mp 1.645 \sqrt{0.7273 \times 0.2727\left(\frac{1}{1000}+\frac{1}{1200}\right)}\right] \\
& =(0.1016,0.1644)
\end{aligned}
$$

2. Random samples of 400 men and 600 women asked whether they would like to have a flyover near their residence. 200 men and 325 women were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of the proposal are same against that they are not, at $5 \%$ level.
Solution:
Given $n_{1}=400, n_{2}=600$
$p_{1}=$ proportion of men $=\frac{200}{400}=0.5$
$p_{2}=$ proportion of women $=\frac{325}{600}=0.541$
Null hypothesis: $H_{0}: P_{1}=P_{2}$ Assume that there is no significant difference between the option of men and women as far as proposal of flyover is concerned.
Alternate hypothesis: $H_{1}: P_{1} \neq P_{2}$ Assume that there is significant difference between the option of men and women as far as proposal of flyover is concerned

Level of significance: $\alpha=5 \%=0.05$ (two tailed)
Test Statistic: $z=\frac{p_{1}-p_{2}}{\sqrt{P Q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$
Where $P=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}=\frac{(400)(0.5)+(600)(0.541)}{400+600}=0.525 \Rightarrow Q=1-P=1-0.525=0.475$
$z=\frac{0.5-0.541}{\sqrt{(0.525)(0.475)\left(\frac{1}{400}+\frac{1}{600}\right)}}=\frac{-0.041}{0.032}=-1.34 \quad \Rightarrow|z|=1.34$
Critical value: the critical value of z at $5 \%$ level of significance is 1.96
Conclusion:
Here calculated value < table value
$\therefore$ We accept $H_{0}$ at 5\% level of significance.
Hence There is no difference between the option of men and women as far as proposal of flyover are concerned.
3. A machine puts out 16 imperfect articles in a sample of 500 . After the machine is overhauled, it puts out 3 imperfect articles in a batch of $\mathbf{1 0 0}$. Has the machine improved?

## Solution:

## Hypothesis:

$H_{0}: P_{1}=P_{2}$
$H_{1}: P_{1}>P_{2}$
Level of Significance : $\alpha=0.05$
Test Statistic : $Z=\frac{p_{1}-p_{2}}{\sqrt{P Q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$

## Analysis:

The Sample proportion,

$$
\begin{aligned}
& p_{1}=\frac{16}{500}=0.032, \quad p_{2}=\frac{3}{100}=0.03, P=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}=0.032 \& Q=1-P=0.968 \\
& Z=\frac{p_{1}-p_{2}}{\sqrt{P Q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{0.032-0.03}{\sqrt{0.032 \times 0.968\left(\frac{1}{500}+\frac{1}{100}\right)}}=0.1037
\end{aligned}
$$

Table value : $Z_{\alpha}=1.645$
Conclusion:
Calculated value < table value
Hence we accept the null hypothesis and conclude that the machine has not improved after overhauling.

## UNIT-IV DESIGN OF EXPERIMENT

The sequence of steps taken to ensure a scientific analysis leading to valid inferences about the hypothesis is called design of experiment. The main aim of the design of experiments is to control the extraneous variables and hence to minimize the experimental error so that the results of the experiments could be attributed only to the experimental variables.

## The basic principles of design of experiments:

(i) Randomization
(ii) Replication
(iii) Local Control

## Basic design of Experiments:

Depending on the number of extraneous variables whose effects are to be controlled, various design procedures are developed in the study of experimental design. We shall consider here three important designs.

## (1) Completely randomized Design (C.R.D)

(2) Randomized Block Design (R.B.D)

## (3) Latin Square Design (LSD)

## ANOVA:

Analysis of Variance is a technique that will enable us to test for the significance of the difference among more than two sample means.

## Assumptions of analysis of variance:

(i) The sample observations are independent
(ii) The environmental effects are additive in nature
(iii) The samples have been randomly selected from the population.
(iv) Parent population from which observations are taken in normal.

## One Way Classification (or) Completely randomized Design (C.R.D)

The C.R.D is the simplest of all the designs, based on principles of randomization and replication. In this design, treatments are allocated at random to the experimental units over the entire experimental materials.

## Advantages of completely randomized block design:

The advantages of completely randomized experimental design as follows:
(i) Easy to lay out.
(ii) Allow flexibility
(iii) Simple statistical analysis
(iv) lots of information due to missing data is smaller than with any other design

## Working Procedure (One - Way classification)

Null Hypothesis $H_{0}$ : There is no significance difference between the treatments.
Alternate Hypothesis $H_{1}$ : There is a significance difference between the treatments.

## Analysis:

Step 1: Find $N=$ number of observations
Setp 2: Find $T=$ The total value of observations
Step 3: Find the correction Factor $=C \cdot F=\frac{T^{2}}{N}$
Step 4: Calculate the total sum of squares $=\operatorname{TSS}=\left(\sum X_{1}^{2}+\sum x_{2}^{2}+\sum x_{3}^{2}+\ldots\right)-C . F$
Step 4: Find Total Sum of Square T S S $=\left(\sum x_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-C . F$
Step 5: Column Sum of Square SSC $=\left\{\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right\}-C . \mathrm{F}$
Where $N_{i}=$ Total number of observation in each column ( $i=1,2,3, \ldots$ )
Step 6: Prepare the ANOVA TABLE to calculate F-ratio.

| Source <br> of <br> Variatio <br> n | Sum of <br> Degree <br> s | Degree <br> of <br> freedom | Mean <br> Square | F- Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Between <br> Columns | SSC | $\mathrm{c}-1$ | $\mathrm{M} \mathrm{SC}=\frac{\mathrm{SSC}}{\mathrm{c}-1}$ | $\mathrm{~F}_{\mathrm{C}}=\frac{\mathrm{M} \mathrm{S} \mathrm{C}}{\mathrm{M} \mathrm{SE}}$ if M SC $>\mathrm{MSE}$ |
| (or) |  |  |  |  |

Step 7: Find the table value (use $\chi^{2}$ table)
Step 8: Conclusion:
Calculated value < Table Value, the we accept Null Hypothesis $H_{0}$ (or)
Calculated value > Table Value, the we reject Null Hypothesis $H_{0}$

1. The following are the number of mistakes made in 5 successive days by 4 technicians working for a photographic laboratory. Test whether the difference among the four sample means can be attributed to chance. (Test at a level of significance $\alpha=0.01$ )

| Technicians |  |  |  |
| :---: | :---: | :---: | :---: |
| I | II | III | IV |
| 6 | 14 | 10 | 9 |
| 14 | 9 | 12 | 12 |
| 10 | 12 | 7 | 8 |
| 8 | 10 | 15 | 10 |
| 11 | 14 | 11 | 11 |

## Solution:

## $H_{0}$ : There is no significant difference between the technicians

## $H_{1}$ : Significant difference between the technicians

We shift the origin to 10

| Total | $\mathrm{X}_{1}$ | $\mathrm{X}_{2}$ | $\mathrm{X}_{3}$ | $\mathrm{X}_{4}$ | TOTAL | $\mathbf{X 1}_{1}{ }^{\text {2 }}$ | $\mathbf{X 2}_{2}{ }^{\text {a }}$ | $\mathrm{X}_{3}{ }^{2}$ | $\mathrm{X}_{4}{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -4 | 4 | 0 | -1 | -1 | 16 | 16 | 0 | 1 |
|  | 4 | -1 | 2 | 2 | 7 | 16 | 1 | 4 | 4 |
|  | 0 | 2 | -3 | -2 | -3 | 0 | 4 | 9 | 4 |
|  | -2 | 0 | 5 | 0 | 3 | 4 | 0 | 25 | 0 |
|  | 1 | 4 | 1 | 1 | 7 | 1 | 16 | 1 | 1 |
|  | -1 | 9 | 5 | 0 | 13 | 37 | 37 | 39 | 10 |

Step1: N= Total No of Observations $=20$
Step 2: T=Grand Total $=13$
Step 3: Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observatio ns }}=\frac{T^{2}}{N}=\frac{13^{2}}{20}=8.45$
Step 4: $\mathrm{TSS}=\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\sum X_{4}^{2}-C . F=37+37+39+10-8.45=114.55$
Step 5:

$$
\begin{aligned}
\mathrm{SSC} & =\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{4}\right)^{2}}{N_{1}}-C \cdot \mathrm{~F} \\
& =\frac{(-1)^{2}}{5}+\frac{9^{2}}{5}+\frac{5^{2}}{5}+0-8.45
\end{aligned}
$$

$S S C=0.2+16.2+5-8.45=12.95$
Where $N_{1}=$ Number of elements in each column=5
Step 7: SSE=TSS-SSC $=114.5-12.95=101.6$

Step 8: ANOVA TABLE:

| Source of <br> Variation | Sum of <br> Squares | Degree of <br> freedom | Mean Square | F- Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Between <br> Columns | $\mathrm{SSC}=12.95$ | $\mathrm{C}-1=4-1=3$ | $\mathrm{M} \mathrm{S} \mathrm{C}=\frac{\mathrm{S} \mathrm{S} \mathrm{C}}{\mathrm{C}-1}=4.317$ | $\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{M} \mathrm{S} \mathrm{C}}{\mathrm{M} \mathrm{S} \mathrm{E}}$ <br> 6.35 <br> Error $\mathrm{SSE=101.6}$ |
| $\mathrm{~N}-\mathrm{C}=20-4=16$ | $\mathrm{M} \mathrm{SE}=\frac{\mathrm{S} \mathrm{S} \mathrm{E}}{\mathrm{N}-\mathrm{C}}=6.35$ | 4.317 <br> $=1.471$ |  |  |

$\mathrm{Cal} \mathrm{F}_{\mathrm{C}}=1.471$
Table value : $\mathrm{F}_{\mathrm{C}}(16,3)=5.29$
Conclusion : Cal $\mathrm{F}_{\mathrm{C}}<\mathrm{TabF}_{\mathrm{C}}$
$\Rightarrow$ There is no significance difference between the technicians
2. A completely randomized design exprement with $\mathbf{1 0}$ plots and $\mathbf{3}$ treatments gave the following results.

| Plot No $:$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Treatment : | A | B | C | A | C | C | A | B | A | B |
| Yield : | 5 | 4 | 3 | 7 | 5 | 1 | 3 | 4 | 1 | 7 |

Analyse the results for treatment effects.

## Solution:

| $A$ | $B$ | $C$ |
| :---: | :---: | :---: |
| 5 | 4 | 3 |
| 7 | 4 | 5 |
| 3 | 7 | 1 |
| 1 |  |  |

Null Hypothesis $\boldsymbol{H}_{0}$ : There is no significant difference in treatments
Alternate Hypothesis $\boldsymbol{H}_{\mathbf{1}}$ : Significant difference in treatments

| Total | $\boldsymbol{X}_{\mathbf{1}}$ | $\boldsymbol{X}_{\mathbf{2}}$ | $\boldsymbol{X}_{\mathbf{3}}$ | $\mathbf{T O T A L}$ | $\boldsymbol{X}_{\mathbf{1}}{ }^{\mathbf{2}}$ | $\boldsymbol{X}_{2}{ }^{2}$ | $\boldsymbol{X}_{\mathbf{3}^{2}}{ }^{\mathbf{4}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | 4 | 3 | $\mathbf{1 2}$ | 25 | 16 | 9 |
|  | 7 | 4 | 5 | $\mathbf{1 6}$ | 49 | 16 | 25 |
|  | 3 | 7 | 1 | $\mathbf{1 1}$ | 9 | 49 | 1 |
|  | 1 |  |  | $\mathbf{1}$ | 1 |  |  |
|  | 16 | 15 | 9 | $\mathbf{4 0}$ | 84 | 81 | 35 |

Step1: $N=$ Total No of Observations $=10$
Step 2: $T=$ Grand Total $=40$
Step 3: Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observatio ns }}=\frac{T^{2}}{N}=\frac{40^{2}}{10}=160$

Step 4: $\mathrm{TSS}=\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}-C . F=84+81+35-160=40$
Step 5: $\operatorname{SSC}=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}-C . \mathrm{F}=\frac{(16)^{2}}{4}+\frac{15^{2}}{3}+3-160$
SSC $=64+75+27-160=6$
Where $N_{1}=$ Number of elements in each column
Step 7: SSE=TSS-SSC $=40-6=34$
Step 8: ANOVA TABLE:

| Source of Variation | Sum of Squares | Degree of freedom | Mean Square | F-Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Between Columns | $S S C=6$ | $C-1=3-1=2$ | $\begin{aligned} \mathrm{MSC} & =\frac{\mathrm{SSC}}{\mathrm{C}-1} \\ & =\frac{6}{2}=3 \end{aligned}$ | $\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSE}}{\mathrm{MSC}}$ |
| Error | SSE=34 | $N-C=10-3=7$ | $\begin{aligned} \text { MSE } & =\frac{\mathrm{SSE}}{\mathrm{~N}-\mathrm{C}} \\ & =\frac{34}{87}=4.86 \end{aligned}$ | $\begin{aligned} & =\frac{3}{3} \\ & =1.62 \end{aligned}$ |

Cal $F_{C}=1.62$
Table value : $F_{C}(7,2)=19.35$
Conclusion : Cal $F_{C}<\operatorname{Tab} F_{C}$
We accept Null Hypothesis $\Rightarrow$ There is no significance difference in tretments
3. As head of the department of a consumers research organization you have the responsibility of testing
and comparing life times of 4 brands of electric bulbs.suppose you test the life time of $\mathbf{3}$ electric bulbs
each of 4 brands,the data is given below,each entry representing the life time of an electric bulb,measured
in hundreds of hours

| A | B | C | D |
| :---: | :---: | :---: | :---: |
| 20 | 25 | 24 | 23 |
| 19 | 23 | 20 | 20 |
| 21 | 21 | 22 | 20 |

## Solution:

$\mathbf{H}_{\mathbf{0}}$ : Here the population means are equal.
$\mathbf{H}_{1}$ : The population mean are not equal.

|  | $\mathbf{X}_{\mathbf{1}}$ | $\mathbf{X}_{\mathbf{2}}$ | $\mathbf{X}_{\mathbf{3}}$ | $\mathbf{X}_{\mathbf{4}}$ | $\mathbf{X 1}_{\mathbf{2}}$ | $\mathbf{X 2}^{\mathbf{2}}$ | $\mathbf{X}_{\mathbf{3}}{ }^{\mathbf{2}}$ | $\mathbf{X}_{\mathbf{4}}{ }^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{2 4}$ | $\mathbf{2 3}$ | 400 | 625 | 576 | 529 |
|  | $\mathbf{1 9}$ | $\mathbf{2 3}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ | 361 | 529 | 400 | 400 |
|  | $\mathbf{2 1}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 0}$ | 441 | 441 | 484 | 400 |
|  | 60 | 69 | 66 | 63 | 1202 | 1595 | 1460 | 1329 |

Step1: $N=$ Total No of Observations $=12$
Step 2: $T=$ Grand Total $=258$

Step 3: Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observatio } \mathrm{ns}}=\frac{T^{2}}{N}=\frac{258^{2}}{12}=5547$
Step 4: $\mathrm{TSS}=\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}-C . F=39$
Step 5: $\mathrm{SSC}=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}-C . \mathrm{F}=15$
Where $N_{1}=$ Number of elements in each column
Step 7: SSE=TSS-SSC $=39-15=24$
Step 8: ANOVA TABLE:

| Source of <br> Variation | Sum of <br> Squares | Degree of <br> freedom | Mean Square | F-Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Between <br> Columns | SSC=39 | $C-1=4-1=3$ | M S C $=\frac{\mathrm{S} \mathrm{S} \mathrm{C}}{\mathrm{C}-1}=13$ | $\mathrm{~F}_{\mathrm{C}}=\frac{\mathrm{M} \mathrm{S} \mathrm{E}}{\mathrm{M} \mathrm{S} \mathrm{C}}$ |
| Error | SSE=15 | $N-C=12-4=8$ | M S E $=\frac{\mathrm{S} \mathrm{SE}}{\mathrm{N}-\mathrm{C}}=1.875$ | $=\frac{13}{1.875}$ |
| $=6.93$ |  |  |  |  |

Cal FC $=6.93 \& \operatorname{Tab} F_{C}(3,8)=4.07$
Conclusion : Cal FC > Tab FC Hence we rejected H0

## Two Way Classification (or) Randomized Block Design (R.B.D):

The entire experiment influences on only two factors is two way Classification.

## Working Procedure (Two - Way classification)

Null Hypothesis $H_{0}$ : There is no significance difference between the treatments.

Alternate Hypothesis $H_{1}$ : There is a significance difference between the treatments.

## Analysis:

Step 1: Find $N=$ number of observations
Setp 2: Find $T=$ The total value of observations
Step 3: Find the correction Factor $=C . F=\frac{T^{2}}{N}$
Step 4: Calculate the total sum of squares $=\mathrm{TSS}=\left(\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-C . F$
Step 4: Find Total Sum of Square TSS $=\left(\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-C . F$
Step 5: Find column sum of Square S S C $=\left\{\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . \mathrm{F}$

Where $N_{i}=$ Total number of observation in each column ( $i=1,2,3, \ldots$ )
Step 6: Find Row sum of square $=\operatorname{SSR}=\left\{\frac{\left(\sum Y_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . \mathrm{F}$
Where $N_{j}=$ Total number of observation in each Row $(j=1,2,3, \ldots$ )
Step 7: Prepare the ANOVA TABLE to calculate F-ratio.

| Source of Variation | Sum of Degrees | Degree of freedom | Mean Square | F- Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Between <br> Columns | SSC | c-1 | $\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{c}-1}$ | $\mathrm{F}_{\mathrm{C}}=\frac{\text { M SC }}{\text { MSE }}$ if <br> MSC $>$ MSE <br> (or) <br> $\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSE}}{\mathrm{MSC}}$ if <br> MSE $>\mathrm{MSC}$ |
| Between Rows | SSR | r-1 | $\mathrm{MSC}=\frac{\mathrm{SSR}}{\mathrm{r}-1}$ | $F_{R}=\frac{M S R}{M S E}$ if <br> MSR > MSE <br> (or) <br> $F_{R}=\frac{\text { MSE }}{M S R}$ if <br> MSE $>$ MSR |
| Error | SSE | $\mathrm{N}-\mathrm{c}-\mathrm{r}+1$ | $\text { MSE }=\frac{\text { SSE }}{N-c-r+1}$ |  |
| Total | TSS | rc-1 |  |  |

Step 8: Find the table value for both $F_{C} \& F_{R}$ (use $\chi^{2}$ table)

## Step 9: Conclusion:

Calculated value < Table Value, the we accept Null Hypothesis $H_{0}$ (or)
Calculated value > Table Value, the we reject Null Hypothesis $H_{0}$

1. A Company appointments four salesmen $A, B, C$ and $D$ and observes their sales in 3 seasons: summer, winter and monsoon. The figures (in lakhs of Rs.) are given in the following table:

| Season | Salesman |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | A | B | C | D |
| Summer | 36 | 36 | 21 | 35 |
| Winter | 28 | 29 | 31 | 32 |
| Monsoon | 26 | 28 | 29 | 29 |

i) Do the salesmen significantly differ in performance?

## ii) Is there significant difference between the seasons?

## Solution:

Null Hypothesis $H_{0}$ : There is no significant difference between the sales in the 3 seasons and also between the sales of the 4 salesmen.
Alternate Hypothesis $H_{1}$ : There is a significant difference between the sales in the 3 seasons and also between the sales of the 4 salesmen.

## Test statistic:

To simplify calculations we deduct 30 from each value

| Seasons |  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{X}_{1}$ |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{X}_{2}$ | $\mathbf{X}_{3}$ | Seasons <br> Total | $\mathbf{X}_{\mathbf{1}}{ }^{2}$ | $\mathbf{X}_{2}{ }^{2}$ | $\mathbf{X}_{3}{ }^{2}$ | $\mathbf{X}_{4}{ }^{2}$ |  |  |  |  |
| $Y_{1}$ | Summer | 6 | 6 | -9 | 5 | $\mathbf{8}$ | 36 | 36 | 81 | 25 |
| $Y_{2}$ | Winter | -2 | -1 | 1 | 2 | $\mathbf{0}$ | 4 | 1 | 1 | 4 |
| $Y_{3}$ | Monson | -4 | -2 | -1 | -1 | $\mathbf{- 8}$ | 16 | 4 | 1 | 1 |
| Total |  | 0 | 3 | -9 | 6 | $\mathbf{0}$ | 56 | 41 | 83 | 30 |

Step1: N= Total No of Observations = 12
Step 2: $\mathrm{T}=$ Grand Total $=0$
Step 3: Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observatio ns }}=\frac{T^{2}}{N}=\frac{0^{2}}{12}=0$
Step 4: TSS $=\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\sum X_{4}^{2}-C . F=56+41+83+30-0=210$
Step 5: SSC $=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{4}\right)^{2}}{N_{1}}-C . \mathrm{F}=\frac{0^{2}}{3}+\frac{3^{2}}{3}+\frac{(-9)^{2}}{3}+\frac{6^{2}}{3}-0$
$\mathrm{SSC}=0+3+27+12-0=42$
Where $N_{1}=$ Number of elements in each column

Step 6: $\mathrm{SSR}=\frac{\left(\sum Y_{1}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{2}}-C . \mathrm{F}=\frac{8^{2}}{4}+\frac{0^{2}}{4}+\frac{(-8)^{2}}{4}+\frac{6^{2}}{4}-0=16+0+16-0=32$
Where $N_{2}=$ Number of elements in each row

Step 7: SSE=TSS-SSC-SSR $=210-42-32$

Step 8: ANOVA TABLE:

| Source of Variation | Sum of Squares | Degrees of Freedom | Mean Sum of Squares | varience | F - ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Columns (Salesmen) | SSC=42 | $\mathrm{c}-1=4-1=3$ | $\begin{aligned} M S C & =\frac{S S C}{c-1} \\ & =\frac{42}{3}=14 \end{aligned}$ | $\begin{aligned} M S C & =\frac{M S E}{M S C} \\ & =\frac{22.67}{14} \\ & =1.619 \end{aligned}$ | $F_{C}(6,3)=8.94$ |
| Between rows (Seasons) | SSR $=32$ | $\mathrm{r}-1=3-1=2$ | $\begin{aligned} M S R & =\frac{S S R}{r-1} \\ & =\frac{32}{2}=16 \end{aligned}$ | $\begin{aligned} M S R & =\frac{M S E}{M S R} \\ & =\frac{22.67}{16} \\ & =1.417 \end{aligned}$ | $F_{R}(6,2)=8.94$ |
| Error | SSE=136 | N-c-r +1=6 | $\begin{aligned} M S E & =\frac{S S E}{N-c-r+1} \\ & =\frac{136}{6}=22.67 \end{aligned}$ |  |  |
| Total | 210 | 11 |  |  |  |

Table Value of $\mathrm{F}=F_{C}($ Error, d.f $)=F_{C}(6,3)=8.94, F_{R}($ Error,d.f $)=8.94$ with 5\% level of significance

## Conclusion:

1) Cal $F_{R}<$ Table $F_{R, 0.05}(6,3)$

Hence we accept the $H_{0}$ and we conclude that there is no significant difference between sales in the three seasons.
2) Cal $F_{R}<$ Table $F_{R, 0.05}(6,2)$.

Hence we accept the $H_{0}$ and we conclude that there is no significant difference between in the sales of 4 salesmen.
2. The following data represent the number of units of production per day turned out by different workers using 4 different types of machines.

| Machine type |  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Workers | 1 | 44 | 38 | 47 | 36 |
|  | 2 | 46 | 40 | 52 | 43 |
|  | 3 | 34 | 36 | 44 | 32 |
|  | 4 | 43 | 38 | 46 | 33 |
|  | 5 | 38 | 42 | 49 | 39 |

(1) Test whether the five men differ with respect to mean productivity and
(2) Test whether the mean productivity is the same for the four different machine types.

Solution:
Null Hypothesis $\mathbf{H}_{0}$ : There is no significant difference between the Machine types the Workers.

Alternate Hypothesis $\mathbf{H}_{1}$ : Significant difference between the Machine types between the Workers Test statistic:
To simplify calculations we deduct 46 from each value

|  | Machine type |  |  |  | workers <br> Total | $\mathrm{X}_{1}{ }^{2}$ | $\mathbf{X 2}^{2}$ | $\mathrm{X}_{3}{ }^{2}$ | $\mathrm{X}_{4}{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| worker <br> s | $\begin{gathered} \mathbf{A} \\ \mathbf{X}_{1} \end{gathered}$ | $\begin{gathered} \mathbf{B} \\ \mathbf{X}_{2} \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \mathrm{X}_{3} \end{gathered}$ | $\begin{gathered} \hline \text { D } \\ \mathrm{X}_{4} \end{gathered}$ |  |  |  |  |  |
| $Y_{1}$ | -2 | -8 | 1 | -10 | -19 | 4 | 64 | 1 | 100 |
| $Y_{2}$ | 0 | -6 | 6 | -3 | -3 | 0 | 36 | 36 | 9 |
| $Y_{3}$ | -12 | -10 | -2 | -14 | -38 | 144 | 100 | 4 | 196 |
| $Y_{4}$ | -3 | -8 | 0 | -13 | -24 | 9 | 64 | 0 | 169 |
| $Y_{5}$ | -8 | -4 | 3 | -7 | -16 | 64 | 16 | 9 | 49 |
| Total | -25 | -36 | 8 | -47 | -100 | 221 | 280 | 50 | 523 |

Step1: $\mathrm{N}=$ Total No of Observations $=20$
Step 2: T=Grand Total = -100
Step 3: Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observatio } \mathrm{ns}}=\frac{T^{2}}{N}=\frac{(-100)^{2}}{20}=\frac{10000}{20}=500$
Step 4: TSS $=\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\sum X_{4}^{2}-C . F=221+280+50+523-500=574$
Step 5:
$\operatorname{SSC}=\frac{\left(\sum x_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{4}\right)^{2}}{N_{1}}-C . \mathrm{F}=\frac{(-25)^{2}}{5}+\frac{(-36)^{2}}{5}+\frac{8^{2}}{5}+\frac{(-47)^{2}}{5}-500$
$\mathrm{SSC}=\frac{625}{5}+\frac{1296}{5}+\frac{64}{5}+\frac{2209}{5}-500=838.8-500=338.8$
Where $N_{1}=$ Number of elements in each column
Step 6: $\mathrm{SSR}=\frac{\left(\sum Y_{1}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{4}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{5}\right)^{2}}{N_{2}}-C . \mathrm{F}$
$=\frac{(-19)^{2}}{4}+\frac{(-3)^{2}}{4}+\frac{(-38)^{2}}{4}+\frac{(-24)^{2}}{4}+\frac{(-16)^{2}}{4}-500$
$=\frac{361+9+1444+576+256}{4}-500=661.5-500=161.5$
$S S R=161.5$
Where $N_{2}=$ Number of elements in each row=4
Step 7: SSE $=T S S-S S C-S S R=574-338.8-161.5=73.7$

Step 8: ANOVA TABLE:

| Source of Variation | Sum of Squares | Degrees of Freedom | Mean Sum of Squares | varience | F - ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Columns (Salesmen) | SSC=338.8 | $\mathrm{c}-1=4-1=3$ | $\begin{aligned} M S C & =\frac{S S C}{c-1} \\ & =\frac{338.8}{3} \\ & =112.9 \end{aligned}$ | $\begin{aligned} M S C & =\frac{M S C}{M S E} \\ & =\frac{112.9}{6.14} \\ & =18.39 \end{aligned}$ | $F_{C}(3,12)=3.49$ |
| Between rows (Seasons) | $\begin{aligned} & \text { SSR } \\ & =161.8 \end{aligned}$ | $\mathrm{r}-1=5-1=4$ | $\begin{aligned} M S R & =\frac{S S R}{r-1} \\ & =\frac{161.5}{4} \\ & =40.4 \end{aligned}$ | $\begin{aligned} M S R & =\frac{M S R}{M S E} \\ & =\frac{40.4}{6.14} \\ & =6.58 \end{aligned}$ | $F_{R}(4,12)=3.26$ |
| Error | SSE=73.7 | $\begin{aligned} & \text { N-c-r +1 } \\ & =20-4-5+1 \\ & =12 \end{aligned}$ | $\begin{aligned} M S E & =\frac{S S E}{N-c-r+} \\ & =\frac{73.7}{12} \\ & =6.14 \end{aligned}$ |  |  |
| Total | 574.3 | 19 |  |  |  |

Table Value of $\mathrm{F}=F_{C}($ Error, d.f $)=F_{C}(6,3)=8.94, F_{R}($ Error, d.f $)=8.94$ with $5 \%$ level of significance
Conclusion:

1) Calculated value > table value

Hence we reject the $H_{0}$ and we conclude that there is significant difference between sales in the three seasons.
2) Calculated value > table value

Hence we rejectthe $H_{0}$ and we conclude that there is significant difference between in the sales of 4 salesmen.
Conclusion :There is significant difference between the Machine types and no significant difference between the Workers
3. A laboratory technician measures the breaking strength of each of $\mathbf{5}$ kinds of linen threads by using 4 different measuring instruments, and obtains the following results, in ounces.

|  | $\mathrm{I}_{1}$ | $\mathrm{I}_{2}$ | $\mathrm{I}_{3}$ | $\mathrm{I}_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thread 1 | 20.9 | 20.4 | 19.9 | 21.9 |
| Thread 2 | 25 | 26.2 | 27.0 | 24.8 |
| Thread 3 | 25.5 | 23.1 | 21.5 | 24.4 |
| Thread 4 | 24.8 | 21.2 | 23.5 | 25.7 |
| Thread 5 | 19.6 | 21.2 | 22.1 | 22.1 |

Perform a 2 - way ANOVA using the 0.05 level of significance for both tests.

## Solution:

Null Hypothesis: There is no significant difference between in breaking strength of various threads $H_{01}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}$ and $\quad H_{02}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$

Alternate Hypothesis: There is a significant difference between in breaking strength of various threads $H_{11}: \mu_{1} \neq \mu_{2} \neq \mu_{3} \neq \mu_{4} \neq \mu_{5}$ and $\quad H_{12}: \mu_{1} \neq \mu_{2} \neq \mu_{3} \neq \mu_{4}$

## ANOVA TABLE

\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { Source of } \\
\text { Variation }\end{array} & \begin{array}{c}\text { Sum of } \\
\text { Square }\end{array} & \begin{array}{c}\text { Degrees of } \\
\text { Freedom }\end{array} & \begin{array}{c}\text { Mean Sum of } \\
\text { Squares }\end{array} & \text { F ratio } \\
\hline \begin{array}{c}\text { Between } \\
\text { Rows }\end{array} & 66.393 & \mathrm{R}-1=4 & 16.598 & \begin{array}{c}F_{R}=\frac{16.598}{2.078} \\
=7.987\end{array} \\
\hline \begin{array}{c}\text { Between } \\
\text { Columns }\end{array} & 5.02 & \mathrm{C}-1=3 \\
\hline \text { Error } & 24.935 & \begin{array}{c}(\mathrm{C}-1)(\mathrm{R}-1) \\
=12\end{array}
$$ \& 2.078 \& F_{C}=\frac{2.078}{1.673} <br>

=1.242\end{array}\right]\)| $\mathrm{N}-1=11$ |
| :---: |
| Total |
| 96.348 |

Table Value of $\mathrm{F}=F_{0.05}(4,12)=3.26$ and $F_{0.05}(12,3)=8.74$

## Conclusion:

1) $F_{R}>3.26$. Hence we reject $H_{01}$ and we conclude that there is significant difference between threads
2) $F_{C}<8.74$. Hence we accept $H_{02}$ and we conclude that there is no significant difference between instruments.
4. Four varieties $A, B, C, D$ of a fertilizer are tested in a randomized block design with 4 replication. The plot yields in pounds are as follows:

| Column / Row | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{A ( 1 2 )}$ | $\mathbf{D}(20)$ | $\mathbf{C}(16)$ | $\mathbf{B ( 1 0 )}$ |
| 2 | $\mathbf{D}(1)$ | $\mathbf{A ( 1 4 )}$ | $\mathbf{B ( 1 1 )}$ | $\mathbf{C ( 1 4 )}$ |
| 3 | $\mathbf{B ( 1 2 )}$ | $\mathbf{C ( 1 5 )}$ | $\mathbf{D ( 1 9 )}$ | $\mathbf{A ( 1 3 )}$ |
| 4 | C(16) | $\mathbf{B ( 1 1 )}$ | $\mathbf{A ( 1 5 )}$ | $\mathbf{D ( 2 0 )}$ |

Analyse the experimental yield.
Solution:
$H_{0}$ : There is no significant difference between the fertilizers and replication
$\mathrm{H}_{1}$ :Significant difference between the fertilizers and replication

| Variety | Block |  |  |  | Total varieties |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \hline 1 \\ \left(\mathrm{X}_{1}\right) \end{gathered}$ | $\begin{gathered} 2 \\ \left(\mathrm{X}_{2}\right) \end{gathered}$ | $\begin{gathered} \hline 3 \\ \left(X_{3}\right) \end{gathered}$ | $\begin{gathered} \hline 4 \\ \left(\mathrm{X}_{4}\right) \end{gathered}$ |  | $\mathrm{X}_{1}{ }^{2}$ | $\mathrm{X} 2{ }^{2}$ | $\mathrm{X} 3^{2}$ | $\mathrm{X} 4{ }^{2}$ |
| A | 12 | 14 | 15 | 13 | 54 | 144 | 196 | 225 | 169 |
| B | 12 | 11 | 11 | 10 | 44 | 144 | 121 | 121 | 100 |
| C | 16 | 15 | 16 | 14 | 61 | 256 | 225 | 256 | 196 |
| D | 18 | 20 | 19 | 20 | 77 | 324 | 400 | 361 | 400 |
|  | 58 | 60 | 61 | 57 | 236 | 868 | 942 | 963 | 865 |

$\mathrm{N}=16$
$\mathrm{T}=$ Grand Total $=236$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observatio ns }}=\frac{(236)^{2}}{16}=3481$
TSS $=\sum_{i} \sum_{j} X_{i j}^{2}-C . F=868+942+963+865-3481=157$
$S S C=\frac{\sum T_{*_{j}}{ }^{2}}{h}-C . F=841+900+930+812-3481=2$
$S S R=\frac{\sum T_{i^{*}}{ }^{2}}{k}-C . F=729+484+930.25+1482.25-3481=144.5$
SSE $=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=157-2-144.5=10.5$

ANOVA Table

| Source of Variation | Sum of Squares | Degree of freedom | Mean <br> Square | F-Ratio | $\mathrm{F}_{\text {Tab }}$ Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between varieties | SSR=144.5 | h-1=3 | $\begin{aligned} & \text { MSR= } \\ & 48.17 \end{aligned}$ | $\mathrm{F}_{\mathrm{R}}=39.27$ | $\mathrm{F}_{5 \%}(3,9)=3.86$ |
| Between blocks | SSC=2 | $\mathrm{k}-1=3$ | MSC $=0.67$ | $\mathrm{F}_{\mathrm{C}}=0.545$ | $\mathrm{F}_{5 \%}(3,9)=3.86$ |
| Residual | SSE $=10.5$ | $\begin{aligned} & (\mathrm{h}-1)(\mathrm{k}-1) \\ & =9 \end{aligned}$ | $\begin{aligned} & \text { MSE } \\ & =1.17 \end{aligned}$ |  |  |

Conclusion: $\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{Tab}_{\mathrm{C}}$ and $\mathrm{Cal} \mathrm{F}_{\mathrm{R}}>\mathrm{Tab}_{\mathrm{R}} \Rightarrow$ Therefore null hypothesis is rejected. Hence four varieties are not similar. But the varieties are similar along block wise.

## Latin Square Design:

Latin Square design controls variation in two direction of the experimental materials as rows and columns resulting in the reduction of experimental error. The analysis of the design results in a three way classification of analysis of variance. Data from Latin Square experiments form a three way classification according the factors rows, columns, and treatments.

| CRD | RBD | LSD |
| :--- | :--- | :--- |
| To influence one factor | To influence two factor | To influence more than <br> two factor |
| No restriction further <br> treatments | No restriction on <br> treatment and <br> replications | The number of <br> replication of each <br> treatment is equal to <br> the number of <br> treatment |
| - | Use only rectangular <br> or Square field | Use only Square filed |
|  |  |  |

The advantages of the Latin square design over other designs are:
(i) With a two way stratification or grouping, the Latin square controls more of the variation than the CRD or the randomized completely block design. The two way elimination of variation often results in small error mean square.
(ii) The analysis is simple.
(iii) Even with missing data the analysis remains relatively simple.

## Working Procedure ( Three - Way classification)

we have seen data from a latin square experiment result in a three way classification result in a three way classification say

## (i) variety seeds

(ii) types of spacing(rows)
(iii) the letters for different manure treatment
$H_{0}$ : There is no difference between columns, between rows and between treatments
$\mathrm{H}_{1}$ :Not all are equal.
Step 1: Find $N=$ number of observations
Setp 2: Find $T=$ The total value of observations
Step 3: Find the correction Factor $=C \cdot F=\frac{T^{2}}{N}$
Step 4: Calculate the total sum of squares $=\operatorname{TSS}=\left(\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-C . F$
Step 4: Find Total Sum of Square TSS $=\left(\sum x_{1}^{2}+\sum x_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-C . F$
Step 5: Find column sum of Square $\operatorname{SSC}=\left\{\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . F$
Where $N_{i}=$ Total number of observation in each column ( $i=1,2,3, \ldots$ )
Step 6: Find Row sum of square $=\operatorname{SSR}=\left\{\frac{\left(\sum Y_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{3}}+\ldots\right\}-C . \mathrm{F}$ Where $N_{j}=$ Total number of observation in each Row ( $j=1,2,3, \ldots$ )
Step 7: Find SSK for treatments
ANOVA Table for three way classification:

| Source of <br> Variation | Sum of <br> Degrees | Degree of <br> freedom | Mean Square | F- Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Column <br> Treatment | SSC | n-1 | M SC $=\frac{\mathrm{SSC}}{\mathrm{n}-1}$ | $\mathrm{~F}_{\mathrm{C}}=\frac{\mathrm{M} \mathrm{S} \mathrm{C}}{\mathrm{M} \mathrm{SE}}$ |
| If MSC $<\mathrm{MSE}$ |  |  |  |  |


| Row Treatments | SSR | n-1 | $\operatorname{MSR}=\frac{\mathrm{SSR}}{\mathrm{n}-1}$ | If MSR >MSE $\mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}}$ <br> If MSR>MSE $\mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSE}}{\mathrm{MSR}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Between Treatments | SST | n-1 | $\text { MSK }=\frac{\mathrm{SSK}}{\mathrm{n}-1}$ | If MSK>MSE $\mathrm{F}_{\mathrm{K}}=\frac{\mathrm{MSK}}{\mathrm{MSE}}$ <br> If MSK>MSE $\mathrm{F}_{\mathrm{K}}=\frac{\mathrm{MSE}}{\mathrm{MSK}}$ |
| Error (or) <br> Residual | SSE | $(\mathrm{n}-1)(\mathrm{n}-2)$ | $\text { MSE }=\frac{\text { SSE }}{(n-1)(n-2)}$ |  |

1. Analyse the variance in the following latin square of yields (in kgs) of paddy where $A, B$, $C$, $D$ denote the different methods of cultivation.

D $\begin{array}{llllllll}122 & \text { A } & 121 & \text { C } & 123 & \text { B } & 122\end{array}$
B 124
C 123
A 122 D 125
A 120
B 119
D 120
C 121
C 122
D 123
B 121 A
122
Examine whether the different methods of cultivation have given significantly different yields.

Solu.:
$H_{0}$ : There is no difference between columns, between rows and between treatments
$\mathrm{H}_{1}$ : Not all are equal.

We shift the origin $X_{i j}=x_{i j}-100 ; n=4 ; N=16$

|  | I | II | III | IV | Total $=\mathrm{T}_{\text {i }}{ }^{\text {a }}$ | $\begin{gathered} {\left[\mathbf{T}_{\mathbf{i}^{*}} \mathbf{n}\right] /} \end{gathered}$ | $\Sigma \mathrm{X}_{* i j}{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 2 | 1 | 3 | 2 | 8 | 16 | 18 |
| B | 4 | 3 | 2 | 5 | 14 | 49 | 54 |
| C | 0 | -1 | 0 | 1 | 0 | 0 | 2 |
| D | 2 | 3 | 1 | 2 | 8 | 16 | 18 |
| Total $=\mathbf{T}^{*}{ }_{\text {j }}$ | 8 | 6 | 6 | 10 | 30 | 81 | 92 |
| $\left[\mathrm{T}_{*}{ }^{2}{ }^{2}\right] / \mathrm{n}$ | 16 | 9 | 9 | 25 | 59 |  |  |
| $\Sigma \mathbf{X}_{i^{*}{ }^{2}}$ | 24 | 20 | 14 | 34 | 92 |  |  |


|  | Letters |  |  |  |  | Total= $\mathbf{T}_{\mathrm{i}^{*}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left[\mathbf{T}_{\mathrm{i}^{2}}\right] / \mathbf{n}$ |  |  |  |  |  |  |
| P | 1 | 2 | 0 | 2 | $\mathbf{5}$ | 6.25 |
| Q | 2 | 4 | -1 | 1 | $\mathbf{6}$ | 9 |
| R | 3 | 3 | 1 | 2 | $\mathbf{9}$ | 20.25 |
| S | 2 | 5 | 0 | 3 | $\mathbf{1 0}$ | 25 |
| Total |  |  |  |  |  | $\mathbf{3 0}$ |

$\mathrm{T}=\mathrm{Grand}$ Total $=30$;Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total } \text { No of Observatio } n s}=\frac{(30)^{2}}{16}$ $T S S=\sum_{i} \sum_{j} X_{i j}^{2}-C . F=92-\frac{(30)^{2}}{16}=35.75$
SSR $=\frac{\sum T_{i^{*}}{ }^{2}}{n}-C \cdot F=81-\frac{(30)^{2}}{16}=24.75$
$S S C=\frac{\sum T_{*_{j}}{ }^{2}}{n}-C . F=59-\frac{(30)^{2}}{16}=2.75$
$S S L=\frac{\sum T_{i^{*}}{ }^{2}}{n}-C . F=60.5-\frac{(30)^{2}}{16}=4.25$
SSE $=$ TSS - SSC - SSR-SSL $=35.75-24.75-2.75-4.25=4$

## ANOVA Table

| Source of <br> Variation | Sum of <br> Squares | Degree of <br> freedom | Mean Square | F- Ratio | $\mathbf{F}_{\text {Tab }}$ Ratio <br> $\mathbf{( 5 \% \text { level } )}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between <br> Rows | $\mathrm{SSR}=24.75$ | $\mathrm{n}-1=3$ | $\mathrm{MSR}=8.25$ | $\mathrm{~F}_{\mathrm{R}}=12.31$ | $\mathrm{~F}_{\mathrm{R}}(3,6)=4.76$ |
| Between <br> Columns | $\mathrm{SSC}=2.75$ | $\mathrm{n}-1=3$ | $\mathrm{MSC}=0.92$ | $\mathrm{~F}_{\mathrm{C}}=1.37$ |  |


| Between <br> Letters | SSL $=4.25$ | $\mathrm{n}-1=3$ | $\mathrm{MSL}=1.42$ | $\mathrm{~F}_{\mathrm{L}}=2.12$ | $\mathrm{Fc}(3,6)=4.76$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Residual | SSE $=4$ | $(\mathrm{n}-1)(\mathrm{n}-2)$ <br> $=6$ | $\mathrm{MSE}=0.67$ |  |  |

## Conclusion :

Cal $\mathrm{F}_{\mathrm{C}}<\mathrm{Tab} \mathrm{F}_{\mathrm{C}}, \mathrm{Cal} \mathrm{F}_{\mathrm{L}}<\mathrm{Tab} \mathrm{F}_{\mathrm{L}}$ and $\mathrm{Cal} \mathrm{F}_{\mathrm{R}}>\mathrm{Tab} \mathrm{F}_{\mathrm{R}} \Rightarrow$ There is significant difference between the rows, no significant difference between the letters and no significant difference between the columns
2. The following is a Latin square of a design when 4 varieties of seeds are being tested. Set up the analysis of variance table and state your conclusion. The following is a Latin square of a design when 4 varieties of seeds are being tested. Set up the analysis of variance table and state your conclusion. You may carry out suitable change of origin and scale.

| A | 105 | B | 95 | C | 125 | D | 115 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 115 | D | 125 | A | 105 | B | 105 |
| D | 115 | C | 95 | B | 105 | A | 115 |
| B | 95 | A | 135 | D | 95 | C | 115 |

(APRIL / MAY '17)
Solu.:
$\mathrm{H}_{0}$ : Four varieties are similar
$\mathrm{H}_{1}$ : Four varieties are not similar
Let us take 100 as origin and divide by 5 for simplifying the calculation

| Variety | $\mathbf{X}_{\mathbf{1}}$ | $\mathbf{X}_{\mathbf{2}}$ | $\mathbf{X}_{\mathbf{3}}$ | $\mathbf{X}_{\mathbf{4}}$ | $\mathbf{T O T A L}$ | $\mathbf{X}_{\mathbf{1}}{ }^{\mathbf{2}}$ | $\mathbf{X}_{\mathbf{2}}{ }^{\mathbf{2}}$ | $\mathbf{X}_{\mathbf{3}}{ }^{\mathbf{}}$ | $\mathbf{X}_{\mathbf{4}}{ }^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{Y}_{\mathbf{1}}$ | $\mathbf{1}$ | -1 | 5 | 3 | $\mathbf{8}$ | 1 | 1 | 25 | 9 |
| $\mathbf{Y}_{\mathbf{2}}$ | 3 | 5 | 1 | 1 | $\mathbf{1 0}$ | 9 | 25 | 1 | 1 |
| $\mathbf{Y}_{\mathbf{3}}$ | 3 | -1 | 1 | 3 | $\mathbf{6}$ | 9 | 1 | 1 | 9 |
| $\mathbf{Y}_{\mathbf{4}}$ | -1 | 7 | -1 | 3 | $\mathbf{8}$ | 1 | 49 | 1 | 9 |
|  | $\mathbf{6}$ | $\mathbf{1 0}$ | $\mathbf{6}$ | $\mathbf{1 0}$ | $\mathbf{3 2}$ | $\mathbf{2 0}$ | $\mathbf{7 6}$ | $\mathbf{2 8}$ | $\mathbf{2 8}$ |

$\mathrm{N}=$ Total No of Observations $=16$
$\mathrm{T}=$ Grand Total $=32$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observatio ns }}=64$

$$
\text { TSS }=\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}+\sum X_{4}{ }^{2}-C . F=20+76+28+28-64=88
$$

$$
\begin{aligned}
& S S C=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}-C \cdot F=\frac{(6)^{2}}{4}+\frac{(10)^{2}}{4}+\frac{(6)^{2}}{4}+\frac{(10)^{2}}{4}-64=4 \\
& S S R=\frac{\left(\sum Y_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{4}\right)^{2}}{N_{2}}-C \cdot F=\frac{(8)^{2}}{4}+\frac{(10)^{2}}{4}+\frac{(6)^{2}}{4}+\frac{(8)^{2}}{4}-64=2
\end{aligned}
$$

To find SSK

| Treatment | 1 | 2 | 3 | 4 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1 | 1 | 3 | 7 | 12 |
| B | -1 | 1 | 1 | -1 | 0 |
| C | 5 | 3 | -1 | 3 | 10 |
| D | 3 | 5 | 3 | -1 | 10 |

SSK $=\frac{\left(\sum Y_{1}\right)^{2}}{K_{1}}+\frac{\left(\sum Y_{2}\right)^{2}}{K_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{K_{3}}+\frac{\left(\sum Y_{4}\right)^{2}}{K_{4}}-C . F$
$=22$
SSE $=$ TSS - SSC - SSR $-S S K=88-4-2-11=60$

## ANOVA Table

| Source of Variation | Sum of <br> Squares | Degree of freedom | Mean Square | F-Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Column <br> Treatment | SSC=4 | $\mathrm{n}-1=3$ | $\begin{gathered} \mathrm{M} \mathrm{SC}=\frac{\mathrm{SSC}}{\mathrm{n}-1} \\ =1.33 \end{gathered}$ | $\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{M} \mathrm{~S} \mathrm{C}}{\mathrm{M} \mathrm{SE}}=7.52$ |
| Row <br> Treatments | SSR=2 | $\mathrm{n}-1=3$ | $\begin{gathered} \mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{n}-1} \\ =0.67 \end{gathered}$ | $F_{R}=\frac{M S R}{M S E}=14.9$ |
| Between <br> Treatments | SST $=22$ | $\mathrm{n}-1=3$ | $\begin{gathered} \mathrm{MSK}=\frac{\mathrm{SSK}}{\mathrm{n}-1} \\ =7.33 \end{gathered}$ | $\mathrm{F}_{\mathrm{K}}=\frac{\mathrm{M} \mathrm{~S} \mathrm{~K}}{\mathrm{M} \mathrm{SE}}=1.36$ |
| Error (or) <br> Residual | SSE=60 | $\begin{gathered} (\mathrm{n}-1)(\mathrm{n}- \\ 2)=6 \end{gathered}$ | $\begin{aligned} & \text { MSE } \\ & =\frac{\text { SSE }}{(n-1)(n-2)} \\ & =10 \end{aligned}$ |  |

Table value $\mathrm{F}(3,6)$ degrees of freedom 8.94
There is significant difference between treatments.
$2^{2}$ Factorial Design Experiment:
In factorial experiment, the effect of several factors of variation are investigated simultaneously, the treatment being all the combinations of different factors under study.

Note: $2^{2}$ Factorial $=4$ treatment (Let be say $\left.1, a, b, a b\right)$

## Procedure:

1. Find $N, T$
2. Find Correction factor $=C . F=\frac{T^{2}}{N}$
3. We proceed two way classification between treatment and blocks.
4. For $2 \times 2$ or $2^{2}$ factorial:

Find
$\operatorname{SSA}=\frac{1}{\mathrm{~N}}[\mathrm{a}+\mathrm{ab}-\mathrm{b}-(1)]^{2}$
SSB $=\frac{1}{N}[b+a b-a-(1)]^{2}$
$\operatorname{SSAB}=\frac{1}{\mathrm{~N}}[\mathrm{ab}+(1)-\mathrm{a}-\mathrm{b}]^{2}$
3. Find sse =sst-ssa-sSb-sSAB

ANOVA Table:

| Source of Variation | Sum of Degrees | Degree of freedom | Mean Square | F- Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Between <br> Column | SSC | n-1 | $\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{n}-1}$ | If MSC>MSE $\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$ <br> If $\mathrm{MSC}<\mathrm{MSE}$ $\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSE}}{\mathrm{MSC}}$ |
| Between <br> Row | SSR | n-1 | $\mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{n}-1}$ | If MSR >MSE $F_{R}=\frac{M S R}{M S E}$ <br> If MSR<MSE |


|  |  |  |  | $\mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSE}}{\mathrm{MSR}}$ |
| :---: | :---: | :---: | :---: | :---: |
| A | SSA | 1 | $\mathrm{MSA}=\mathrm{SSA}$ | If MSA>MSE |
|  |  |  |  | $\mathrm{F}_{\mathrm{a}}=\frac{\mathrm{MS} \mathrm{A}}{M S E}$ |
|  |  |  |  |  |
|  |  |  |  | If MSA<MSE |
|  |  |  |  | MSE |
|  |  |  |  | M S A |
| B | SSB | 1 | $\mathrm{MSB}=\mathrm{SSB}$ | If MSB>MSE |
|  |  |  |  | M SA |
|  |  |  |  | MSE |
|  |  |  |  | MSB<MSE |
|  |  |  |  | M |
|  |  |  |  | MSA |
| AB | SSAB | 1 | MSAB $=$ SSAB | If MSAB>MSE |
|  |  |  |  | M SA |
|  |  |  |  | MSE |
|  |  |  |  |  |
|  |  |  |  | If MSAB<MSE |
|  |  |  |  | MSE |
|  |  |  |  | $\mathrm{F}_{\mathrm{ab}}=\frac{\mathrm{MSAB}}{\text { M }}$ |
| Error (or) | SSE | n-c-r+1 | $\operatorname{MSE}=\frac{S S E}{n-c-r+1}$ |  |
| Residual |  |  |  |  |

## Problem:

1. Analyse $\mathbf{2}^{\mathbf{2}}$ factorial experiment for the following table

| Treatment | I | II | III | IV |
| :---: | :---: | :---: | :---: | :---: |
| (l) | 64 | 75 | 76 | 75 |
| $(k)$ | 25 | 14 | 12 | 33 |
| $(\mathbf{p})$ | 30 | 50 | 41 | 25 |
| $(k p)$ | 6 | 33 | 17 | 10 |

## Solution:

| Treatme <br> nt | I | II | III | IV |
| :---: | :---: | :---: | :---: | :---: |
| (l) | 64 | 75 | 76 | 75 |
| $(k)$ | 25 | 14 | 12 | 33 |
| $(p)$ | 30 | 50 | 41 | 25 |
| $(k p)$ | 6 | 33 | 17 | 10 |

We shift the origin $\mathrm{X}_{\mathrm{ij}}=\mathrm{x}_{\mathrm{ij}}-37$;

| Treatment | I | II | III | IV | $\underset{*}{\text { Total }}=\mathrm{T}_{\mathbf{i}}$ | $\left[\mathrm{Ti}^{*}{ }^{2}\right] / \mathrm{n}$ | $\Sigma \mathrm{X}^{\mathrm{mj}}{ }^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | 27 | 38 | 39 | 38 | 142 | 5041 | 5138 |
| (k) | -12 | -23 | -25 | -4 | -64 | 1024 | 1314 |
| (p) | 7 | 13 | 4 | -12 | 12 | 36 | 378 |
| (kp) | -31 | -4 | -20 | -27 | -82 | 1681 | 2106 |
| Total $=$ T ${ }^{\text {j }}$ | -9 | 24 | -2 | -5 | 8 | 7782 | 8936 |
| $\left[\mathrm{T}^{*}{ }^{2} \mathrm{j} / \mathrm{n}\right.$ | 20.25 | 144 | 1 | 6.25 | 171.5 |  |  |

T=Grand Total $=8: \quad \mathrm{N}=16$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(8)_{2}}{16}=4$

$$
\begin{aligned}
& T S S=\sum_{i} \sum_{j i j^{2}}-C . F=8936-4=8932 \\
& S S R=\begin{array}{cc}
\sum_{i \underline{*^{*}}} \\
n & -C . F=7782-4=7778
\end{array}
\end{aligned}
$$

$$
S S C=\begin{gathered}
\sum \underline{T}_{*}{ }^{2} \\
n
\end{gathered} \quad-C . F=171.5-4=167.5
$$

$$
\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=8932-7778-167.5=986.5
$$

$$
[\mathrm{k}]=[\mathrm{kp}]-[\mathrm{p}]+[\mathrm{k}]-[1]=-300 \quad ;[\mathrm{p}]=[\mathrm{kp}]+[\mathrm{p}]-[\mathrm{k}]-[1]=-148
$$

$$
[\mathrm{kp}]=[\mathrm{kp}]-[\mathrm{p}]-[\mathrm{k}]+[1]=126
$$

$\mathrm{S}_{\mathrm{k}}=[\mathrm{k}]^{2} / 4 \mathrm{r}=5625 ; \mathrm{S}_{\mathrm{p}}=[\mathrm{p}]^{2} / 4 \mathrm{r}=1369 ; \mathrm{S}_{\mathrm{kp}}=[\mathrm{kp}]^{2} / 4 \mathrm{r}=992.2$

## ANOVA Table

| Source of Variation | Sum of <br> Degrees | $\begin{gathered} \text { Degree } \\ \text { of } \\ \text { freedom } \end{gathered}$ | Mean Square | F- Ratio | $\mathrm{F}_{\text {Tab }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Between Column | SSC=167.5 | 3 | $\mathrm{M} \mathrm{SC}=\frac{\mathrm{SSC}}{\mathrm{n}-1}=55.83$ | If $\mathrm{MSC}<\mathrm{MSE}$ $\begin{aligned} \mathrm{F}_{\mathrm{C}} & =\frac{\mathrm{M} \mathrm{SE}}{\mathrm{M} \mathrm{~S} \mathrm{C}} \\ & =1.963 \end{aligned}$ | $\mathrm{F}_{0.05}(3,9)=3.86$ |
| Between <br> Row | SSR=7778 | 3 | $\begin{aligned} \text { M S R } & =\frac{S S R}{n-1} \\ & =2592.67 \end{aligned}$ | If MSR>MSE $\begin{aligned} \mathrm{F}_{\mathrm{R}} & =\frac{\mathrm{MSR}}{\mathrm{MSE}} \\ & =23.65 \end{aligned}$ | $\mathrm{F}_{0.05}(3,9)=3.86$ |
| k | SSk=5625 | 1 | $\mathrm{MSA}=\mathrm{SSA}=5625$ | If MSA>MSE $\begin{aligned} \mathrm{F}_{\mathrm{a}} & =\frac{\mathrm{M} \mathrm{~S} \mathrm{~A}}{\mathrm{M} \mathrm{SE}} \\ & =51.32 \end{aligned}$ | $\mathrm{F}_{0.05}(1,9)=5.12$ |
| p | SSp=1369 | 1 | $\mathrm{MSB}=\mathrm{SSB}=1369$ | If MSB>MSE $\begin{aligned} \mathrm{F}_{\mathrm{b}} & =\frac{\mathrm{MS} \mathrm{~A}}{\mathrm{M} \mathrm{SE}} \\ & =12.49 \end{aligned}$ | $\mathrm{F}_{0.05}(1,9)=5.12$ |
| kp | $\begin{gathered} \text { SSkp=992. } \\ 2 \end{gathered}$ | 1 | $\begin{aligned} \text { M SAB } & =\text { SSAB } \\ & =992.2 \end{aligned}$ | If MSAB>MSE $\begin{aligned} \mathrm{F}_{\mathrm{ab}} & =\frac{\mathrm{M} \mathrm{~S} \mathrm{~A} \mathrm{~B}}{\mathrm{M} \mathrm{~S} \mathrm{E}} \\ & =9.05 \end{aligned}$ | $\mathrm{F}_{0.05}(1,9)=5.12$ |
| Error (or) <br> Residual | SSE=986.5 | 9 | $\begin{aligned} \text { MSE } & =\frac{\text { SSE }}{\mathrm{n}-\mathrm{c}-\mathrm{r}+1} \\ & =109.61 \end{aligned}$ |  |  |

Conclusion : $\mathrm{Cal} \mathrm{Fk}_{\mathrm{k}}>\mathrm{Tab} \mathrm{Fk}, \mathrm{Cal} \mathrm{F}_{\mathrm{p}}>\mathrm{Tab} \mathrm{F}_{\mathrm{p}}$ and $\mathrm{Cal} \mathrm{Fkp}_{\mathrm{k}}>\mathrm{Tab} \mathrm{Fkp}^{2}$
There is significant difference between the treatments.

## UNIT - IV: NON-PARAMETRIC TESTS

## PROBLEMS

1. Calculate the expected frequencies for the following data presuming two attributes viz., conditions of home and condition of child as independent.

| Condition of Child | Condition of home |  |  |
| :--- | :--- | :--- | :--- |
|  |  | Clean | Dirty |
|  | Clean | $\mathbf{7 0}$ | $\mathbf{5 0}$ |
|  | Fair | $\mathbf{8 0}$ | $\mathbf{2 0}$ |
|  | Dirty | $\mathbf{3 5}$ | $\mathbf{4 5}$ |

Use Chi-Square test at $5 \%$ level of significance to state whether the two attributes are independent. (AU NOV/DEC 2013)

## Solution:

Null hypothesis: Two attributes are independent.
Alternative hypothesis: Two attributes are not independent.
$\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{s}\left(\frac{\left(o_{i j}-E_{i j}\right)^{2}}{E_{i j}}\right)$ follows chi-square distribution with (r-1)(s-1) degrees of freedom.
$\chi^{2}=25.633$
Table value at $5 \%$ level of significance is 5.991 .
Null hypothesis is rejected.
2. A group of 19 pilots were trained in three different methods video cassette, audio cassette and class room training. Their scores in written exams were as follows:
$\begin{array}{lllllll}\text { Video cassette } & : 74 & 88 & 82 & 93 & 55 & 70\end{array}$
Audio cassette : $\begin{array}{llllll}78 & 80 & 65 & 57 & 88\end{array}$
Class room training : $\begin{array}{llllllll}68 & 50 & 91 & 84 & 77 & 94 & 81 & 92\end{array}$
Test whether there is any difference in the effectiveness of the three methods. Use appropriate rank sum test.

## Solution:

Here three independent populations are given
$\therefore$ we use Kruscal - wallis H-Test.
Null Hypothesis: All the Populations are identical.

$$
H_{0}: \mu_{1}=\mu_{2}=\mu_{3}
$$

Alternate Hypothesis: All the Populations are not identical.

$$
H_{1}: \mu_{1} \neq \mu_{2} \neq \mu_{3}
$$

Level of significance: $\alpha=0.05$
The test statistics:

$$
H \text { or } W=\frac{12}{n(n+1)}\left[\sum_{i=1}^{k} \frac{R_{i}^{2}}{n_{i}}\right]-3(n+1)
$$

Where
$k=3$ (Number of populations or samples )
$R_{i}=$ sum of the ranks of all items in sample $i$

## Analysis:

Ranking the data jointly from 1 to 19 , we find that
$R_{1}=$ sum of the ranks of all items in sample 1

$$
\begin{aligned}
& =7+14+12+18+2+6 \\
& =59 \\
R_{2} & = \\
= & \text { sum of the ranks of all items in sample } 2 \\
= & 410+4+3+15 \\
R_{3} & =\text { sum of the ranks of all items in sample } 3 \\
= & 5+1+16+13+8+19+11+17 \\
= & 90 \\
n_{1}=6 & \text { (the no. of items in sample } 1) \\
n_{2}=5 & \text { (the no. of items in sample } 2) \\
n_{3}=8 & \text { (the no. of items in sample } 3) \\
& \mathrm{n}= \\
& =\sum_{\mathrm{n}_{\mathrm{i}}}=\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\ldots+\mathrm{n}_{\mathrm{k}} \\
& =19 \\
H \text { or } W= & \frac{12}{n(n+1)}\left[\frac{R_{1}^{2}}{n_{1}}+\frac{R_{2}^{2}}{n_{2}}+\frac{R_{3}^{2}}{n_{3}}\right]-3(n+1) \\
& =\frac{12}{19(20)}\left[\frac{(59)^{2}}{6}+\frac{(41)^{2}}{5}+\frac{(90)^{2}}{8}\right]-3(20) \\
& =0.95
\end{aligned}
$$

The sampling distribution of $W$ can be approximated by a $\chi^{2}$ distribution with
$k-1=3-1=2$ degrees freedom. $\alpha=0.05$
$\therefore \chi_{\alpha}^{2}=5.991$
Conclusion: Here $H<\chi_{\alpha}^{2}$ then we Accept Null hypothesis $H_{0}$
Hence we conclude that the given three methods are equally effective.
3. Use the sign test to see if there is a difference between the number of days until collection of an account receivable before and after a new collection policy. Use the $\mathbf{0 . 0 5}$ significance level.
Before: 302834354042333834452827254136
After : 322933323743404137442733303836

## Solution:

Null Hypothesis: There is no significant difference between the two types of collections.
(i.e) $H_{0}: P=0.5$

Alternate Hypothesis: There is a significant difference between the two types of Collections.
(i.e) $H_{1}: P=0.5$

Level of significance: $\alpha=0.05$
The test statistics:
Find $d_{i}=x_{i}-y_{i}$

$$
=--+++\cdots-+++\cdots+0
$$

By omitting zero differences, we get $\mathrm{n}=14$
No. of + signs $=6$
No. of - signs $=8$

$$
\mathrm{p}=0.43 \quad \mathrm{q}=0.57
$$

$\mathrm{np}=6$ and $\mathrm{nq}=8$ is greater than 5
$\therefore$ we use normal distribution
The standard error of the proportion $\sigma_{p}=\sqrt{\frac{p q}{n}}$

$$
\begin{aligned}
& =\sqrt{\frac{(0.57)(0.47)}{14}} \\
& =0.132
\end{aligned}
$$

$\alpha=0.05 \quad \therefore Z_{\alpha}=1.96$
The confidence interval ( $P-\sigma_{p} Z_{\alpha}, P+\sigma_{p} Z_{\alpha}$ )

$$
\begin{aligned}
& \text { i.e }(0.5-(0.132)(1.96), 0.5+(0.132)(1.96)) \\
& \text { i.e }(0.5-0.26,0.5+0.26) \\
& \text { i.e }(0.241,0.76)
\end{aligned}
$$

## Conclusion:

Here the sample proportion $\mathrm{p}=0.57$ lies within these two limits, so we Accept our Null hypothesis $H_{0}$.
Hence there is no significant difference between the two types of collections.
4. Write the merits and demerits of non parametric tests.

## Merits and demerits of non parametric tests:

## Merits:

1. They do not require us to make the assumption that a population is distributed in the shape of a normal curve or another specific shape.
2. Generally they are easier to do and to understand
3. Sometimes even formal ordering or ranking is not required.

## Demerits:

1. They ignore a certain amount of information
2. They are often not us efficient or sharp as parametric tests
3. The non-parametric tests cannot be used to estimate parameters in the populations (or) the confidence intervals for such parameters
It is not possible to solve certain statistical problems by using non parametric tests. A good is the type of problem dealt in the analysis of variance.
4. Two methods of instruction to apprentices are to be evaluated. A director assigns 15 randomly selected trainees to each of the two methods. Due to drop outs, 14 complete in batch 1 and 12 complete in batch 2. An achievement test was given to these successful candidates. Their scores are as follows.
Method 1: 7090826486778479828973818366
Method 2: 867890826587808895857694
Test whether the two methods have significant difference in effectiveness. Use Mann-Whitney test at 5\% significance level.

## Solution:

Null Hypothesis: There is no significant difference between the two methods

$$
\text { (i.e) } H_{0}: \mu_{1}=\mu_{2}
$$

Alternate Hypothesis: There is a significant difference between the two methods
(i.e) $H_{0}: \mu_{1} \neq \mu_{2}$

Level of significance: $\alpha=5 \%$
The test statistics:

$$
Z=\frac{U-\mu}{\sigma} \quad \text { or } \quad z=\frac{U-E(U)}{\sqrt{\operatorname{var}(U)}}
$$

## Analysis:

| Method I | Rank $R_{1}$ | Method II | Rank $R_{1}$ |
| :--- | :--- | :--- | :--- |
| 70 | 4 | 86 | 18.5 |
| 90 | 23.5 | 78 | 8 |
| 82 | 13 | 90 | 23.5 |
| 64 | 1 | 82 | 13 |
| 86 | 18.5 | 65 | 2 |
| 77 | 7 | 87 | 20 |
| 84 | 16 | 80 | 10 |
| 79 | 9 | 88 | 21 |
| 82 | 13 | 95 | 26 |
| 89 | 22 | 85 | 17 |
| 73 | 5 | 76 | 6 |
| 81 | 11 | 94 | 25 |
| 83 | 15 |  |  |
| 66 | 3 |  |  |
| Total | 161 |  | 190 |

Here,
$n_{1}=14$ (no. of values in sample I)
$n_{2}=12$ (no. of values in sample II)
$R_{1}=161$ (Sum of the Ranks of the first sample.)
$R_{2}=190$ (Sum of the Ranks of the second sample.)
$U=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}$
$=(14)(12)+\frac{14(14+1)}{2}-161$
$=112$
$\mu=\frac{n_{1} n_{2}}{2}$
$\mu=\frac{(14)(12)}{2}=\frac{(14)(12)}{2}=84$
$\sigma=\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}$
$\sigma=\sqrt{\frac{(14)(12)(14+12+1)}{12}}=19.44$
Now,

$$
Z=\frac{U-\mu}{\sigma}=\frac{112-84}{19.44}=1.44
$$

$$
\alpha=5 \% \quad \therefore Z_{\alpha}=1.96
$$

## Conclusion :

Since $|Z|<Z_{\alpha}$, we Accept Null Hypothesis $H_{0}$
Hence, there is no significant difference between the two methods.
6. Kevin Morgan, national sales manager of an electronics firm, has collected the following salary statistics on his field sales force earnings. He has both observed frequencies and expected frequencies if the distribution of salaries is normal. At the $\mathbf{0 . 0 5}$ level of significance, can Kevin conclude that the distribution of sales force earnings is normal?

| Earnings in thousands | $25-30$ | $\mathbf{3 1 - 3 6}$ | $\mathbf{3 7 - 4 2}$ | $\mathbf{4 3 - 4 8}$ | $\mathbf{4 9 - 5 4}$ | $\mathbf{5 5 - 6 0}$ | $\mathbf{6 1 - 6 6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Observed frequency | 9 | $\mathbf{2 2}$ | $\mathbf{2 5}$ | $\mathbf{3 0}$ | $\mathbf{2 1}$ | $\mathbf{1 2}$ | $\mathbf{6}$ |
| Expected frequency | 6 | $\mathbf{1 7}$ | $\mathbf{3 2}$ | $\mathbf{3 5}$ | $\mathbf{1 8}$ | $\mathbf{1 3}$ | $\mathbf{4}$ |

## Solution:

## Null Hypothesis:

$$
H_{0} \text { : The distribution of salesforce earnings a normal. }
$$

## Alternate hypothesis:

$H_{1}$ : The distribution of salesforce earnings is not normal.
Level of significance: $\alpha=0.05$

## The Test statistic:

$$
D_{n}=\max \left|F_{e}-F_{o}\right| \text { with } n \text { degrees of freedom }
$$

Where $F_{e}=$ Expected relative frequency

$$
F_{o}=\text { Observed relative frequency }
$$

Analysis:

| Observed <br> frequency | Observed <br> cumulative <br> frequency | Observed <br> relative <br> frequency | Expected <br> frequency | Expected <br> cumulative <br> frequency | Expected <br> relative <br> frequency | $D=\left\|F_{e}-F_{o}\right\|$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 9 | 0.072 | 6 | 6 | 0.048 | 0.024 |
| 22 | 31 | 0.248 | 17 | 23 | 0.184 | 0.064 |
| 25 | 56 | 0.448 | 32 | 55 | 0.440 | 0.008 |
| 30 | 86 | 0.688 | 35 | 90 | 0.720 | 0.032 |
| 21 | 107 | 0.856 | 18 | 108 | 0.864 | 0.008 |
| 12 | 119 | 0.952 | 13 | 121 | 0.968 | 0.076 |
| 6 | 125 | 1 | 4 | 125 | 1 | 0 |

$\alpha=0.05$ degrees freedom $=\mathrm{n}=7$
The table value of $D_{n}=0.486$
$D_{n}=\max \left|F_{e}-F_{o}\right|=0.064$

## Conclusion:

Since the calculated value of $D_{n}<$ table value of $D_{n}$
We Accept our Null Hypothesis $H_{0}$. Hence, the distribution of sales force earnings a normal
7. The following contingency table presents the reactions of legislators to a tax plan according to party affiliation. Test whether party affiliation influences the reaction to the tax plan at 0.01 level of signification.

| Reaction |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Party | Infavour | Neutral | Opposed | Total |
| Party A | $\mathbf{1 2 0}$ | $\mathbf{2 0}$ | 20 | $\mathbf{1 6 0}$ |
| Party B | $\mathbf{5 0}$ | $\mathbf{3 0}$ | $\mathbf{6 0}$ | $\mathbf{1 4 0}$ |
| Party C | $\mathbf{5 0}$ | $\mathbf{1 0}$ | $\mathbf{4 0}$ | $\mathbf{1 0 0}$ |
| Total | $\mathbf{2 2 0}$ | $\mathbf{6 0}$ | $\mathbf{1 2 0}$ | $\mathbf{4 0 0}$ |

## Solution:

Given
Null hypothesis $H_{0}$ : Party affiliation and tax plan are independent.
Alternate hypothesis $H_{1}$ : Party affiliation and tax plan are not independent.
Level of significance: $\alpha=0.05$
The test statistics: $\chi^{2}=\sum_{i=1}^{r} \sum_{i=1}^{s} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Analysis:

| Reaction |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Party | Infavour | Neutral | Opposed | Total |
| Party A | 120 | 20 | 20 | 160 |
| Party B | 50 | 30 | 60 | 140 |
| Party C | 50 | 10 | 40 | 100 |
| Total | 220 | 60 | 120 | 400 |
| $\mathrm{E}(120)=\frac{160 \times 220}{400}=88$ |  |  |  |  |
| $\mathrm{E}(20)=\frac{160 \times 60}{400}=24$ |  |  |  |  |
| $\mathrm{E}(20)=\frac{160 \times 120}{400}=48$ |  |  |  |  |
| $\mathrm{E}(50)=\frac{140 \times 220}{400}=77$ |  |  |  |  |
| $\mathrm{E}(30)=\frac{140 \times 60}{400}=21$ |  |  |  |  |
| $\mathrm{E}(60)=\frac{140 \times 120}{400}=42$ |  |  |  |  |
| $\mathrm{E}(50)=\frac{100 \times 220}{400}=55$ |  |  |  |  |
| $\mathrm{E}(10)=\frac{100 \times 60}{400}=15$ |  |  |  |  |


| $\mathrm{E}(40)=\frac{120 \times 100}{400}=30$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $O_{i j}$ | $E_{i j}$ | $O_{i j}-E_{i j}$ | $\left(O_{i j}-E_{i j}\right)^{2}$ | $\frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$ |
| 120 | 88 | 32 | 1024 | 11.64 |
| 20 | 24 | -4 | 16 | 0.67 |
| 20 | 48 | -28 | 784 | 16.33 |
| 50 | 77 | -27 | 729 | 9.47 |
| 30 | 21 | 9 | 81 | 3.86 |
| 60 | 42 | 18 | 324 | 7.71 |
| 50 | 55 | -5 | 25 | 0.45 |
| 10 | 15 | -5 | 25 | 1.67 |
| 40 | 30 | 10 | 100 | 3.33 |

$\therefore \chi^{2}=55.13$
$\alpha=0.05$ Degrees of freedom $=(r-1)(s-1)=(3-1)(3-1)=4$
$\therefore \chi_{\alpha}^{2}=13.28$

## Conclusion:

Since $\chi^{2}>\chi_{\alpha}^{2}$, we Reject our Null Hypothesis $H_{0}$ Hence, the Party Affiliation and tax plan are dependent.
8. A technician is asked to analyze the results of 22 items made in preparation run. Each item has been measured and compared to engineering specifications. The order of acceptance ' $a$ ' and rejections of ' $\mathbf{r}$ ' is aarrrarraa aaarrarraa ra
Determine whether it is a random sample or not. Use $\alpha=0.05$.

## Solution:

Null Hypothesis $H_{0}$ : The Observations are randomly generated.
Alternate hypothesis $H_{1}$ : The Observations are not randomly generated (two tailed)
Level of significance: $\alpha=0.05$
The Test statistic:

$$
Z=\frac{R-\mu}{\sigma} \quad \text { Where } E(R)=\mu=\frac{2 n_{1} n_{2}}{n_{1}+n_{2}}+1 \quad \sigma=\sqrt{\frac{2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)}{\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)}}
$$

Analysis:
$\frac{a a}{1} \frac{r r r}{2} \frac{a}{3} \frac{r r}{4} \frac{a a a a a}{5} \frac{r r}{6} \frac{a}{7} \frac{r r}{8} \frac{a a}{9} \frac{r}{10} \frac{a}{11}$
$\mathrm{R}=$ No. of Runs $=11$
$n_{1}=12$ (no. of items in the first sample)
$n_{2}=10$ (no. of items in the second sample)
$E(R)=\mu=\frac{2(12)(10)}{12+10}+1=11.909$
$\sigma=\sqrt{\frac{2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)}{\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)}}=\sqrt{\frac{2(12)(10)(2(12)(10)-12-10)}{(12+10)^{2}(12+10-1)}}=2.2688$
$Z=\frac{R-\mu}{\sigma}=\frac{11-11.909}{2.2688}=-0.4007|Z|=0.4007$
$\alpha=0.05 \Rightarrow Z_{\alpha}=1.96$

## Conclusion:

Since $|Z|<Z_{\alpha}$, we Accept our Null hypothesis $H_{0}$
Hence, The sample is randomly chosen.
9. From a poll of 800 television viewers, the following data have been accumulated as to, their levels of education and their preference of television stations. We are interested in determining if the selection of a TV station is independent of the level of education

| Educational Level |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Public | High School | Bachelor | Graduate | Total |
| Broadcasting | $\mathbf{5 0}$ | $\mathbf{1 5 0}$ | $\mathbf{8 0}$ | $\mathbf{2 8 0}$ |
| Commercial Stations | $\mathbf{1 5 0}$ | $\mathbf{2 5 0}$ | $\mathbf{1 2 0}$ | $\mathbf{5 2 0}$ |
| Total | $\mathbf{2 0 0}$ | $\mathbf{4 0 0}$ | $\mathbf{2 0 0}$ | $\mathbf{8 0 0}$ |

(i) State the null and alternative hypotheses.
(ii) Show the contingency table of the expected frequencies.
(iii) Compute the test statistic.
(iv) The null hypothesis is to be tested at $\mathbf{9 5 \%}$ confidence. Determine the critical value for this test.
(AU JAN 2014)

## Solution:

(i)Null Hypothesis: Selection of TV station is independent of level of education

Alternative Hypothesis: Selection of TV station is not independent of level of education
(ii)

| Educational Level |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Public | High School | Bachelor | Graduate | Total |
| Broadcasting <br> Commercial Stations | 70 | 140 | 70 | 280 |
|  | 130 | 260 | 130 | 520 |
| Total | 200 | 400 | 200 | 800 |

(iii) Test statistic $=12.088$
(iv) Critical Chi-Square $=5.991$, reject Null Hypothesis.
10. The manager of a company believes that differences in sales performance depend upon the salesperson's age. Independent samples of salespeople were taken and their weekly sales record is reported below.

| Below 30 years <br> No. of Sales | Between 30 and 45 years <br> No. of Sales | Over 45 years <br> No. of Sales |
| :--- | :--- | :--- |
| $\mathbf{2 4}$ | $\mathbf{2 3}$ | $\mathbf{3 0}$ |
| $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{2 0}$ |
| $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ |
| $\mathbf{1 5}$ | $\mathbf{2 5}$ | $\mathbf{2 5}$ |
| 19 | $\mathbf{1 8}$ | $\mathbf{3 4}$ |
| 26 | 29 | $\mathbf{3 6}$ |
|  | 27 | $\mathbf{2 8}$ |

(i) State the null and alternative hypotheses.
(ii) At 95\% confidence, test the hypotheses using Kruskal Wallis Test. (AU JAN 2014)

## Solution:

(i) Null Hypothesis: All three populations are identical.

Alternative Hypothesis: Not all populations are identical.
(ii) $\mathrm{W}=6.78$, Critical $\chi^{2}=5.991$, at 0.05 level of significance with 2 degrees of freedom.

Hence Reject Null Hypothesis.

## UNIT 5 CORRELATION \& REGRESSION

## PART B

1. Calculate the coefficient of correlation and obtain the lines of regression for the following:

| $X$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $Y$ | 9 | 8 | 10 | 12 | 11 | 13 | 14 | 16 | 15 |

Obtain an estimate of $Y$ which should correspond to the value of $X=6.2$

## Solution:

| $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{X}^{\mathbf{2}}$ | $\mathbf{Y}^{\mathbf{2}}$ | $\mathbf{X Y}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 9 | 1 | 81 | 9 |
| 2 | 8 | 4 | 64 | 16 |
| 3 | 10 | 9 | 100 | 30 |
| 4 | 12 | 16 | 144 | 48 |
| 5 | 11 | 25 | 121 | 55 |
| 6 | 13 | 36 | 169 | 78 |
| 7 | 14 | 49 | 196 | 98 |
| 8 | 16 | 64 | 256 | 128 |
| 9 | 15 | 81 | 225 | 135 |
| $\mathbf{4 5}$ | $\mathbf{1 0 8}$ | $\mathbf{2 8 5}$ | $\mathbf{1 3 5 6}$ | $\mathbf{5 9 7}$ |

Since $\bar{x}=\frac{\sum x}{n}=\frac{45}{9}=5 \quad$ and $\quad \bar{y}=\frac{\sum y}{n}=\frac{108}{9}=12$
$r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}} \sqrt{n \sum y^{2}-\left(\sum y\right)^{2}}}=0.95$
$b_{x y}=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{n \sum y^{2}-\left(\sum y\right)^{2}}=0.95$ and $b_{y x}=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}}=0.95$
Re gression line $y$ on $x$ is $y-\bar{y}=b_{y x}(x-\bar{x}) \Rightarrow y=0.95 x+7.25$
Re gression line $x$ on $y$ is $x-\bar{x}=b_{x y}(y-\bar{y}) \Rightarrow x=0.95 y-6.4$

The value of correspond ing to $x=6.2$ is $y=0.95 \times 6.2+7.25=13.14$

## 2. Explain the basic components of Time series analysis.

## Solution:

The Components of a time series are

1. Secular Trend
2. Seasonal Variations
3. Cyclical Variations
4. Irregular Variations

## 1. Secular Trend

Trend, also called secular or long term trend, is the basic tendency of a series to grow or decline over a period of time. The concept of trend does not include short range oscillations, but rather the steady movement over a long time. If the values of the time series plotted on a graph paper, cluster around a straight line, the trend is said to be a linear trend. Then the rate of growth in nearly constant. If the plotted points do not fall in the pattern of a straight line, the trend is said to be a non-linear trend or curvilinear trend.

## 2. Seasonal Variations

Seasonal variations are variations which occur with some degree of regularity within a specific period of one year or shorter. Seasons could be weekly, monthly, quarterly or half yearly depending on the nature of the phenomenon. Production, consumption and prices of commodities show seasonal variations. These variations are periodic and regular.
Eg. Prices of agricultural commodities go down at the time of harvest.
Seasonal variations may occur due to the following causes.
(1) Climate and Weather conditions.
(2) Customs, traditions and habits

A study of seasonal variations is helpful in scheduling purchases, inventory control, personnel recruitment, advertising et. A consumer can gain by purchasing things during slack season.

## 3. Cyclical Variations

Cyclical variations in a time series are the recurrent variations whose duration is more than one year. A business cycle has four phases - boom, recession, depression and recovery. These phases are uniform but their time duration may vary from cycle to cycle. In spite of the importance of measuring cyclical variations, they are very difficult to measure due to the following reasons.
(i) Business cycles do not show regular periodicity
(ii) The cyclical variations are associated with erratic, random or irregular faces.

## 4. Irregular Variations

Irregular variations refers to those variations in business or other activities, which do not repeat in a definite pattern. They are caused by random factors like floods, earth quakes, famines, wars, strikes, lockout etc. Sudden changes in demand or very rapid technological progress may also be responsible for these variations. No advance preparation can be done to meet the consequences of irregular variations and their effects are unpredictable and irregular.
3. Given below are the figures of production (in thousand quintals) of a sugar factory.

| Year | 1974 | $\mathbf{1 9 7 5}$ | $\mathbf{1 9 7 6}$ | $\mathbf{1 9 7 7}$ | $\mathbf{1 9 7 8}$ | $\mathbf{1 9 7 9}$ | $\mathbf{1 9 8 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Production | $\mathbf{7 7}$ | $\mathbf{8 8}$ | $\mathbf{9 4}$ | $\mathbf{8 5}$ | $\mathbf{9 1}$ | $\mathbf{9 8}$ | $\mathbf{9 0}$ |

Fit a straight line by the least squares method and tabulate the trend values.

## Solution.

| Year | Production <br> $(\mathbf{y})$ | $\mathbf{X}$ | $\mathbf{X}^{\mathbf{2}}$ | $\mathbf{X Y}$ | Trend <br> Values |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1974 | 77 | -3 | 9 | -231 | 83 |
| 1975 | 88 | -2 | 4 | -176 | 85 |
| 1976 | 94 | -1 | 1 | -94 | 87 |
| 1977 | 85 | 0 | 0 | 0 | 89 |
| 1978 | 91 | 1 | 1 | 91 | 91 |
| 1979 | 98 | 2 | 4 | 196 | 93 |
| 1980 | 90 | 3 | 9 | 270 | 95 |
| Total | $\mathbf{6 2 3}$ | $\mathbf{0}$ | $\mathbf{2 8}$ | $\mathbf{5 6}$ |  |

The straight line trend equation is $\mathrm{Y}=\mathrm{a}+\mathrm{bx}$
Normal equations are

$$
\begin{aligned}
& \sum y=n a+b \sum x \\
& \sum x y=a \sum x+b \sum x^{2},
\end{aligned} \quad \begin{aligned}
& a=\frac{\sum y}{n}=\frac{623}{7}=89 \\
& b=\frac{\sum x y}{\sum x^{2}}=\frac{56}{28}=2
\end{aligned}
$$

Therefore the Trend equation is $\mathrm{Y}=89+2 \mathrm{x}$
4. Find the two regression lines using the data below: (AU NOV/DEC 2013)

| $\mathbf{X}$ | $\mathbf{7}$ | $\mathbf{4}$ | $\mathbf{8}$ | $\mathbf{6}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{Y}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{9}$ | $\mathbf{8}$ | $\mathbf{2}$ |

## Solution:

$\sum X=30, \sum Y=30, \sum X^{2}=190, \sum Y^{2}=210, \sum X Y=192$
$\bar{X}=6, \bar{Y}=6$
$b_{x y}=\frac{n \sum x y-\sum x \sum y}{n \sum y^{2}-(\Sigma y)^{2}}=0.4$
$b_{y x}=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}=1.2 \quad$ Regression line of y on x is $y-\bar{y}=b_{y x}(x-\bar{x})$
$\mathrm{y}=1.2 \mathrm{x}-1.2$
Regression line of x on y is $x-\bar{x}=b_{x y}(y-\bar{y}), \mathrm{x}=0.4 \mathrm{y}-3.6$
5. The following data on production (in ' 000 units) of a commodity from the year 2006-2012. Fit a straight line trend and forecast for the year 2020

| Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Production | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{5}$ |

(AU NOV/DEC 2013)

## Solution:

Trend line $Y=a+b X$,
Normal equations are $\sum Y=n a+b \sum X$

$$
\sum X Y=a \sum X+b \sum X^{2}
$$

$a=5.71$,
$\mathrm{b}=0.642$
$\mathrm{Y}=5.71+0.642 \mathrm{X}, \mathrm{X}=\mathrm{x}-2009$
When $\mathrm{x}=2020, \mathrm{y}=12.772$

## 6. The monthly water consumption in thousand gallons in a hostel for five years is given below. Calculate the seasonal indices by the method of simple averages

| Year | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1979 | 25 | 23 | 21 | 18 | 15 | 20 | 21 | 25 | 22 | 24 | 32 | 35 |
| 1980 | 27 | 25 | 23 | 20 | 17 | 22 | 23 | 27 | 24 | 26 | 35 | 33 |
| 1981 | 32 | 31 | 30 | 27 | 25 | 27 | 29 | 30 | 30 | 32 | 41 | 38 |
| 1982 | 42 | 40 | 38 | 36 | 34 | 37 | 38 | 40 | 38 | 43 | 52 | 48 |
| 1983 | 57 | 50 | 52 | 46 | 49 | 46 | 49 | 55 | 50 | 59 | 64 | 63 |

Solution:

| Year | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1979 | 25 | 23 | 21 | 18 | 15 | 20 | 21 | 25 | 22 | 24 | 32 | 35 |
| 1980 | 27 | 25 | 23 | 20 | 17 | 22 | 23 | 27 | 24 | 26 | 35 | 33 |
| 1981 | 32 | 31 | 30 | 27 | 25 | 27 | 29 | 30 | 30 | 32 | 41 | 38 |
| 1982 | 42 | 40 | 38 | 36 | 34 | 37 | 38 | 40 | 38 | 43 | 52 | 48 |
| 1983 | 57 | 50 | 52 | 46 | 49 | 46 | 49 | 55 | 50 | 59 | 64 | 63 |
| Total | $\mathbf{1 8 3}$ | $\mathbf{1 6 9}$ | $\mathbf{1 6 4}$ | $\mathbf{1 5 7}$ | $\mathbf{1 4 0}$ | $\mathbf{1 5 2}$ | $\mathbf{1 6 0}$ | $\mathbf{1 7 7}$ | $\mathbf{1 6 4}$ | $\mathbf{1 8 4}$ | $\mathbf{2 2 4}$ | $\mathbf{2 1 7}$ |
| Avg. | $\mathbf{3 6 . 6}$ | $\mathbf{3 3 . 8}$ | $\mathbf{3 2 . 8}$ | $\mathbf{3 1 . 4}$ | $\mathbf{2 8}$ | $\mathbf{3 0 . 4}$ | $\mathbf{3 2}$ | $\mathbf{3 5 . 4}$ | $\mathbf{3 2 . 8}$ | $\mathbf{3 6 . 8}$ | $\mathbf{4 4 . 8}$ | $\mathbf{4 3 . 4}$ |
| Seasonal <br> Index | $\mathbf{1 0 5 . 0 2}$ | $\mathbf{9 6 . 9 9}$ | $\mathbf{9 4 . 1 2}$ | $\mathbf{9 0 . 1 0}$ | $\mathbf{8 0 . 3 4}$ | $\mathbf{8 7 . 2 3}$ | $\mathbf{9 1 . 8 2}$ | $\mathbf{1 0 1 . 5 8}$ | $\mathbf{9 4 . 1 2}$ | $\mathbf{1 0 5 . 6 0}$ | $\mathbf{1 2 8 . 5 5}$ | $\mathbf{1 2 4 . 5 3}$ |

Seasonal Index $=\frac{\text { Monthly Average }}{\text { General Average }} \times 100$
7. The quarterly sales (in thousands of copies) for a specific education software over the past three years are given in the following table.

|  | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 4}$ | $\mathbf{2 0 0 5}$ |
| :--- | :--- | :--- | :--- |
| Quarter 1 | $\mathbf{1 7 0}$ | $\mathbf{1 8 0}$ | $\mathbf{1 9 0}$ |
| Quarter 2 | $\mathbf{1 1 1}$ | $\mathbf{9 6}$ | $\mathbf{1 2 0}$ |
| Quarter 3 | $\mathbf{2 7 0}$ | $\mathbf{2 8 0}$ | $\mathbf{2 9 0}$ |
| Quarter 4 | $\mathbf{2 5 0}$ | $\mathbf{2 2 0}$ | $\mathbf{2 2 3}$ |

(i) Compute the four seasonal factors (Seasonal Indexes). Show all of your computations.
(ii) The trend for these data is Trend $=\mathbf{1 7 4}+\mathbf{4 t}(\mathbf{t}$ represents time, where $t=1$ for Quarter 1 of 2003 And $\mathbf{t = 1 2}$ for Quarter $\mathbf{4}$ of 2005). Forecast sales for the first quarter of 2006 using the trend and seasonal indexes.
Show all of your computations.(AU JAN 2014).

## Solution:

(i)

|  | 2003 | 2004 | 2005 | Quarter <br> Total | Quarter <br> Average | Seasonal <br> Index |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Quarter 1 | 170 | 180 | 190 | 540 | 180 | 0.900 |
| Quarter 2 | 111 | 96 | 120 | 327 | 109 | 0.545 |
| Quarter 3 | 270 | 280 | 290 | 840 | 280 | 1.400 |
| Quarter 4 | 250 | 220 | 223 | 693 | 231 | 1.155 |

Overall average $=200$
(ii) Trend $=174+4 \mathrm{t}=174+4(13)=226$.

Forecast $=$ Trend $($ SI for Quarter 1$)=(226)(0.9)=203.40$.

Jeppiaar Nagar, Rajiv Gandhi Salai - 600119

DEPARTMENT OF MASTER OF BUSINESS ADMINSTRATION

QUESTION BANK

I SEMESTER<br>BA 4101 - STATISTICS FOR MANAGEMENT

Regulation - 2021 (Batch: 2023-2025)
Academic Year 2023-2024

Prepared by

Jeppiaar Nagar, Rajiv Gandhi Salai - 600119

DEPARTMENT OF MASTER OF BUSINESS ADMINSTRATION

QUESTION BANK

I SEMESTER<br>BA 4101 - STATISTICS FOR MANAGEMENT

Regulation - 2021 (Batch: 2023-2025)
Academic Year 2023-2024

Prepared by

|  | UNIT -I : PROBABILITY |
| :---: | :---: |
|  | PART - A |
| 1. | If $A$ and $B$ are independent events then prove that $A$ and $\overline{\mathbf{B}}$ are independent. Since A and B are independent, $\begin{aligned} & P(A \cap B)=P(A) P(B)---(1) \\ & P(A \cap \bar{B})=P(A)-P(A \cap B)=P(A)-P(A) P(B) \quad \text { [using (1)] } \\ &=P(A)[1-P(B)] \\ & P(A \cap \bar{B})=P(A) P(\bar{B}) \quad \therefore A \& \bar{B} \text { are independent events } \end{aligned}$ |
| 2. | Let $A$ and $B$ be two events such that $P(A)=\frac{1}{3}, P(B)=\frac{3}{4}, P(A \cap B)=\frac{1}{4} . \quad$ Compute $P(A / B)$ and $\mathbf{P}(\overline{\mathbf{A}} \cap \mathbf{B})$. $\quad P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3} . \quad P(\bar{A} \cap B)=P(B)-P(A \cap B)=\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$. <br> (May/June 2019) |
| 3. | If $A$ and $B$ are two events such that $P(A \cup B)=\frac{3}{4}, P(A \cap B)=\frac{1}{4}, P(\bar{A})=\frac{2}{3}$, find $P(\bar{A} / B)$. $\begin{gathered} P(A \cup B)=P(A)+P(B)-P(A \cap B) \Rightarrow \frac{3}{4}=\frac{1}{3}+P(B)-\frac{1}{4} \Rightarrow P(B)=\frac{2}{3} \\ P(\bar{A} / B)=\frac{P(\bar{A} \cap B)}{P(B)}=\frac{P(B)-P(A \cap B)}{P(B)}=\frac{\frac{2}{3}-\frac{1}{4}}{\frac{2}{3}}=\frac{5}{8} \end{gathered}$ |
| 4. | $\begin{aligned} & \text { If } P(A)=\frac{5}{13}, \quad P(B)=\frac{3}{7}, \quad P(A \cap B)=\frac{12}{91} \text { find } \boldsymbol{P}(\boldsymbol{A} \cup \boldsymbol{B}) . \\ & P(A \cup B)=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=5 / 13+3 / 7-12 / 91=62 / 91 \\ & \hline \end{aligned}$ |
| 5. | State Baye's Theorem on Probability. <br> (AU NOV/DEC 2013, APR/MAY 2018) <br> If $E_{1}, E_{2} \ldots E_{n}$ are a set of exhaustive and mutually exclusive events associated with a random experiment and A is any other event associated with $\mathrm{E}_{\mathrm{i}}$. Then $P\left(E_{i} / A\right)=\frac{P\left(E_{i}\right) P\left(A / E_{i}\right)}{\sum_{i=1}^{n} P\left(E_{i}\right) P\left(A / E_{i}\right)}, \mathrm{i}=1,2, . . \mathrm{n}$ |
| 6. | What are mutually exclusive and independent events? <br> (AU JAN 2015) <br> Two events are said to be mutually exclusive if the occurance of any one of them excludes the occurance of other in a single experiment. Example: Tossing of Coin. <br> Two (or) more events are independent if the occurance of one does not affect the occurance of the other. Example: If coin is tossed twice; result of second throw is not affected by the result of first throw. |
| 7. | Define Random variable. <br> A random variable is a function that assigns a real number $\mathrm{X}(\mathrm{S})$ to every element S in the sample space corresponding to a random experiment E . <br> i.e., X: S $\rightarrow$ R, S-Sample Space and R-Real Numbers |
| 8. | Explain discrete and continuous variable with examples. <br> (AU NOV/DEC 2013) <br> A random variable X is said to be discrete, if it takes finite or countable number of values. <br> Example: $\mathrm{X}=1,2,3,4,5$ <br> A random variable X is said to be continuous, if it takes uncountable number of values. Example: X is defined in any interval. |

## 9. $\quad$ Let $\mathbf{X}$ be a discrete R.V. with probability mass function

$\mathbf{P}(\mathbf{X}=\mathbf{x})=\left\{\begin{array}{lc}\frac{\mathbf{x}}{10}, & \mathbf{x}=1,2,3,4 \\ 0, & \text { otherwise }\end{array}\right.$. Compute $\mathbf{P}(\mathbf{X}<3)$ and $\mathbf{E}\left(\frac{\mathbf{X}}{2}\right)$.
(May/June 2016)

| $X=x$ | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| $P(X=x)$ | $1 / 10$ | $2 / 10$ | $3 / 10$ | $4 / 10$ |

$P(X<3)=P(X=1)+P(X=2)=\frac{1}{10}+\frac{2}{10}=\frac{3}{10}$
$E\left(\frac{X}{2}\right)=\frac{1}{2} E(X)=\frac{1}{2} \sum_{x=1}^{4} x P(X=x)=\frac{1}{2}\left\{1 \times \frac{1}{10}+2 \times \frac{2}{10}+3 \times \frac{3}{10}+4 \times \frac{4}{10}\right\}$

$$
=\frac{1}{2}\left\{\frac{1+4+9+16}{10}\right\}=\frac{1}{2} \times \frac{30}{10}=\frac{3}{2} .
$$

10 The CDF of a continuous random variable is given by $F(x)= \begin{cases}0, & x<0 \\ 1-e^{-\frac{x}{5}}, & x \geq 0\end{cases}$
Find the PDF of $X$ and mean of $X$.
$\mathrm{PDF}=f(x)=\frac{d}{d x}[F(x)]= \begin{cases}0, & x<0 \\ \frac{1}{5} e^{-\frac{x}{5}}, & x \geq 0\end{cases}$
$E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} \frac{1}{5} x e^{-\frac{x}{5}} d x=\frac{1}{5}\left[(x)\left(\frac{e^{-\frac{x}{5}}}{-\frac{1}{5}}\right)-(1)\left(\frac{e^{-\frac{x}{5}}}{\frac{1}{25}}\right)\right]_{0}^{\infty}=\frac{25}{5}=5$
11. The mean of a Binomial distribution is 20 and standard deviation is 4. Find the parameters of the distribution.
$\therefore \mathrm{np}=20$ and $\sqrt{\mathrm{npq}}=4 \Rightarrow \mathrm{npq}=16 \Rightarrow(20) \mathrm{q}=16 \Rightarrow \mathrm{q}=\frac{4}{5} \mathrm{p}=1-\mathrm{q}=1-\frac{4}{5}=\frac{1}{5} . \Rightarrow \mathrm{np}=20 \Rightarrow \mathrm{n}=100$
$\therefore \quad 100$ and $\frac{1}{5}$ are the parameters.
12. A random variable $X$ has the following probability distribution

| $X$ | $:$ | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P X$ | $:$ | 0.1 | $K$ | 0.2 | $2 K$ | 0.3 | $3 K$ |

Find $K$
Since $\sum P(X)=1$
$0.1+K+0.2+2 K+0.3+3 K=1$
$6 K+0.6=1 \Rightarrow 6 K=0.4 \Rightarrow K=\frac{0.4}{6}=\frac{1}{15}$
13. Find the probability of getting a total of 5 at least once in three tosses of pair of fair dice .

$$
\mathrm{p}=\frac{4}{36}=\frac{1}{9}, \mathrm{q}=\frac{2}{9}, \mathrm{n}=3
$$

let $\mathrm{X}=$ number of times getting total $5, X \sim B(n, p)$

$$
\Rightarrow P(X=x)=n C_{x} p^{x} q^{n-x}
$$

$$
P(X \geq 1)=1-P(X<1)=1-P(X=0)=1-3 C_{0}\left(\frac{1}{9}\right)^{0}\left(\frac{2}{9}\right)^{3-0}=1-\frac{2^{3}}{9^{3}}=0.99
$$

14. One percent of jobs arriving at a computer system need to wait until weekends for scheduling, owing to core-size limitations. Find the probability that among a sample of $\mathbf{2 0 0}$ jobs there are no jobs that have to wait until weekends.
$\mathrm{p}=0.01, \mathrm{n}=200, \lambda=\mathrm{np}=2, \quad \mathrm{X}$ is the no. of jobs that have to wait
$P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}=\frac{e^{-2}(2)^{x}}{x!} \Rightarrow P(X=0)=\frac{e^{-2}(2)^{0}}{0!}=e^{-2}=0.1353$.
15. The number of monthly breakdown of a computer is having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month with only one breakdown.
(AU MAY/JUNE 2019)
Mean $=\lambda=n p=1.8, \mathrm{X}=$ No. of breakdowns per month.
$\mathrm{P}(\mathrm{X}=\mathrm{x})=\frac{\mathrm{e}^{-\lambda} \lambda^{\mathrm{x}}}{\mathrm{x}!}=\frac{\mathrm{e}^{-1.8}(1.8)^{\mathrm{x}}}{\mathrm{x}!} \Rightarrow \mathrm{P}(\mathrm{X}=1)=\frac{\mathrm{e}^{-1.8}(1.8)^{1}}{1!}=0.2975$.
16. If $X$ is a Uniformly distributed random variable with mean 1 and variance $\frac{4}{3}$, find $\mathbf{P}(\mathbf{X}<\mathbf{0})$.

Mean $=\frac{\mathrm{a}+\mathrm{b}}{2}=1 \Rightarrow \mathrm{a}+\mathrm{b}=2$ and variance $=\frac{(\mathrm{b}-\mathrm{a})^{2}}{12}=\frac{4}{3} \Rightarrow \mathrm{~b}-\mathrm{a}=4$
By solving the above eqns. We get $\mathrm{a}=-1$ and $\mathrm{b}=3$

$$
\begin{gathered}
f(x)=\frac{1}{b-a} \text { in } a<x<b \\
f(x)=\frac{1}{4} \text { in }-1<x<3 \Rightarrow P(X<0)=\int_{-1}^{0} f(x) d x=\int_{-1}^{0} \frac{1}{4} d x=\frac{1}{4}[x]_{-1}^{0}=\frac{1}{4}
\end{gathered}
$$



$$
f(x)=\frac{1}{b-a} \text { in } a<x<b=\frac{1}{6} \text { in }-3<x<3
$$

$\mathrm{P}(|\mathrm{X}-2|<2)=\mathrm{P}(-2<\mathrm{X}-2<2)=\mathrm{P}(0<\mathrm{X}<4)=\int_{0}^{3} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{0}^{3} \frac{1}{6} \mathrm{dx}=\frac{1}{6}[\mathrm{x}]_{0}^{3}=\frac{1}{2}$.
18. Define Normal distribution.

A random variable $X$ is said to have a Normal distribution with parameters $\mu$ (mean) and $\sigma^{2}$ (variance) if its probability density function is given by the probability law
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}},-\infty<x<\infty,-\infty<\mu<\infty, \sigma>0$
19. State Poisson distribution as limiting form of binomial distribution.

Poisson distribution is a limiting case of Binomial distribution under the following conditions:
(i). $n$ the number of trials is indefinitely large, (i.e.) $n \rightarrow \infty$
(ii). P the constant probability of success in each trial is very small (i.e.) $\mathrm{P} \rightarrow 0$
(iii). $n p=\lambda$ is finite.
20. $X$ is a normal variate with mean $=\mathbf{3 0}$ and $S . D=5$. Find $P[26 \leq X \leq 40]$

X follows $\mathrm{N}(30,5) \therefore \mu=30 \& \sigma=5$
Let $Z=\frac{X-\mu}{\sigma}$ be the standard normal variate

|  | $\begin{aligned} P[26 \leq X \leq 40] & =P\left[\frac{26-30}{5} \leq Z \leq \frac{40-30}{5}\right]=P[-0.8 \leq Z \leq 2] \\ & =P[-0.8 \leq Z \leq 0]+P[0 \leq Z \leq 2] \\ & =P[0 \leq Z \leq 0.8]+[0 \leq Z \leq 2]=0.2881+0.4772=0.7653 . \end{aligned}$ |
| :---: | :---: |
|  | PART B |
| 1a. | A bag contains 3 black and 4 white balls. Two balls are drawn at random one at a time without replacement. (1) What is the probability that the second ball drawn is white? <br> (2) What is the conditional probability that the first ball drawn is white if the second ball is known to be white? <br> (May/June 2019) |
| 1b. | An industrial unit has 3 machines - 1, 2 and 3, which produce the same item. It is known that machines 1 and 2 each produce $30 \%$ of the total output, while machine 3 produces $40 \%$ of the remaining output. It is also known that $2 \%$ of machine 1 output is defective, while machines 2 and 3 , each produce $\mathbf{3 \%}$ defective items. All the items are put into one stockpile and then one item is chosen at random. Find the probability that defective item is produced by machine 1 <br> (AU JAN 2016) |
| 1c. | The first bag contains 3 white balls, 2 red balls and 4 black balls. Second bag contains 2 white, 3 red and 5 black balls and third bag contains 3 white, 4 red and 2 black balls. One bag is chosen at random and from it 3 balls are drawn. Out of three balls two balls are white and one is red. What are the probabilities that they were taken from first bag, second bag, third bag. |
| 2a. | A consulting firm rents cars from three rental agencies in the following manner: $\mathbf{2 0 \%}$ from agency $D, \mathbf{2 0 \%}$ from agency E and $\mathbf{6 0 \%}$ from agency $F$. If $\mathbf{1 0 \%}$ cars from $\mathrm{D}, \mathbf{1 2 \%}$ of the cars from E and $4 \%$ of the cars from $F$ have bad tyres, what is the probability that the firm will get a car with bad tyres? Find the probability that a car with bad tyres is rented from agency $F$. |
| 2b. | A random variable $X$ has the following probability function: $\begin{array}{cccccccccc} \mathbf{X} & : & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathbf{P} \mathbf{X} & : & 0 & K & 2 K & 2 K & 3 K & K^{2} & 2 K^{2} & 7 K^{2}+K \end{array}$ <br> Find (i) $K$, (ii) Evaluate $P(X<6), P(X \geq 6)$ and $P(0<X<5)$ (iii) Determine the distribution function of $X$. (iv) $P(1.5<X<4.5 / X>2)(v) E(3 X-4), \operatorname{Var}(3 X-4)$ <br> (vi) If $\mathbf{P}[\mathrm{X} \leq \mathbf{C}]>\frac{1}{2}$, find the minimum value of $C$. <br> (April/May 2015) |
| 3 a . | A random variable $X$ has the probability mass function $f(x)=\frac{1}{2^{x}}, \mathrm{x}=1,2,3, \ldots$ Find its (i) M.G.F (ii) Mean (iii) Variance. |
| 3b. | If the density function of a continuous random variable $X$ is given by $f(x)= \begin{cases}a x, & 0 \leq x \leq 1 \\ a, & 1 \leq x \leq 2 \\ 3 a-a x, & 2 \leq x \leq 3 \\ 0, & \text { elsewhere }\end{cases}$ <br> Find the value of a and find the c.d.f of $X, P(X \leq 1.5)$. |
| 4a. | In the production of electric bulbs, the quality specification of their life was found to normally distributed with average life of $\mathbf{2 1 0 0}$ hours and standard deviation of $\mathbf{8 0}$ hours. In a sample of $\mathbf{1 5 0 0}$ bulbs, find out the expected number of bulbs likely to burn for <br> (i) more than 2200 hours, <br> (ii) less than 1950 hours, <br> (iii) more than 2000 hours but less than 2150 hours . <br> (AU MAY/JUNE 2019) (APR /MAY 2018) |


| 4b. | Trains arrive at a station at 15 minutes interval starting at $4 \mathrm{a} . \mathrm{m}$. If a passenger arrive at a station at a time that is uniformly distributed between 9.00 a.m. and 9.30 a.m., find the probability that he has to wait for the train for (i) less than $\mathbf{6}$ minutes (ii) more than 10 minutes. |
| :---: | :---: |
| 5a. | In a normal population with mean 15 and standard deviation 3.5, it is found that 647 observations exceed 16.25. What is the total number of observations in the population? |
| 5b. | Derive MGF, Mean and Variance of Binomial and Poison Distribution. |
|  | UNIT -II : SAMPLING DISTRIBUTION AND ESTIMATION |
|  | PART - A |
| 1. | Define Population. <br> (AU JAN 2016) <br> The group of individuals under study is called population. The population may be finite or infinite. <br> (AU) |
| 2. | Define Sample and Sample Size. <br> (AU JAN 2018) <br> A finite subset of statistical individuals in a population is called Sample. The number of individuals in a sample is called Sample Size (n). |
| 3. | Define Parameter and Statistic. (AU JAN 2016) <br> A numerical measure of a population is called a population parameter or simply a parameter. A numerical measure of the sample is called a sample statistic or simply a statistic. |
| 4. | Define Sampling distribution. <br> The sampling distribution of a statistic is the probability distribution of all possible values the statistic may take, when computed from random samples of same size, drawn from a specified population. Like any other distribution, a sampling distribution will have its mean, standard deviation and moments of higher order. |
| 5. | Distinguish between estimate and estimator. <br> An estimator of a population parameter is a sample statistic used to estimate the parameter. An estimate of the parameter is a particular numerical value of the estimator obtained by sampling. |
| 6. | What is Standard Error and mention its uses? <br> (AU MAY/JUNE 2019) <br> The standard deviation of the sampling distribution of a statistic is known as its standard error. <br> The magnitude of the standard error gives an index of the reliability of the estimate of the parameter. The greater the standard error of the estimate, lesser will be the reliability of the sample.Standard error is useful for determining the probable limits or confidence limits for an unknown parameter with a specified confidence co-efficient. Standard error is also used for testing of hypothesis. |
| 7. | Define Type I error and Type II error. <br> (AU MAY/JUNE 2019) <br> Type I error: If we reject a hypothesis when it should be accepted, we say that type I error. <br> Type II error: If we accept a hypothesis when it should be rejected, we say that a type II error. |
| 8. | Define Critical region. <br> A region corresponding to a test statistic in the sample space which tends to rejection of $\mathrm{H}_{0}$ (Null Hypothesis) is called critical region or region of rejection. <br> The region complementary to the critical region is called the region of acceptance. |
| 9. | Define level of significance. <br> The probability ' $\alpha$ ' (the probability of making type I error) that a random value of the test statistic belongs to the critical region is known as the level of significance. In other words, level of significance is the size of the type I error. <br> The levels of significance usually employed in testing of hypothesis are $5 \%$ and $1 \%$. |
| 10. | Define Critical values or significant values. <br> The value of test statistic, which divides the critical (or rejection) region and acceptance region, is called the critical value or significant value. It depends on the level of significance used and the alternative hypothesis. |


| 11. | Write the two properties of the sampling distribution of the mean when the population is normally <br> distributed. |
| :--- | :--- |
| (AU JAN 2016) |  |

1. It has a mean equal to the population mean $\mu_{\bar{x}}=\mu$.
2. It has a standard deviation equal to the population standard deviation divided by the square root of the sample size $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$, where $\sigma_{\bar{x}}$ is the standard error of the mean.

## 12. State the characteristics of best estimator.

i)Unbiasedness
ii)Efficiency
iii)Consistency
iv)Sufficiency
13. Define One tailed test and two tailed test.
(AU NOV/DEC 2013)
When the hypothesis about the population parameter is rejected only for the value of sample statistic falling into one of the tails of the sampling distribution, then it is known as one-tailed test.
If it is right tail then it is called right-tailed test or one-sided alternative to the right and if it is on the left tail, then it is one-sided alternative to the left and called left-tailed test. Two tailed test is one where the hypothesis about the population parameter is rejected for the value of sample statistic falling into the either tails of the sampling distribution.
14. Given that $n_{1}=400, \overline{x_{1}}=250, s_{1}=40$ for one sample and $n_{2}=400, \overline{\mathbf{x}_{2}}=220, s_{2}=55$ for another sample, find the standard error of $\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}$.

> The standard error of $\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}$ is
> $\mathrm{S} \sqrt{\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}}$, where $\mathrm{S}=\sqrt{\frac{\mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}}=2.4074$
> S.E of $\left(\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}\right)=2.4074 \sqrt{\frac{1}{400}+\frac{1}{400}}=0.17023$

Therefore standard error of $\overline{\mathbf{x}}_{\mathbf{1}}-\overline{\mathbf{x}}_{\mathbf{2}}$ is 0.17023 .
15. Write $\mathbf{9 5 \%}$ confidence interval of the population mean.
(AU MAY/JUNE 2014)

$$
\bar{x}-t_{0.05} \frac{\mathrm{~S}}{\sqrt{\mathrm{n}-1}} \leq \mu \leq \bar{x}+t_{0.05} \frac{\mathrm{~S}}{\sqrt{\mathrm{n}-1}}
$$

16. You want to determine whether the mean of the population from which this sample was taken is significantly different from 48. State the null and the alternate hypothesis. (AU MAY/JUNE 2014) Null hypothesis $H_{0}: \mu=48$ and Alternate hypothesis $H_{1}: \mu \neq 48$.
17. For test market find the sample size needed to estimate the true proportion of consumers satisfied with a certain new product within $\pm 0.04$ at $90 \%$ confidence level.
If proportion is not given, take $p=q=0.5 . E=0.04, Z \alpha=1.645$
$n=\frac{Z_{\alpha}{ }^{2} \cdot p q}{E^{2}}=\frac{(1.645)^{2}(0.5)(0.5)}{(0.04)^{2}}=423$
18. State central limit theorem.
(AU JAN 2014, 2015)
A sample of samples is always normally distributed about the mean of sample means, even if the samples themselves are not normally distributed themselves about their means.
19. Differentiate between point estimate and interval estimate
(AU JAN 2015)

| Point estimate | Interval estimate |
| :--- | :--- |
| When a single value is used as an estimate, the estimate <br> is called a point estimate of the population parameter. <br> For example, the sample mean is the sample statistic <br> used as an estimate of population mean | An estimate of a population parameter given <br> by two numbers between which the parameter <br> may be considered to lie is called an interval <br> estimate of the parameter. |


| 20 | Write the confidence interval for the population mean for large samples when $\sigma$ is known. The confidence interval for $\mu$ when $\sigma$ is known and sampling is done from a normal population or with a large sample, is $\bar{x} \pm Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$.Here $\bar{x}$ - sample mean, $\sigma$ - standard deviation, $\mathrm{n}-$ size of the sample. |
| :---: | :---: |
|  | PART - B |
| 1a. | Below you are given the values obtained from a random sample of 4 observations taken from an infinite population. $32,34,35,39$ <br> (i) Find a point estimate for $\mu$. Is this an unbiased estimate of $\mu$ ? Explain. <br> (ii) Find a point estimate for $\sigma^{2}$. Is this an unbiased estimate of $\boldsymbol{\sigma}^{2}$ ? Explain. <br> (iii) Find a point estimate for $\sigma$. <br> (iv) What can be said about the sampling distribution of $\bar{x}$ ? Be sure to discuss the expected value, the standard deviation and the shape of the sampling distribution of $\bar{x}$. <br> (AU JAN 2014) |
| 1b. | In a sample of 25 observations from a normal distribution with mean 98.6 and standard deviation 17.2. What is [ $92<\bar{x}<102]$ ? <br> (AU JAN 2016) |
| 2a. | Explain the types of estimation and the qualities of a good estimator. $\quad$ (AU NOV/DEC 2013) |
| 2b. | In a random sample of $\mathbf{7 5}$ axle shafts, 12 have a surface finish that is rougher than the specifications will allow. Suppose that a modification is made in the surface finishing process and subsequently a second random sample of $\mathbf{8 5}$ axle shafts is obtained. The number of defective shafts in this second sample is $\mathbf{1 0}$. Obtain an approximate $95 \%$ confidence interval on the difference in the proportions of defectives produced under the two processes. <br> (AU JAN 2016) |
| 3 a . | In a batch chemical process used for etching printed circuit boards, two different catalysts are being compared to determine whether they require different emersion times for removal of identical quantities of photoresist material. Twelve batch were run with catalyst 1 , resulting in a sample mean emersion time of 24.6 minutes and sample standard deviation of 0.85 minutes. Fifteen batches were run with catalyst 2 , resulting in a mean emersion time of 22.1 minutes and a standard deviation of 0.98 minutes. Find a $95 \%$ confidence interval on the difference in means, assuming that $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$. Also find a $90 \%$ confidence interval on the ratio of variances. <br> (AU JAN 2016) |
| 3 b . | From a population of 540 , a sample of 60 individuals are taken. From this sample, the mean is found to be 6.2 and the standard deviation is 1.368 . <br> (1) Find the estimated standard error of the mean. <br> (2) Construct a 90 percent confidence interval for the mean. <br> (AU MAY/JUNE 2019) |
| 4. | Discuss various non - probability sampling methods in use with its applications. |
| 5 a . | A bank has kept records of the checking balances of its customers and determined that the average daily balance of its customers is Rs. 300 with a standard deviation of Rs. 48. A random sample of 144 checking accounts is selected. <br> (i) What is the probability that the sample mean will be more than Rs. 306.60? <br> (ii) What is the probability that the sample mean will be less than Rs. 308? <br> (iii) What is the probability that the sample mean will be between Rs. 302 and Rs. 308 ? <br> (iv) What is the probability that the sample mean will be atleast Rs. 296? <br> (AU MAY/JUNE2014) |
| 5 b . | A certain city is studied for demographic characteristics. It is found that the age has a standard deviation of 5.3 years and $60 \%$ of the population is female. What should be the sample size if the age is to be estimated with an error of less than 1 year? What should be the sample size if a similar estimation is to be done on the proportion of female population if the desired accuracy is to be within $5 \%$ ? If the sample average age is found to be 37.25 for a sample size of 300 , estimate the population age range with a confidence level of $\mathbf{9 5 \%}$. <br> (AU MAY 2020) |


| 5c. | The life time of a certain brand of an electric bulb may be considered as a random variable with mean 1200 h and standard deviation $\mathbf{2 5 0 h}$. Find the probability, using central limit theorem, that the average lifetime of 60 bulbs exceeds 1250 hours. |
| :---: | :---: |
|  | UNIT - III: TESTING OF HYPOTHESIS - PARAMETRIC TESTS. |
|  | PART - A |
| 1. | Define t-statistic. <br> The t - distribution is used when sample size is 30 or less and the population standard deviation is unknown. The $\mathrm{t}-$ statistic is defined as $t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$ where $s^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1}$. The $\mathrm{t}-$ distribution has been derived mathematically under the assumption of a normally distributed population. |
| 2. | List out the applications of $t$-distribution. <br> ( AU NOV/DEC 2017) (AU APR/MAY 2018) <br> 1. To test the significant difference between the means of two independent samples. <br> 2.To test the significant difference between the means of two dependent samples or paired observation. <br> 3. To test the significance of the mean of a random sample. <br> 4 To test the significance of an observed correlation coefficient. |
| 3. | Mention the Properties of $t$-distribution. <br> 1. The $t$ distribution ranges from $-\infty$ to $\infty$ <br> 2. The $t$ - distribution like the standard normal distribution is bell shaped, symmetrical around mean zero. <br> 3. The variance of the t - distribution is greater than one and is defined only when $v \geq 3$ |
| 4. | What is the purpose of F - test? <br> F test refers to a test of hypothesis concerning two variances derived from two samples. It is used to test whether the two sample variances are equal or not that is $F=\frac{S_{1}{ }^{2}}{S_{2}{ }^{2}}, S_{1}>S_{2}$. Thus F statistics is the ratio of independent estimates of population variances. |
| 5. | What are the assumptions on which F-test is based? <br> 1. Normality: The values in each group should be normally distributed. <br> 2. Independence of error: The variations of each value around its own group mean. i.e. error should be independent of each value. <br> 3. Homogeneity: The variances within each group should be equal for all groups. |
| 6. | When to use the normal and ' $t$ ' distribution in making tests of hypothesis about means? (JAN 2016) When the sample size is greater than 30 we say it is large sample and when it is less than we say it as small sample. For large samples we use normal distribution and for small samples we use t test. |
| 7. | Estimate the standard error of the difference between the two proportions if $\overline{\boldsymbol{p}_{1}}=\mathbf{0 . 1 0}$, $\overline{p_{2}}=0.1333, n_{1}=50$ and $n_{2}=75$ ? <br> (AU JAN 2016) <br> Let us first calculate the weighted average of $p_{1}$ and $p_{2}$ that is say $p=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}=0.1199$ <br> S.E. is $\sqrt{p q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=0.05931$. |
| 8. | What do you mean by degrees of freedom? <br> Degrees of freedom are the total number of observations minus the number of independent constraints imposed on the observations. |
| 9. | Define Experimental Error <br> The estimation of the amount of variations due to each of the independent factors separately and then comparing these estimates due to assignable factors with the estimate due to chance factor is known as experimental error. |

## 10. State the assumptions of Student's $\mathbf{t}$ - test.

1. The sample observations are independent.
2. The parent population from which the sample is drawn is normal.
3. The population standard deviation $\sigma$ is unknown.
4. Define Local Control.

When the number of treatments becomes large, it may not be possible to accommodate all the treatments in one block because that will increase heterogeneity within blocks. The process of making the experimental units homogeneous and reducing the experimental error is known as local control.
12. What are the Properties of F- distribution?
(AU MAY/JUNE 2019)

1. The value of F must always be positive or zero since variances are squares and can never assume negative values. Its value will always lie between 0 and $\infty$.
2. The shape of the F- distribution depends upon the number of degrees of freedom.
3. The F - distribution is positively skewed.
4. Define Analysis of Variance.

Analysis of Variance is a technique that will enable us to test for the significance of the difference among more than two sample means.
14. What are the assumptions of analysis of variance?
(i) The sample observations are independent
(ii) The Environmental effects are additive in nature
(iii) Sample observation are coming from normal
15. Distinguish between z-test and $\mathbf{t}$-test.
(AU JAN 2015)

| z-test | t-test |
| :--- | :--- |
| (i) Used for large samples | (i) Used for small samples |
| (ii) Follows normal distribution. | (ii)Follows student's t distribution. |

16. Define one way classification and two way classifications in ANOVA.

The entire experiment influences on only single factor is one way classification. The entire experiment influences on only two factors is two way Classification.
17. What are the basic principles of design of experiments?
(APR/MAY 2018)
(i) Randomization
(ii) Replication
(iii) Local Control
18. What are the usual assumptions made in the analysis of a randomized block Experiment?
(i) All the experimental units are homogenous
(ii) Each treatment replicates ' $r$ ' times.
19. Write down the ANOVA table for One way classification

| Source of Variation | Sum of Degrees | Degree of freedom | Mean Square | F- Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Between Samples | SSC | K-1 | MSC $=\frac{\mathrm{SSC}}{\mathrm{K}-1}$ | $\mathrm{~F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$ |
| Within <br> Samples | SSE | $\mathrm{N}-\mathrm{K}$ | MSE $=\frac{\mathrm{SSE}}{\mathrm{N}-\mathrm{K}}$ |  |


| 20. Write down the ANOVA table for Randomized Block Design |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source of Variation Sum of Degrees Degree of freedom Mean Square <br> Column Treatment SSC $\mathrm{c}-1$ $\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{c}-1}$ <br> Row Treatments SSR $\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$  <br> Error (or) Residual SSE $(\mathrm{r}-1)(\mathrm{c}-1)$ $\mathrm{MSE}=\frac{\mathrm{SSE}}{(\mathrm{r}-1)(\mathrm{c}-1)}$ |

## PART - B

1a. The following are the number of mistakes made in 5 successive days by 4 technicians working for a photographic laboratory. Test whether the difference among the four sample means can be attributed to chance. (Test at a level of significance $\alpha=0.01$ )

Technicians

| Technicians |  |  |  |
| :---: | :---: | :---: | :---: |
| I | II | III | IV |
| 6 | $\mathbf{1 4}$ | 10 | 9 |
| 14 | 9 | 12 | 12 |
| 10 | 12 | 7 | 8 |
| 8 | 10 | 15 | 10 |
| 11 | 14 | 11 | 11 |

1b. 40 people were attacked by a disease and only 36 survived. Will you reject the hypothesis that the survival rate, if attacked by this disease, is $85 \%$ at $5 \%$ level of significance?
2a. Two independent samples of 8 and 7 items respectively had the following values.

| Sample I | 9 | 11 | 13 | 11 | 15 | 9 | 12 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sample II | $\mathbf{1 0}$ | $\mathbf{1 2}$ | 10 | 14 | 9 | 8 | 10 | ---- |

Is the difference between the means of samples significant?
(AU APR / MAY 2018 )
2b. The following table shows the yields per acre of four different plant crops grown on lots treated with three different types of fertilizer. Determine at the $5 \%$ significance level whether there is a difference in yield per acre
(i) due to the fertilizers and
(ii) due to the crops

|  | Crop - I | Crop - II | Crop - III | Crop - IV |
| :--- | :--- | :--- | :--- | :--- |
| Fertilizer A | 4.5 | 6.4 | 7.2 | 6.7 |
| Fertilizer B | 8.8 | 7.8 | 9.6 | 7.0 |
| Fertilizer C | 5.9 | 6.8 | 5.7 | 5.2 |

3a. Given a sample mean of 83 , a sample standard deviation of $\mathbf{1 2 . 5}$ and a sample size of 22 , test the hypothesis that the value of the population mean is $\mathbf{7 0}$ against alternative that it is more than $\mathbf{7 0}$. Use the 0.025 significance level.
(AU JAN 2016)
3b. A random sample of 10 boys had the following I.Q's: 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a population mean I.Q of 100 ? Find the reasonable range in which most of the mean I.Q values of samples of 10 boys lie.

4a. The following table gives biological values of a protein from cow's milk and buffalo's milk at certain level. Examine if the average values of protein in the 2 samples significantly differ. (APR/MAY 2018)

| Cow's milk | 1.82 | 2.02 | 1.88 | 1.61 | 1.81 | 1.54 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Buffalo's milk | 2.00 | 1.83 | 1.86 | 2.03 | 2.19 | 1.88 |

4b. A lathe is set to cut bars of steel into lengths of 6 centimeters. The lathe is considered to be in perfect adjustment if the average length of the bars it cuts is $\mathbf{6}$ centimeters. A sample of $\mathbf{1 2 1}$ bars is selected randomly and measured. It is determined that the average length of the bars in the sample is 6.08 centimeters with a standard deviation of 0.44 centimeters.
(i) Formulate the hypotheses to determine whether or not the lathe is in perfect adjustment.
(ii) Compute the test statistic. (iii) What is your conclusion?
(AU JAN 2014)
5a. The daily production rates for a sample of factory workers before and after a training program are shown below. Let d=After - Before.

| Worker | Before | After |
| :---: | :---: | :---: |
| 1 | 6 | 9 |
| 2 | $\mathbf{1 0}$ | 12 |
| 3 | 9 | 10 |
| 4 | $\mathbf{8}$ | 11 |
| 5 | 7 | 9 |

We want to determine if the training program was effective.
(i) Give the hypotheses for this problem.
(ii) Compute the test statistic.
(iii) At $95 \%$ confidence, test the hypotheses. That is, did the training program actually increase the production rates?
(AU JAN 2019)
5 b . The following table shows the lifetimes in hours of samples from three different types of television tables manufactured by a company. Determine whether there is a difference between the three types at significance level of 0.01

| Sample 1 | 407 | $\mathbf{4 1 1}$ | $\mathbf{4 0 9}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Sample 2 | $\mathbf{4 0 4}$ | $\mathbf{4 0 6}$ | $\mathbf{4 0 8}$ | $\mathbf{4 0 5}$ | $\mathbf{4 0 2}$ |
| Sample 3 | $\mathbf{4 1 0}$ | $\mathbf{4 0 8}$ | $\mathbf{4 0 6}$ | $\mathbf{4 0 8}$ |  |

UNIT - IV: NON-PARAMETRIC TESTS
PART - A

1. State any two properties of $\boldsymbol{\chi}^{\mathbf{2}}$ distribution.
2. The exact shape of the distribution depends upon the number of degrees of freedom $n$. In general when $n$ is small, the shape of the curve is skewed to the right and as $n$ gets larger, the distribution becomes more and more symmetrical.
3. The mean and variance of the $\chi^{2}$ distribution are n and 2 n respectively.
4. The sum of the independent $\chi^{2}$ variates is also a $\chi^{2}$ variate.
5. Explain the various uses of Chi-square test.
1.Test of goodness of fit
2.Test of independence of attributes
6. Test of Homogeneity of independent estimates of the population correlation coefficient.
7. What are the conditions for the validity of Chi-square test?
(AU MAY/ JUNE 2016)
8. The experimental data must be independent of each other.
9. The total frequency must be reasonably large, say $\geq 50$.
10. No individual frequencies should be less than 5 , If any frequency is less than 5 , then it is pooled with the preceding or succeeding frequency so that the pooled frequency is more than 5 .Finally adjust for the degrees of freedom lost in pooling.
$4 . \quad$ Write the formula for chi square test of single standard deviation.
(AU MAY/JUNE 2014)
The formula is $\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}$
11. What are the uses of $\chi^{2}$ test?
12. To test the homogeneity of independent estimates of the population variances.
13. To test the goodness of fit.
14. To test for independence of attributes.
15. Explain the Chi - square test as a test of independence.

It is applied to test the association between the attributes when the sample data is presented in the form of a contingency table with any number of rows or columns.
$E_{i j}=\frac{R_{i} \times C_{j}}{G . T}$ where $R_{i}=\mathrm{i}^{\text {th }}$ row total and $\mathrm{C}_{\mathrm{j}}=\mathrm{j}^{\text {th }}$ column total, $\mathrm{GT}=$ Grand Total
$\chi_{\text {calculated value }}^{2}<\chi_{\text {tabulated value }}^{2}$
then accept $H_{0}$.
7. What are the disadvantages of Non Parametric tests?

1. They ignore a certain amount of information
2. They are often not as efficient or sharp as parametric tests.
3. The non-parametric tests cannot be used to estimate parameters in the population or the confidence intervals for such parameters.
4. What is meant by Non Parametric test?
(AU NOV/DEC 2013)
Non parametric test is the test that does not make any assumption regarding from which the sampling is done. They are often called as distribution -free methods.
5. Name any four Non parametric test.
(AU JAN 2015)
6. Sign Test for paired data
7. Rank Sum tests
(a)Mann-Whitney U-Test
(b)Kruskal -Wallis Test or H test.
8. Rank correlation test
9. One sample run test.
10. Define the statistics used in the $\mathbf{U}$ - test and give its mean.

$$
\mathrm{U}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}, \quad \text { Mean }=\frac{n_{1} n_{2}}{2}
$$

11. Define the statistics used in the $\mathbf{H}$ - test.
(AU MAY/JUNE 2019)

$$
\mathrm{H}=\frac{12}{n(n+1))}\left[\sum_{i=1}^{k} \frac{R_{i}^{2}}{n_{i}}\right]-3(n+1)
$$

12. When Kruskal -Wallis test is used ?
(NOV/DEC 2017)
The Kruskal -Wallis test is used to test whether the 3 or more populations are identical or not . The K-W test is based on the analysis of independent random samples from each of the k populations.
13. Define Kolmogorov smirnov Test.

It is a simple non parametric test for testing whether there is a significance between an observed frequency distributions and a theoretical frequency distribution. It is another measure of the goodness of fit. (i.e.,) $D_{n}=\max \left|F_{e}-F_{o}\right|$
14. When Mann-Whitney U-Test is used ?

The U test is used to test whether the 2 populations are identical or not . The U test is based on the analysis of independent random samples from two polpulations.
15. What are the advantages of Kolmogorov-smirnov test ?
(i) It is a more powerful test.
(ii) It is easier to use since it does not require that the data be grouped in any way.


3a. Two methods of instruction to apprentices are to be evaluated. A director assigns 15 randomly selected trainees to each of the two methods. Due to drop outs, 14 complete in batch 1 and 12 complete in batch 2 . An achievement test was given to these successful candidates. Their scores are as follows. $\quad$ Method 1: 7090826486778479828973818366

Method 2: 867890826587808895857694
Test whether the two methods have significant difference in effectiveness. Use Mann-Whitney test at 5\% significance level.
3b. Kevin Morgan, national sales manager of an electronics firm, has collected the following salary statistics on his field sales force earnings. He has both observed frequencies and expected frequencies if the distribution of salaries is normal. At the $\mathbf{0 . 0 5}$ level of significance, can Kevin conclude that the distribution of sales force earnings is normal?
(AU MAY/JUNE 2019)

| Earnings in thousands | $25-30$ | $\mathbf{3 1 - 3 6}$ | $\mathbf{3 7 - 4 2}$ | $\mathbf{4 3 - 4 8}$ | $\mathbf{4 9 - 5 4}$ | $\mathbf{5 5 - 6 0}$ | $\mathbf{6 1 - 6 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed frequency | $\mathbf{9}$ | $\mathbf{2 2}$ | $\mathbf{2 5}$ | $\mathbf{3 0}$ | $\mathbf{2 1}$ | $\mathbf{1 2}$ | $\mathbf{6}$ |
| Expected frequency | $\mathbf{6}$ | $\mathbf{1 7}$ | $\mathbf{3 2}$ | $\mathbf{3 5}$ | $\mathbf{1 8}$ | $\mathbf{1 3}$ | $\mathbf{4}$ |

4a. The following contingency table presents the reactions of legislators to a tax plan according to party affiliation. Test whether party affiliation influences the reaction to the tax plan at 0.01 level of signification.

| Reaction |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Party | Infavour | Neutral | Opposed | Total |
| Party A | $\mathbf{1 2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{1 6 0}$ |
| Party B | $\mathbf{5 0}$ | $\mathbf{3 0}$ | $\mathbf{6 0}$ | $\mathbf{1 4 0}$ |
| Party C | $\mathbf{5 0}$ | $\mathbf{1 0}$ | $\mathbf{4 0}$ | $\mathbf{1 0 0}$ |
| Total | $\mathbf{2 2 0}$ | $\mathbf{6 0}$ | $\mathbf{1 2 0}$ | $\mathbf{4 0 0}$ |

4b. A technician is asked to analyze the results of 22 items made in preparation run. Each item has been measured and compared to engineering specifications. The order of acceptance ' $a$ ' and rejections of ' $\mathbf{r}$ ' is aarrrarraaaaarrarraara Determine whether it is a random sample or not. Use $\alpha=0.05$.
5a. From a poll of $\mathbf{8 0 0}$ television viewers, the following data have been accumulated as to, their levels of education and their preference of television stations. We are interested in determining if the selection of a TV station is independent of the level of education
(AU JAN 2016)

| Educational Level |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Public | High School | Bachelor | Graduate | Total |  |
| Broadcasting | $\mathbf{5 0}$ | $\mathbf{1 5 0}$ | $\mathbf{8 0}$ | $\mathbf{2 8 0}$ |  |
| Commercial Stations | $\mathbf{1 5 0}$ | $\mathbf{2 5 0}$ | $\mathbf{1 2 0}$ | $\mathbf{5 2 0}$ |  |
| Total | $\mathbf{2 0 0}$ | $\mathbf{4 0 0}$ | $\mathbf{2 0 0}$ | $\mathbf{8 0 0}$ |  |

(i) State the null and alternative hypotheses.
(ii) Show the contingency table of the expected frequencies. (iii) Compute the test statistic.
(iv) The null hypothesis is to be tested at $\mathbf{9 5 \%}$ confidence. Determine the critical value for this test.

5b. The manager of a company believes that differences in sales performance depend upon the salesperson's age. Independent samples of salespeople were taken and their weekly sales record is reported below.

| Below 30 years <br> No. of Sales | Between 30 and 45 years <br> No. of Sales | Over 45 years <br> No. of Sales |
| :--- | :--- | :--- |
| $\mathbf{2 4}$ | $\mathbf{2 3}$ | $\mathbf{3 0}$ |
| $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{2 0}$ |
| 21 | 22 | $\mathbf{2 3}$ |
| 15 | $\mathbf{2 5}$ | $\mathbf{2 5}$ |
| 19 | $\mathbf{1 8}$ | $\mathbf{3 4}$ |
| 26 | 29 | $\mathbf{3 6}$ |
|  | 27 | $\mathbf{2 8}$ |



## $12 . \quad$ Write the merits of the least squares method.

1. This method gives the trend values for the entire time period
2. This method is a completely objective in character
3. This method can be used to forecast future trend because trend line establishes a functional relationship between the value and the time.
4. If the tangent of the angle between the lines of regression $\mathbf{y}$ on $\mathbf{x}$ and $\mathbf{x}$ on $\mathbf{y}$ is $\mathbf{0 . 6}$ and $\sigma_{x}=\frac{1}{2} \sigma_{y}$. Find the correlation coefficient.

$$
\begin{aligned}
& \tan \theta=\frac{\sigma_{x} \sigma_{y}}{\sigma^{2}{ }_{x}+\sigma_{y}^{2}}\left[\frac{1-r^{2}}{r}\right], 0.6=\frac{\frac{1}{2} \sigma_{y} \sigma_{y}}{\frac{1}{4} \sigma_{y}^{2}+\sigma_{y}^{2}}\left[\frac{1-r^{2}}{r}\right] \\
& =\frac{\frac{1}{2}}{\frac{5}{4}}\left[\frac{1-r^{2}}{r}\right] \Rightarrow 1.5 r=1-r^{2}, r=-2,0.5
\end{aligned}
$$

14. State any two properties of correlation coefficient.
(i) The coefficient of correlation lies between -1 and +1 .
(ii) The coefficient of correlation is independent of change of scale and origin of the variables X \& Y .
15. What are the various methods of studying trend?
16. Graphic method 2 . Method of semi-averages 3. Method of Moving averages
17. Method of Least squares.
18. Write down the formula to calculate rank correlation coefficient .
$\rho_{s}=1-\frac{6\left(\sum d_{i}^{2}\right)}{n\left(n^{2}-1\right)}, \mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}$
19. Briefly explain how a scatter diagram benefits the researcher?
(AU MAY/JUNE 2014)
The simplest device for studying correlation between two variables is a special type of dot chart called scatter diagram. In this method, the given data is plotted on a graph in the form of dots. The more the plotted points scatter over a chart, the lesser is the degree of relationship between the two variables. The nearer the points come to the line, the higher the degree of relationship. If the plotted points lie in a haphazard manner it shows the absence of any relationship between the variables.
20. When do we say the variables are positively correlated, negatively correlated and uncorrelated.
(i) If $\mathrm{r}=1$ then there is a perfect positive correlation.
(ii) If $\mathrm{r}=-1$ then there is a perfect negative correlation.
(iii) If $\mathrm{r}=0$ then the variables are uncorrelated.

## 19. Mention the two mathematical models for a time series.

1. Additive model - This model assumes that the four components of the time series Trend, seasonal, cyclical and irregular variations are independent of each other.
2. Multiplicative model - This model assumes that the four components of the time series are interdependent.
3. State the limitations of Method of Moving averages.
(1) Trend values cannot be calculated for all the years that is, some years will be left out in the beginning and in the end.
(2) The period of moving average has to be chosen with great care.
(3) This method cannot be used for forecasting.

## PART B

1a. Calculate the coefficient of correlation between $X$ and $Y$, using the following data: (AU APR 2018)

| $\mathbf{X}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{5}$ | 7 | $\mathbf{8}$ | $\mathbf{1 0}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{Y}$ | $\mathbf{8}$ | $\mathbf{1 2}$ | $\mathbf{1 5}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{2 0}$ |

1b. $\quad$ Fit a second degree polynomial equation for the following data

| X | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y | 50 | 65 | 70 | 85 | 82 | 75 | 65 | $\mathbf{9 0}$ | 95 |

2. Given below are the figures of production (in thousand quintals) of a sugar factory.

| Year | 1974 | $\mathbf{1 9 7 5}$ | $\mathbf{1 9 7 6}$ | 1977 | 1978 | 1979 | 1980 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Production | $\mathbf{7 7}$ | $\mathbf{8 8}$ | $\mathbf{9 4}$ | $\mathbf{8 5}$ | $\mathbf{9 1}$ | $\mathbf{9 8}$ | $\mathbf{9 0}$ |

Fit a straight line by the least squares method and tabulate the trend values.
3a. Find the two regression lines using the data below:
(AU NOV/DEC 2018)

| $\mathbf{X}$ | $\mathbf{7}$ | $\mathbf{4}$ | $\mathbf{8}$ | $\mathbf{6}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{Y}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{9}$ | $\mathbf{8}$ | $\mathbf{2}$ |

3b. The following data on production (in ' 000 units) of a commodity from the year 2006-2012. Fit a straight line trend and forecast for the year 2020
(AU NOV/DEC 2017)

| Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Production | 6 | 7 | 5 | 4 | 6 | 7 | 5 |

4a. $\quad$ Explain the basic components of Time series analysis.
4b. The monthly water consumption in thousand gallons in a hostel for five years is given below. Calculate the seasonal indices by the method of simple averages

| Year | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1979 | 25 | 23 | 21 | 18 | 15 | 20 | 21 | 25 | 22 | 24 | 32 | 35 |
| 1980 | 27 | 25 | 23 | 20 | 17 | 22 | 23 | 27 | 24 | 26 | 35 | 33 |
| 1981 | 32 | 31 | 30 | 27 | 25 | 27 | 29 | 30 | 30 | 32 | 41 | 38 |
| 1982 | 42 | 40 | 38 | 36 | 34 | 37 | 38 | 40 | 38 | 43 | 52 | 48 |
| 1983 | 57 | 50 | 52 | 46 | 49 | 46 | 49 | 55 | 50 | 59 | 64 | 63 |

5a. The following table gives the profits of a concern for 5 years ending 1983. Fit an exponential curve
for the following data
(AU MAY/JUNE 2019)

| Year | 1979 | 1980 | 1981 | 1982 | 1983 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Profits | 1.6 | 4.5 | $\mathbf{1 3 . 8}$ | $\mathbf{4 0 . 2}$ | $\mathbf{1 2 5 . 0}$ |

5b. The quarterly sales (in thousands of copies) for a specific education software over the past three years are given in the following table.

|  | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 4}$ | $\mathbf{2 0 0 5}$ |
| :--- | :--- | :--- | :--- |
| Quarter 1 | $\mathbf{1 7 0}$ | $\mathbf{1 8 0}$ | $\mathbf{1 9 0}$ |
| Quarter 2 | $\mathbf{1 1 1}$ | $\mathbf{9 6}$ | $\mathbf{1 2 0}$ |
| Quarter 3 | $\mathbf{2 7 0}$ | $\mathbf{2 8 0}$ | $\mathbf{2 9 0}$ |
| Quarter 4 | $\mathbf{2 5 0}$ | $\mathbf{2 2 0}$ | $\mathbf{2 2 3}$ |

(i) Compute the four seasonal factors (Seasonal Indexes). Show all of your computations.
(ii) The trend for these data is Trend =174+4t (t represents time, where $t=1$ for Quarter 1 of 2003 and $\mathbf{t}=\mathbf{1 2}$ for Quarter $\mathbf{4}$ of 2005). Forecast sales for the first quarter of 2006 using the trend and seasonal indexes. Show all of your computations.

Reg. No. :


## Question Paper Code : 10191

M.B.A. DEGREE EXAMINATIONS, APRIL/MAY 2023.

First Semester
BA 4101 - STATISTICS FOR MANAGEMENT
(Regulations 2021)
Time : Three hours
Maximum : 100 marks

Approved Table may be permitted.
Answer ALL questions.
PART A - ( $10 \times 2=20 \mathrm{marks})$

1. Define conditional probability.
2. What is a Binomial Experiment?
3. What is estimation?
4. State central limit theorem.
5. What is a null hypothesis?
6. What is Type I error?
7. What are the advantages of non - parametric tests?
8. When do you use a chi square test?
9. What is a regression model?
10. What is a random error in a regression equation?
11. (a) In a bolt factory machines $\mathrm{A}, \mathrm{B}$ and C manufacture respectively $25 \%, 35 \%$ and $40 \%$ of the total. Of their output, $5 \%, 4 \%$ and $2 \%$ are defective bolts. A bolt is drawn at random and found to be defective. What is the probability that it was manufactured by machine C?

Or
(b) Hupper Corporation produces many types of soft drinks, including Orange Cola. The filling machines are adjusted to pour 12 ounces of soda into each 12 -ounce can of Orange Cola. However, the actual amount of soda poured into each can is not exactly 12 ounces; it varies from can to can. It has been observed that the net amount of soda in such a can has a normal distribution with a mean of is probability that a randomly selected can of 0.015 ounce. (i) What is 11.97 to 11.99 ounces of soda? (ii) What percentage Orange Cola contains 11.97 to 12.02 to 12.07 ounces of soda? of the Orange Cola cans contain 12.02 to 12.07 ounces of soda?
A publishing company has just published a new college textbook. Before the company decides the price at which to sell this textbook, it wants to know the average price of all such textbooks in the market. The research department at the company took a sample of 36 comparable textbooks and collected information on their prices. This information produced a mean price of Rs. 145 for this sample. It is known that the standard deviation of the prices of all such textbooks is Rs. 35 and the population of such prices is normal. (i) What is the point estimate of the mean price of
 price of all such college textbooks.
Or
(b) According to a survey conducted by Pew Research Center in June 2009, $44 \%$ of people aged 18 to 29 years said that religion is very important to them. Suppose this result is based on a sample of 1000 people aged 18 to 29 years. (i) What is the point estimate of the corresponding population proportion? (ii) What is the margin of error at $99 \%$ confidence level. (iii) Find, with a $99 \%$ confidence level, the percentage of all people aged 18 to 29 years who will say that religion is very important to them.
13. (a) A test was given to students of two groups A and B to test whether there is any difference in the learning ability. Sixteen students of Group A took the test and their average score was found to be 55.8 with the standard deviation of 5.7. Nine students of Group B took the test and their average score was found to be 59.3 with the standard deviation of 4.3 . At $5 \%$ significance level, can you conclude that the learning ability of the students of Group A and B are different? Assume that the population standard deviations are equal.
(b) To test the significance of variation in the retail prices of a commu-t 3 cities, Mumbai, Kolkats and Delhi, 4 shops were chosen at randey in each city and the prices are given as followe.

| Mumbai : | 16 | 8 | 12 | 14 |
| :--- | :---: | :---: | :---: | :---: |
| Kolkata : | 14 | 10 | 10 | 6 |
| Delhi : | 4 | 10 | 8 | 8 |

Are the prices in these cities different. Assume that the population is normally distributed with equal variance and the data collected randomly.
14. (a) A college administration is interested in checking whether the application for admission arrive randomly with respect to the gender. The gender of 25 consecutively arriving application were found to arrive in the following order, where $\mathbf{M}$ denotes a male applicant and F denotes a female applicant.
M,F,M,M,F,F,F,M,F,M,M,M,F,F,F,F,M,M,M,F,F,M,F,M,M
Can you conclude that the applications for admission arrive randomly with respect to gender at $95 \%$ confidence level?
(b) A dairy agent wants to test a hormone that may increase cow's milk production. Some members of the group fear that the hormone could actually decrease production. So a matched pairs test is arranged. 30 cows were given the hormone and their milk production is recorded for 4 weeks. Each of these 30 cows is matched with another cow of similar size, age and prior record of milk production. This second group of 30 cows do not receive the hormone. The milk production of these cows were recorded for the same period of time. In the 19 of these 30 pairs, the cow taking the hormone produced more milk, in 9 of the pairs, the cow taking the hormone produced less and in 2 of the pairs, there was no difference. Using 5\% level of significance, can you conclude that the hormone changes the median milk production of such cows?
15. (a) The following table gives indices of industrial production and the number of unemployed people in a state in lakhs. Check whether industrial production and the number of unemployed people are related by computing the correlation coefficient.

| Index of Production: | 100 | 102 | 105 | 107 | 105 | 112 | 103 | 99 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number Unemployed : | 15 | 12 | 13 | 11 | 12 | 12 | 19 | 26 |

(b) Find the line of best fit for the following data. AD indicates cost of advertisement and SR indicates Sales Revenue. Calculate the error of estimate.

| AD | 21 | 22 | 23 | 24 | 22 | 20 | 20 | 21 | 22 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR | 115 | 125 | 120 | 133 | 142 | 150 | 155 | 135 | 125 | 120 |

PART C $-(1 \times 15=15$ marks $)$
16. (a) Connie Rodrigues, the Dean at Midstate College is wondering about the grade distributions at the school. She has heard that the GPAs in Business School are about 0.25 lower than those in college of Arts and Science. A quick random sampling produced the following GPAs.

## Business

Arts and Science

| 2.86 | 2.77 | 3.18 | 2 |
| :--- | :--- | :--- | :--- |

$2.8 \quad 3.14$
3.19
$\begin{array}{lll}.86 & 2.77 & 3.18\end{array}$
$\begin{array}{llll}3.35 & 3.32 & 3.36\end{array}$
$\begin{array}{ll}3.63 & 3.41\end{array}$
$3.37 \quad 3.45$
3.43

Business
$\begin{array}{lll}2.91 & 3 & 2.83\end{array}$
Arts and Sciehce
$\begin{array}{lll}3.44 & 3.17 & 3.26\end{array}$
$3.18 \quad 3.41$
Assuming that the corresponding populations are normally distributed, do these data indicate that there is a factual basis for the grumblings? State and test the appropriate hypothesis at $98 \%$ confidence level.

## Or

(b) A brand manager is concerned that her brand's share may be unevenly distributed throughout the country. In a survey in which the country was divided into 4 geographic regions, a random sampling of 100 consumers in each region was surveyed with the following results. In the North East region, 40 purchased the brand and the rest did not purchase. In the North West region, 55 purchased the brand and the rest did not purchase. In the South East region, 45 purchased the brand and the rest did not purchase. In the South West region. 50 ghiohnad the brand and the rhet did olind share is the zime across the four rekione.

Reg. No.: $\square$

## Question Paper Code : 30076

M.B.A. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022,

First Semester<br>BA 4101 - STATISTICS FOR MANAGEMENT<br>(Regulations 2021)

Maximum : 100 marks
Time : Three hours
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. State the Baye's theorem.
2. Find $p(x=2)$ if $\lambda=5.2$ for a Poisson distribution.
3. List the two properties of sampling distribution of the mean when the population is normally distributed.
4. What are the applications of central limit theorem?
5. Define Type I and Type II errors.
6. What are the five steps of a test of hypothesis using the critical value approach?
7. Define Kolmogorov-Smirnov Test. Write its advantages.
8. Explain the chi-square distribution. What is the parameter of such a distribution?
9. Distinguish between correlation and regression.
10. What do you mean by standard error of estimate? Write its equation.

## PART B- $\left(5 \times 13=65 \mathrm{marks}^{\mathrm{m}}\right)$

 by $a, b, c, d, e, f, g, h, i, j$ and $k$ co Con $B=\{a, c, f, j\}$ and $C=\{c, g, k\}$.
(ii) Are events $A$ and $B$ mutilu are their probablor Or providing high quality service to tompany
(b) At the Express House Delivery Service, Promanagement. The mon mot customers is the top priority in a package it it in onn that from past guarantees a refund of all char the specified time. Inis company do not arrive at arrive at its destination by the miled through suppose a corporation mails data, $2 \%$ of the packages maile specified time. Supp Service on a certain day. their destinations within the spec 10 packages will not 10 packages through exp exactly one of these 10
(i) Find the probability that within the specified time. arrive at its des that atmost one of these 10
(ii) Find the probability arion within the specified ath
12. (a) (i) In a sample of 25 observations from
mean 98.6 and stan $\quad$ (1) What is $P(92<102)$ ?
(1)
(2) Find the corresponding healthy workers are efficient and
(ii) It is said that happy and healthufactures exercising machines productive. A company that me large companies that provide wanted to know the percentage A random sample of 240 such on-site health club facilities. companies showed that 96 percentage of all such
(1) What is the point estide facilities on site?
(2) Construct a $97 \%$ confidence interval for the percentage of all such companies that provide such facilities on site. What is the margin error for this estimate?
(b) (i) In a large city, $88 \%$ of the cases of car burglar alarma that go off are false. Let $\bar{p}$ be the proportion of false alarms in a random sample of 80 cases of car burglar alarms that go off in this city. Calculate the
(ii) Suppose a total of 789,654 families 563,282 of them own homes. A sample of 240 particular city and from this city, 158 of them own homes. Find thes is selected families who own homes in the population and in the sample.
13. (a) Two independent samples of observations were collected. For the first sample of 60 elements, the mean was 86 and the standard deviation 6 The second sample of 75 elements had a mean of 82 and a standard deviation of 9 .

Compute the estimated standard error of the difference between the two means.

Using $\alpha=0.01$, test whether the two samples can reasonably be considered to have come from populations with the same mean.

Or
(b) Given a sample mean 83, a sample standard deviation of 12.5 and a sample size of 22 , test the hypothesis that the value of the population mean is 70 against the alternative that it is more than 70 . Use the 0.025 level of significance.
14. (a) Fit a Poisson distribution for the following distribution and also test the goodness of fit.

$$
\begin{array}{rcrcccc}
x: & 0 & 1 & 2 & 3 & 4 & 5 \\
f: & 142 & 156 & 69 & 27 & 5 & 1
\end{array}
$$

## Or

(b) Use Kruskal-Wallis test to test the difference in mean among the three samples.

| Sample 1: | 99 | 64 | 101 | 85 | 79 | 88 | 97 | 95 | 90 | 100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample 2: | 83 | 102 | 125 | 61 | 91 | 96 | 94 | 89 | 93 | 75 |
| Sample 3: | 89 | 98 | 56 | 105 | 87 | 90 | 87 | 101 | 76 | 89 |

15. (a) The following are ratings of aggressiveness $(X)$ and amount of sales in the last year $(Y)$ for 8 sales people. Calculate the rank correlation between two measures. Use 0.10 significance level.

$$
\begin{array}{lllllllll}
X: & 30 & 17 & 35 & 28 & 42 & 25 & 19 & 29 \\
Y: & 35 & 31 & 43 & 46 & 50 & 32 & 33 & 42
\end{array}
$$

(b) Calculate the regression coefficient and obtain the lines of regression for the following data :

$$
\begin{array}{cccccccc}
X: & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Y: & 9 & 8 & 10 & 12 & 11 & 13 & 14
\end{array}
$$

Obtain an estimate of $Y$ which correspond to the value $X=5.4$.

$$
\text { PART C }-(1 \times 15=15 \text { marks })
$$

16. (a) A study compared the effects of four 1 month point of purchase promotions on sales. The unit sales for five stores using all four promotions in different months follow :

Free sample: $\quad \begin{array}{lllll}78 & 87 & 81 & 89 & 85\end{array}$
One-pack gift: $\quad \begin{array}{lllllll}94 & 91 & 87 & 90 & 88\end{array}$
$\begin{array}{llllll}\text { Cents off: } & 73 & 78 & 69 & 83 & 76\end{array}$
Refund by mail : $79 \begin{array}{lllll}79 & 78 & 69 & 81\end{array}$
(i) Compute the mean unit sales for each promotion and then determine the grand mean.
(11) Eistmake uhe pro.............in, use usins the between - column $=$ variance.
(iii) Estimate the population variance using the within-column variance computed from the variance within the samples
(iv) Calculate the F-ratio. At the 0.01 level of significance, do the promotions produce different effects on sales?

## Or

(b) Cost accountants often estimate overheads based on the level of production. At the Standard Knitting Co., they have collected information on overhead expenses and units produced at different plants, and want to estimate a regression equation to predict future overhead.
Overhead: $\begin{array}{llllllllll}191 & 170 & 272 & 155 & 280 & 173 & 234 & 116 & 153 & 178\end{array}$
Units: $\begin{array}{lllllllllll}40 & 42 & 53 & 35 & 56 & 39 & 48 & 30 & 37 & 40\end{array}$
(i) Develop the regression equation for the cost accountants.
(ii) Predict overhead when 50 units are produced.
(iii) Calculate the standard error of estimate.

