

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

 CS6801 MULTI-CORE ARCHITECTURES AND PROGRAMMING

SEM:08

YEAR:04

BATCH 2015-2019

Vision of Institution

To build Jeppiaar Engineering College as an Institution of Academic Excellence in

Technical education and Management education and to become a World Class

University.

Mission of Institution

M1 To excel in teaching and learning, research and innovation by promoting the

principles of scientific analysis and creative thinking

M2
To participate in the production, development and dissemination of knowledge and

interact with national and international communities

M3
To equip students with values, ethics and life skills needed to enrich their lives and

enable them to meaningfully contribute to the progress of society

M4 To prepare students for higher studies and lifelong learning, enrich them with the

practical and entrepreneurial skills necessary to excel as future professionals and

contribute to Nation’s economy

Program Outcomes (POs)

PO1
Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

PO2
Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

PO3

Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations

PO4
Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

PO5
Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO6
The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

PO7
Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

PO8
Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO9
Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO10

Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

PO11

Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary
environments.

PO12
Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Vision of Department

To emerge as a globally prominent department, developing ethical computer

professionals, innovators and entrepreneurs with academic excellence through quality

education and research.

Mission of Department

M1
To create computer professionals with an ability to identify and formulate

the engineering problems and also to provide innovative solutions through

effective teaching learning process.

M2 To strengthen the core-competence in computer science and engineering

and to create an ability to interact effectively with industries.

M3 To produce engineers with good professional skills, ethical values and life

skills for the betterment of the society.

M4 To encourage students towards continuous and higher level learning on

technological advancements and provide a platform for employment and

self-employment.

Program Educational Objectives (PEOs)

PEO1 To address the real time complex engineering problems using innovative approach

with strong core computing skills.

PEO2 To apply core-analytical knowledge and appropriate techniques and provide

solutions to real time challenges of national and global society

PEO3 Apply ethical knowledge for professional excellence and leadership for the

betterment of the society.

PEO4 Develop life-long learning skills needed for better employment and

entrepreneurship

Program Specific Outcomes (PSOs)

Students will be able to

PSO1

An ability to understand the core concepts of computer science and engineering and to

enrich problem solving skills to analyze, design and implement software and hardware

based systems of varying complexity.

PSO2

To interpret real-time problems with analytical skills and to arrive at cost effective and

optimal solution using advanced tools and techniques.

PSO3

An understanding of social awareness and professional ethics with practical proficiency in

the broad area of programming concepts by lifelong learning to inculcate employment and

entrepreneurship skills.

BLOOM TAXANOMY LEVELS(BTL)

BTL1: Remembering

BTL 2: Understanding.,

BTL 3: Applying.,

BTL 4: Analyzing.,

BTL 5: Evaluating.,

BTL 6: Creating.,

JEPPIAAR ENGINEERING COLLEGE

DEPARTMENT OF CSE

QUESTION BANK

CS6801 MULTI-CORE ARCHITECTURES AND PROGRAMMING L T P C3 0 0 3

OBJECTIVES:

The student should be made to:

 Understand the challenges in parallel and multi-threaded programming.

 Learn about the various parallel programming paradigms, and solutions.

UNIT I MULTI-CORE PROCESSORS 9

Single core to Multi-core architectures – SIMD and MIMD systems – Interconnection

networks -Symmetric and Distributed Shared Memory Architectures – Cache coherence -

Performance Issues –Parallel program design.

UNIT II PARALLEL PROGRAM CHALLENGES 9

Performance – Scalability – Synchronization and data sharing – Data races –

Synchronization primitives (mutexes, locks, semaphores, barriers) – deadlocks and livelocks –

communication between threads (condition variables, signals, message queues and pipes).

UNIT III SHARED MEMORY PROGRAMMING WITH OpenMP 9

OpenMP Execution Model – Memory Model – OpenMP Directives – Work-sharing

Constructs – Library functions – Handling Data and Functional Parallelism – Handling Loops -

Performance

Considerations.

UNIT IV DISTRIBUTED MEMORY PROGRAMMING WITH MPI 9

MPI program execution – MPI constructs – libraries – MPI send and receive – Point-to-

point and Collective communication – MPI derived datatypes – Performance evaluation

UNIT V PARALLEL PROGRAM DEVELOPMENT 9

Case studies - n-Body solvers – Tree Search – OpenMP and MPI implementations and

comparison.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

 Program Parallel Processors.

 Develop programs using OpenMP and MPI.

 Compare and contrast programming for serial processors and programming for parallel

processors.

TEXT BOOKS:

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-Kauffman/Elsevier,

2011.

2. Darryl Gove, “Multicore Application Programming for Windows, Linux, and Oracle Solaris”,

Pearson, 2011 (unit 2)

REFERENCES:

1. Michael J Quinn, “Parallel programming in C with MPI and OpenMP”, Tata McGraw Hill

COURSE OUTCOME

C409.1

Illustrate the challenges in parallel and multi threaded programming

C409.2 Explain the various parallel programming paradigms and solutions.

C409.3 Develop shared memory programs using OpenMP

C409.4 Develop Distributed memory programs using MPI

C409.5 Compare and contrast programming for serial processors and parallel processors.

S.No

UNIT

REF.BOOK

PAGE.NO

1 UNIT I 1. Peter S. Pacheco, “An Introduction to

Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011.

1-8

2 UNIT II 2. Darryl Gove, “Multicore Application

Programming for Windows, Linux, and

Oracle Solaris”,

Pearson, 2011 (unit 2)

8-14

3 UNIT III 1. Peter S. Pacheco, “An Introduction to

Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011.

14-22

4 UNIT IV 1. Peter S. Pacheco, “An Introduction to

Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011.

22-28

5 UNIT V 1. Peter S. Pacheco, “An Introduction to

Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011.

28-36

UNIT –I

MULTI-CORE PROCESSORS

Single core to Multi-core architectures – SIMD and MIMD systems – Interconnection networks -

Symmetric and Distributed Shared Memory Architectures – Cache coherence - Performance

Issues –Parallel program design.

Q. No. Questions CO
Bloom’

s Level

1.
What is Single core processors?

Single core processors have only one processor in die to process

instructions.

C409.1
BTL1

2.

What are the Problems of Single Core Processors:

As we try to increase the clock speed of this processor , the amount

of heat produced by the chip also increases. It is a big hindrance in the

way of single core processors to continue evolving

C409.1 BTL1

3.

What is Multicore processor?

A multi-core processor is a single computing component with two or

more independent actual processing units (called "cores"), which are units

that read and execute program instructions. The multiple cores are embedded

in the same die. The multicore processor may looks like a single processor

but actuall y it contains two (dual - core), three (tri - core), four (quad -

core), six(hexa-core), eight(octa-core)or ten (deca-core) cores.Some

processor even have 22 or 32 cores..

C409.1 BTL1

4.

What are the Problems with multicore processors.

According to Amdahl’s law , the performance of parallel computing

is limited by its serial components. So, increasing the number of cores may

not be the best solution .There is need to increase the clock speed of

individual cores.

C409.1 BTL1

5.

Comparison Of Single-Core processor And Multi-Core Processor.

Parameter Single-Core

Processor

Multi-Core

Processor

Number of cores on a

die
Single Multiple

Instruction Execution
Can execute Single

instruction at a time

Can execute multiple

instructions by using

multiple cores

C409.1 BTL1

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Instruction_set

Gain

Speed up every

program or software

being executed

Speed up the

programs which are

designed for multi-

core processors

Performance

Dependent on the

clock frequency of

the core

Dependent on the

frequency, number of

cores and program to

be executed

Examples

Processor launched

before 2005 like

80386,486, AMD

29000, AMD K6,

Pentium I,II,III etc.

Processor launched

after 2005 like Core -

2-Duo,Athlon 64

X2,I3,I5 and I7 etc

6

What is meant by Single instruction, multiple data (SIMD)

Single instruction, multiple data (SIMD), is a class of parallel computers

in Flynn's taxonomy. It describes computers with multiple processing

elements that perform the same operation on multiple data points

simultaneously. Thus, such machines exploit data level parallelism, but not

concurrency: there are simultaneous (parallel) computations, but only a

single process (instruction) at a given moment

C409.1 BTL1

7

What is meant by multiple instruction, multiple data (MIMD)

In computing, MIMD (multiple instruction, multiple data) is a

technique employed to achieve parallelism. Machines using MIMD have a

number of processors that function asynchronously and independently. At

any time, different processors may be executing different instructions on

different pieces of data. MIMD architectures may be used in a number of

application areas such as computer-aided design/computer-aided

manufacturing, simulation, modeling, and as communication switches.

MIMD machines can be of either shared memory or distributed memory

categories.

C409.1 BTL1

8

Define Multistage interconnection networks.

Multistage interconnection networks (MINs) are a class of high-

speed computer networks usually composed of processing elements (PEs)

on one end of the network and memory elements (MEs) on the other end,

connected by switching elements (SEs).

C409.1 BTL1

9
What is meant by Routing?

-How does a message get from source to destination.

-Static or adaptive

C409.1 BTL1

https://en.wikipedia.org/wiki/Flynn%27s_taxonomy
https://en.wikipedia.org/wiki/Multiple_processing_elements
https://en.wikipedia.org/wiki/Multiple_processing_elements
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Processors
https://en.wikipedia.org/wiki/Asynchrony_%28computing%29
https://en.wikipedia.org/wiki/Computer-aided_design
https://en.wikipedia.org/wiki/Computer-aided_manufacturing
https://en.wikipedia.org/wiki/Computer-aided_manufacturing
https://en.wikipedia.org/wiki/Computer_simulation
https://en.wikipedia.org/wiki/Scientific_modelling
https://en.wikipedia.org/w/index.php?title=Communication_switches&action=edit&redlink=1
https://en.wikipedia.org/wiki/Shared_memory_%28interprocess_communication%29
https://en.wikipedia.org/wiki/Distributed_memory

10
What is Network interface?

-Connects endpoints (e.g. cores) to network.

-Decouples computation/communication

C409.1 BTL1

11

.What is Centralized shared-memory multiprocessor

It share a single centralized memory, interconnect processors and

memory by a bus

• also known as “uniform memory access” (UMA) or “symmetric (shared-

memory) multiprocessor” (SMP)

– A symmetric relationship to all processors.

– A uniform memory access time from any processor.

C409.1 BTL1

12

What is the concept of Caching in shared-memory machines.

• private data: used by a single processor

– When a private item is cached, its location is migrated to the cache

– Since no other processor uses the data, the program behavior is

identical to that in a uniprocessor

• shared data: used by multiple processor

– When shared data are cached, the shared value may be replicated

in multiple caches.

C409.1 BTL1

13

What is Cache Coherence .

• migration: a data item can be moved to a local cache and used

there in a transparent fashion

• replication for shared data that are being simultaneously read both

are critical to performance in accessing shared data.

C409.1 BTL1

14

What is meant by Snooping Solution (Snoopy Bus).

– Send all requests for data to all processors

– Processors snoop to see if they have a copy and respond

accordingly

– Requires broadcast, since caching information is at processors

– Works well with bus (natural broadcast medium)

– Dominates for small scale machines (most of the market)

C409.1 BTL1

15

What is meant by Directory-Based Schemes.

– Directory keeps track of what is being shared in a centralized place

(logically)

– Distributed memory => distributed directory for scalability (avoids

bottlenecks)

– Send point-to-point requests to processors via network

– Scales better than Snooping

– Actually existed BEFORE Snooping-based schemes

C409.1 BTL1

16

When a memory system is coherent ?

A memory system is coherent if:

• P writes to X; no other processor writes to X; P reads X and

receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient time

lapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are seen in the

C409.1 BTL1

same order by all processors – write serialization

• The memory consistency model defines “time elapsed” before the

effect of a processor is seen by others.

17

What is meant by a distributed-memory system?

A distributed-memory system (often called a multicomputer) consist of

multiple independent processing nodes with local memory modules which is

connected by a general interconnection network. Software DSM systems

can be implemented in an operating system, or as a programming library and

can be thought of as extensions of the underlying virtual memory

architecture.

C409.1 BTL1

18

What the difference between Message passing vs. DSM

Message passing Distributed shared memory

Variables have to be marshalled Variables are shared directly

Cost of communication is obvious
Cost of communication is

invisible

Processes are protected by having

private address space

Processes could cause error by

altering data

Processes should execute at the same

time

Executing the processes may

happen with non-overlapping

lifetimes

C409.1 BTL1

19

What are the Advantages of DSM. (Apr/May 2018)

 System scalable

 Hides the message passing

 Can handle complex and large data bases without replication or

sending the data to processes

 DSM is usually cheaper than using multiprocessor system

 No memory access bottleneck, as no single bus

 DSM provides large virtual memory space

 DSM programs portable as they use common DSM programming

interface

 Shields programmer from sending or receive primitives

DSM can (possibly) improve performance by speeding up data access

C409.1 BTL1

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Virtual_memory

20

What the Issues in implementing DSM software

 Data is replicated or cached

 Reduce delays

 Semantics for concurrent access must be clearly specified

 DSM is controlled by memory management software, operating

system, language run-time system

 Locating remote data

 Granularity: how much data is transferred in a single operation

C409.1 BTL1

21

What are the Disadvantages of DSM (Apr/May 2018)

 Could cause a performance penalty

 Should provide for protection against simultaneous access to shared

data such as lock

 Performance of irregular problems could be difficult

C409.1 BTL1

22

What are the Methods of achieving DSM.

There are usually two methods of achieving distributed shared memory:

 hardware, such as cache coherence circuits and network interfaces;

 software.We can use this method in different ways such as

modifying the operating system kernel.

C409.1 BTL1

23
What is meant by Consistency models..

Memory system tries to behave based on certain rules in the system, which

is called system's consistency model.

C409.1 BTL1

24

Define Vector Instruction?(Apr/May2017)

A vector processor or array processor is a central processing unit

(CPU) that implements an instruction set containing instructions that

operate on one-dimensional arrays of data called vectors, compared to scalar

processors, whose instructions operate on single data items.

C409.1 BTL1

25

What is meant by Snooping cache coherence? (Apr/May 2017)

Also referred to as a bus-snooping protocol, a protocol for

maintaining cache coherency in symmetric multiprocessing environments.

In a snooping system, all caches on the bus monitor (or snoop) the bus to

determine if they have a copy of the block of data that is requested on the

bus.

C409.1 BTL1

26

Compare Symmetric memory architecture and distributed memory

architecture. (Nov/Dec 2017)

Sno Symmetric memory

architecture

distributed memory architecture.

C409.1 BTL1

1 sharedmemory cache-

coherent multiprocessor

systems. The systems

communicated with

each other and with

shared main memory

over a shared bus.

distributed memory refers to a

multiprocessor computer system in

which each processor has its own

private memory. Computational tasks

can only operate on local data, and if

remote data is required, the

computational task must

communicate with one or more

remote processors

2 any access from any

processor to main

memory would have

equal latency

any access from any processor to

main memory would have different

latency

27

What are multiprocessor systems and give their advantages? (Nov/Dec

2017)

 Multiprocessor systems also known as parallel systems or tightly

coupled systems are systems that have more than one processor in close

communication, sharing the computer bus, the clock and sometimes

memory & peripheral devices.

Their main advantages are

1Increased throughput

2 Economy of scale

3 Increased reliability

C409.1 BTL1

28 Define Channel?

A single logical connection between routers/switches

C409.1 BTL1

29

List the pros and cons of distributed system (Apr/May 2018)

 System scalable

 Hides the message passing

 Can handle complex and large data bases without replication or

sending the data to processes

 DSM is usually cheaper than using multiprocessor system

 No memory access bottleneck, as no single bus

 DSM provides large virtual memory space

 DSM programs portable as they use common DSM programming

interface

 Shields programmer from sending or receive primitives

DSM can (possibly) improve performance by speeding up data access

 Could cause a performance penalty

 Should provide for protection against simultaneous access to shared

data such as lock

C409.1 BTL1

https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Computer_memory

Performance of irregular problems could be difficult

30

Define the symmetric shared memory (Apr/May 2018, Nov/Dec 2018)

 Symmetric Shared Memory Architecture consists of several processors

with a single physical memory shared by all processors through a shared

bus

C409.1 BTL1

31

List out the advantages of multicore CPU

 The largest boost in performance will likely be noticed in improved

response time while running CPU intensive processes, like anti-virus
scans, ripping/burning media.

 Assuming that the die can fit into the package, physically, the multi-core

CPU designs require much less printed Circuit Board(PCB) space than

multichip SMP designs.

 Also, a dual core processor uses slightly less power than two coupled

single core processors, principally because of the decreased power required
to drive signals external to the chip

C409.1 BTL1

32

Define Vector Registers

These are registers capable of storing a vector of operands and operating

simultaneously on their contents. The vector length is fixed by the system, and can

range from 4 to 128 64-bit elements. Vectorized and pipelined functional units.

C409.1 BTL1

33

Define Latency and Bandwidth

 The latency is the time that elapses between the source’s beginning

to transmit the data and the destination’s starting to receive the first

byte.

 The bandwidth is the rate at which the destination receives data after

it has started to receive the first byte. So if the latency of an

interconnect is l seconds and the bandwidth is b bytes per second,

then the time it takes to transmit a message of n bytes is

 Message transmission time= l+n/b

C409.1 BTL1

34

List out the approaches in cache coherence

 Snooping cache coherence

 Directory-based cache coherence.

C409.1 BTL1

35

List the steps involved in Parallel Program design

1.Partitioning

C409.1 BTL1

2.Aggregating

3.Communication

4.Mapping

36

Define Directory based cache coherence

It is protocols attempt to solve this problem through the use of a data

structure called a directory. The directory stores the status of each cache

line. Typically, this data structure is distributed; in our example, each

core/memory pair might be responsible for storing the part of the structure

that specifies the status of the cache lines in its local memory

C409.1 BTL1

37
Define Parallel Overhead

Tparallel = Tserial/p + Toverhead.

C409.1 BTL1

38

Define Scalability

The number of processes/threads that are used by the program. If we can

find a corresponding rate of increase in the problem size so that the program

always has efficiency E, then the program is scalable.

C409.1 BTL1

39

Define Amdhal’s Law (Nov/Dec 2018)

Amdahl made an observation that’s become known as Amdahl’s law. It

says, roughly, that unless virtually all of a serial program is parallelized, the

possible speedup is going to be very limited—regardless of the number of

cores available.

C409.1 BTL1

40

Define Speedup and Efficiency

The Serial run-time Tserial and our parallel run-time Tparallel, then

the best we can hope for is Tparallel = Tserial/p.

Parallel program has linear speedup. So if we define the speedup of a

parallel program to be linear speedup has S = p, which is unusual.

Furthermore, as p increases,we expect S to become a smaller and smaller

fraction of the ideal, linear speedup p.

C409.1 BTL1

41

How to parallelize the serial program

 For the first step we might identify two types of tasks: finding the

bin to which an element of data belongs and incrementing the

appropriate entry in bin counts.

 For the second step, there must be a communication between the

computation of the appropriate bin and incrementing an element of

bin counts.

C409.1 BTL1

42

List out the different distributed memory interconnects

Distributed-memory interconnects are often divided into two groups:

Direct interconnects and Indirect interconnects

C409.1 BTL1

43

Define Direct Interconnects

In a direct interconnect each switch is directly connected to processor

memory pair, and the switches are connected to each other.

As before, the circles are switches, the squares are processors, and the lines

are bidirectional links.

A ring is superior to a simple bus since it allows multiple simultaneous

communications.

C409.1 BTL1

44

Define Indirect Interconnects

 They provide an alternative to direct interconnects. In an indirect

interconnect the switches may not be directly connected to a

processor.

 They’re often shown with unidirectional links and a collection of

processors, each of which has an outgoing and an incoming link, and

a switching network.

C409.1 BTL1

45
Define Ideal Direct interconnect

The ideal direct interconnect is a fully connected network in which each

switch is directly connected to every other switch

C409.1 BTL1

46

Define Hypercube

 It is a highly connected direct interconnect that has been used in

actual systems. Hypercubes are built inductively:

 A one-dimensional hypercube is a fullyconnected system with two

processors.

 A two-dimensional hypercube is built from two one-dimensional

hypercubes by joining “corresponding” switches

C409.1 BTL1

47
Define Interleaved memory

The memory system consists of multiple “banks” of memory, which can be

accessed more or less independently. After accessing one bank, there will be

C409.1 BTL1

a delay before it can be reassessed, but a different bank can be accessed

much sooner. So if the elements of a vector are distributed across multiple

banks, there can be little to no delay in loading/storing successive elements.

48

Define Strided memory

In strided memory access, the program accesses elements of a vector located

at fixed intervals.For example, accessing the first element, the fifth element,

the ninth element, and so on, would be strided access with a stride of four

C409.1 BTL1

49

Define Graphics Processor Pipeline

 Real-time graphics application programming interfaces, or APIs, use

points,lines,and triangles to internally represent the surface of an object.

They use a graphics processing pipeline to convert the internal

representation into an array of pixels that can be sent to a computer screen

C409.1 BTL1

50

List out the two principal types of MIMD system

 Shared Memory System

 Distributed Memory system

C409.1 BTL1

PART B

Q. No. Questions CO
Bloom’s

Level

1

Explain Single core to Multi-core Architectures .

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:15-20

C409.1

BTL5

2

Explain SIMD and MIMD systems (Apr/May2017,Nov/Dec 2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:29-34

C409.1

BTL5

3

Explain about Interconnection networks? (Apr/May 2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:35-44

C409.1 BTL5

4

Explain with neat diagram Symmetric Shared Memory Architectures

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:35-42

C409.1 BTL5

5

Explain with neat diagram Distributed Shared Memory Architectures

(Nov/Dec 2018)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:43-45

C409.1 BTL5

6

Explain Cache coherence in Symmetric Shared and Distributed Shared

Memory Architectures

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No: 50-55

C409.1 BTL5

7

Explain the performance issues of multicore processor. .(Nov/Dec 2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:58-64

C409.1 BTL5

8

Define cache coherence problem. What are the 2 main approaches to

cache coherence? Describe working of snooping cache coherence and

explain describe directory based coherence. (Nov/Dec 2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:43-45

C409.1 BTL5

9

Explain parallel program design (Apr/May 2017,Nov/Dec 2018)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:65-69

C409.1 BTL5

10

State and explain Amdahl’s law Outline the steps in designing and

building parallel program. Give example (Apr/May 2018)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.1 BTL5

11

Elaborate the classification of computer architecture in parallel

computing system (Apr/May 2018)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.1 BTL5

12

Explain Directory Based cache coherence protocol

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.1 BTL4

13

Generalize the snooping protocol briefly

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.1 BTL6

14

Summarize the Parallelizing the serial program

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.1 BTL5

15

Explain the Shared memory interconnect

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.1 BTL3

16

Highlight the limitations of single core processors and outline how

multicore architecture overcome the limitations

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.1 BTL3

UNIT II

 PARALLEL PROGRAM CHALLENGES

Performance – Scalability – Synchronization and data sharing – Data races – Synchronization

primitives (mutexes, locks, semaphores, barriers) – deadlocks and livelocks – communication

between threads (condition variables, signals, message queues and pipes).

PART A

Q. No. Questions CO

Bloom

’s

Level

1
What is data race?

A data race occurs when multiple threads use the same data item and one or

more of those threads are updating it.

C409.2 BTL1

2
How to avoid data races .

One way to avoid data race is by utilizing proper synchronization

between threads.

C409.2 BTL1

3

Hoe to Avoid Data Races.

Although it can be hard to identify data races, avoiding them can be

very simple: Make sure that only one thread can update the variable at a

time. The easiest way to do this is to place a synchronization lock around all

accesses to that variable and ensure that before referencing the variable, the

thread must acquire the lock.

C409.2 BTL1

4

What is the use of Synchronization Primitives? List out the various

synchronization primitive in parallel programming (Nov/Dec 2018)

Synchronization is used to coordinate the activity of multiple

threads. There are various situations where it is necessary; this might be to

ensure that shared resources are not accessed by multiple threads

simultaneously or that all work on those resources is complete before new

work starts.

Process Synchronization

Memory Synchronization

Thread Synchronization

C409.2 BTL1

5

What is the simplest form of synchronization?

The simplest form of synchronization is a mutually exclusive

(mutex) lock. Only one thread at a time can acquire a mutex lock, so they

can be placed around a data structure to ensure that the data structure is

modified by only one thread at a time.

C409.2 BTL1

6
How to Place Mutex Locks Around Accesses to Variables.

int counter;

mutex_lock mutex;

C409.2 BTL1

void Increment()

{

acquire(&mutex);

counter++;

release(&mutex);}

void Decrement()

{

acquire(&mutex);

counter--;

release(&mutex);}

7

What is meant by contended mutex.

If multiple threads are attempting to acquire the same mutex at the

same time, then only one thread will succeed, and the other threads will

have to wait. This situation is known as a contended mutex.

C409.2 BTL1

8

What is critical region.

The region of code between the acquisition and release of a mutex

lock is called a critical section, or critical region. Code in this region will be

executed by only one thread at a time.

C409.2 BTL1

9

Develop the code for Placing a Mutex Lock Around a Region of Code

void * threadSafeMalloc(size_t size)

{

acquire(&mallocMutex);

void * memory = malloc(size);

release(&mallocMutex);

return memory;

}

C409.2

BTL6

10
What is meant by Spin Locks.

Spin locks are essentially mutex locks. The thread waiting to acquire a spin

lock will keep trying to acquire the lock without sleeping

C409.2
BTL1

11

Compare spin lock and mutex lock. (Apr/May 2018)

The difference between a mutex lock and a spin lock is that a thread

waiting to acquire a spin lock will keep trying to acquire the lock without

sleeping .In comparison; a mutex lock may sleep if it is unable to acquire

the lock.

C409.2

BTL2

12

Write the advantage of spin locks.

The advantage of using spin locks is that they will acquire the lock as soon

as it is released, whereas a mutex lock will need to be woken by the

operating system before it can get the lock

C409.2 BTL1

13

What is the disadvantage of spin locks.

The disadvantage is that a spin lock will spin on a virtual CPU

monopolizing that resource. In comparison, a mutex lock will sleep and free

the virtual CPU for another thread to use.

C409.2 BTL1

14

What is Semaphores?

Semaphores are counters that can be either incremented or

decremented. They can be used in situations where there is a finite limit to a

resource and a mechanism is needed to impose that limit. Semaphores will

also signal or wake up threads that are waiting on them to use available

resources

C409.2 BTL1

15

What is an example for semaphore.

 An example might be a buffer that has a fixed size. Every time an element

is added to a buffer, the number of available positions is decreased. Every

time an element is removed, the number available is increased

C409.2 BTL1

16

What is wait and release in semaphore.

the method that acquires a semaphore might be called wait, down, or

acquire, and the method to release a semaphore might be called post,up,

signal, or release. When the semaphore no longer has resources available,

the threads requesting resources will block until resources are available.

C409.2 BTL1

17

Define readerswriter lock.

A readerswriter lock (or multiple-reader lock) allows many threads

to read the shared data but can then lock the readers threads out to allow one

thread to acquire a writer lock to modify the data.

C409.2 BTL1

18

Show an example for Readers-Writer Lock.

int readData(int cell1, int cell2)

{

acquireReaderLock(&lock);

int result = data[cell] + data[cell2];

releaseReaderLock(&lock);

return result;

}

void writeData(int cell1, int cell2, int value)

{

acquireWriterLock(&lock);

data[cell1] += value;

data[cell2] -= value;

releaseWriterLock(&lock);

}

C409.2 BTL1

19

What are the use of Barriers.

There are situations where a number of threads have to all complete their

work before any of the threads can start on the next task. In these situations,

it is useful to have a barrier where the threads will wait until all are present

C409.2 BTL1

20

Show One common example of using a barrier.

One common example of using a barrier arises when there is a

dependence between different sections of code. For example, suppose a

number of threads compute the values stored in a matrix. The variable total

needs to be calculated using the values stored in the matrix. A barrier can be

used to ensure that all the threads complete their computation of the matrix

C409.2 BTL1

before the variable total is calculated .ZThe following example shows a

situation using a barrier to separate the calculation of a variable from its use.

Compute_values_held_in_matrix();

Barrier();

total = Calculate_value_from_matrix();

21 What is data sharing. (Apr/May 2017)

Sharing data between multiple threads is called data sharing.

C409.2 BTL1

22

What are the difference between deadlock and livelock. (Apr/May

2017)(Nov/Dec 2018)

 The deadlock occurs where two or more threads cannot make

progress because the resources that they needare held by the other threads.

 Example:Suppose two threads need to acquire mutex locks A and B to

complete some task. If thread 1 has already acquired lock A and thread 2

has already acquired lock B, then A cannot make forward progress because

it is waiting for lock B, and thread 2 cannot make progress because it is

waiting for lock A. The two threads are deadlocked.

C409.2 BTL1

23

What are conditions under which a deadlock situation may arise?

(Nov/Dec 2017)

Mutual Exclusion: At least one resource is held in a non-sharable

mode that is only one process at a time can use the resource. If

another process requests that resource, the requesting process must

be delayed until the resource has been released.

Hold and Wait:There must exist a process that is holding at least

one resource and is waiting to acquire additional resources that are

currently being held by other processes.

No Preemption: Resouces cannot be preempted; that is, a resource

can only be released voluntarily by the process holding it, after the

process has completed its task.

Circular Wait: There must exist a set {p0, p1,.....pn} of waiting

processes such that p0 is waiting for a resource which is held by p1,

p1 is waiting for a resource which is held by p2,..., pn-1 is waiting for

a resource which is held by pn and pn is waiting for a resource which

is held by p0.

C409.2

BTL1

24

Define thread. mention the uses of swapping. (Nov/Dec 2017)

A thread is the smallest unit of processing that can be performed in an OS.

In most modern operating systems, a thread exists within a process - that is,

a single process may contain multiple threads

C409.2

BTL1

25

Define deadlock.

Deadlock is the situation where two or more threads cannot make progress

because the resources that they need are held by the other threads. It is

easiest to explain this with an example. Suppose two threads need to acquire

mutex locks A and B to complete some task. If thread 1 has already

acquired lock A and thread 2 has already acquired lock B, then A cannot

make forward progress because it is waiting for lock B, and thread 2 cannot

make progress because it is waiting for lock A. The two threads are

deadlocked

C409.2 BTL1

26

How to communicate multiple threads.

The easiest way for multiple threads to communicate is through

memory. If two threads can access the same memory location, the cost of

that access is little more than the memory latency of the system. Of course,

memory accesses still need to be controlled to ensure that only one thread

writes to the same memory location at a time. A multithreaded application

will share memory between the threads by default, so this can be a very

low-cost approach. The only things that are not shared between threads are

variables on the stack of each thread (local variables) and thread-local

variables.

C409.2 BTL1

27

Illustrate an example which Use Multiple Barriers.

Compute_values_held_in_matrisx();

Barrier();

total = Calculate_value_from_matrix();

Barrier();

Perform_next_calculation(total);

C409.2

BTL2

28
Define live lock.

A livelock traps threads in an unending loop releasing and acquiring locks.

Livelocks can be caused by code to back out of deadlocks.

C409.2
BTL1

29.

What is An atomic operation

An atomic operation is one that will either successfully complete or

fail; it is not possible for the operation to either result in a “bad” value or

allow other threads on the system to observe a transient value.

C409.2

BTL1

30 Write down the performance metrics (Apr/May 2018)

C409.2 BTL1

31

Define Message Queue

A message queue is a structure that can be shared between multiple

processes. Messages can be placed into the queue and will be removed in

the same order in which they were added. Constructing a message queue

looks rather like constructing a shared memory segment.

C409.2

BTL1

32

Define Named Pipes

UNIX uses pipes to pass data from one process to another. For example, the

output from the command ls, which lists all the files in a directory, could be

piped into the wc command, which counts the number of lines, words, and

characters in the input

C409.2

BTL1

33

Mention the mechanism associated with Named Pipes

Setting Up and Writing into a Pipe Make Pipe(Descriptor); ID = Open

Pipe(Descriptor); Write Pipe(ID, Message, sizeof(Message)); ... Close

Pipe(ID); Delete Pipe(Descriptor);

Opening an Existing Pipe to Receive Messages ID=Open Pipe(Descriptor);

Read Pipe(ID, buffer, sizeof(buffer)); Close Pipe(ID);

C409.2

BTL1

34

How to create and Place Message Queues

Creating and Placing Messages into a Queue ID = Open Message Queue

Queue(Descriptor); Put Message in Queue(ID, Message); Close Message

Queue(ID);

Delete Message Queue(Description);

Using the descriptor for an existing message queue enables two processes to

communicate by sending and receiving messages through the queue.

Opening a Queue and Receiving Messages ID=Open Message Queue

ID(Descriptor);

Message=Remove Message from Queue(ID); ... Close Message Queue(ID);

C409.2

BTL1

35

What is the fundamental way to share access to resources between

threads

 Deadlock

 Livelock

C409.2

BTL1

36

Give an example of critical regions

An operating system does not have an implementation of malloc() that is

thread-safe, or safe for multiple threads to call at the same time. One way to

fix this is to place the call to malloc() in a critical section by surrounding it

with a mutex lock

C409.2

BTL1

37
List out the issues in shared caches

 Capacity misses

 Conflict misses

C409.2
BTL1

38

Define False sharing

False sharing is the situation where multiple threads are accessing items of

data held on a single cache line.

Although the threads are all using separate items of data, the cache line

itself is shared between them so only a single thread can write to it at any

one time.

C409.2

BTL1

39 List out the Memory Bandwidth Measured on a System with Four

Virtual CPUs

C409.2 BTL1

Threads Time 7.437563 s Bandwidth 2.63 GB/s

Threads Time 15.238317 s Bandwidth 2.57 GB/s

Threads Time 24.580981 s Bandwidth 2.39 GB/s

Threads Time 37.457352 s Bandwidth 2.09 GB/s

40

What are the measures to be taken when bandwidth size reduces

The threads are interfering on the processor.

 A second interaction effect is if the threads start interfering in the

caches, such as multiple threads attempting to load data to the same

set of cache lines.

 One other effect is the behavior of memory chips when they become

saturated. The chips start experiencing queuing latencies where the

response time for each request increases. Memory chips are arranged

in banks.

 Accessing a particular address will lead to a request to a particular

bank of memory. Each bank needs a gap between returning two

responses. If multiple threads happen to hit the same bank, then the

response time becomes governed by the rate at which the bank can

return memory

C409.2

BTL1

41

Write a code to measure memory bandwidth using Memset

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <pthread.h>

#include <sys/time.h>

#define BLOCKSIZE 1024*1025

int nthreads = 8;

char * memory;

double now()

{

struct timeval time;

gettimeofday(&time, 0);

return (double)time.tv_sec + (double)time.tv_usec / 1000000.0;

}

void *experiment(void *id)

{

unsigned int seed = 0;

int count = 20000;

for(int i=0; i<count; i++)

{

memset(&memory[BLOCKSIZE * (int)id], 0, BLOCKSIZE);

}

C409.2

BTL1

42

How Bandwidth share between cores

Bandwidth is another resource shared between threads. The bandwidth

capacity of a system depends on the design of the processor and the memory

system as well as the memory chips and their location in the system

C409.2

BTL1

43

List out the three critical areas to address large difference scaling

 The amount of bandwidth to cache and the memory will be divided

among the active threads on the system.

 The design of the caches will determine how much time is lost

because of capacity and conflict-induced cache misses.

 The way that the processor core pipelines are shared between active

software threads will determine how instruction issue rates change

as the number of active threads increases.

C409.2

BTL1

44

What is the role default malloc()

The default malloc() provides better performance than the alternative

implementation. The algorithm that provides improved scaling also adds a

cost to the single-threaded situation; it can be hard to produce an algorithm

that is fast for the single- threaded case and scales well with multiple

threads.

C409.2

BTL1

45

Define an idea to choose the appropriate data structures

Choosing the best structure to hold data, such as choosing an algorithm of

the appropriate complexity, can have a major impact on overall

performance.
Some structures will be efficient when data is accessed in one pattern, while

other structures will be more efficient if the access pattern is changed.

C409.2

BTL1

46

Define Column major order

The opposite ordering is followed, so adjacent elements of the first index

are adjacent in memory. This is called column-major order. Accessing

elements by a stride is a common error in codes translated from Fortran into

C. It shows how memory is addressed in C, where adjacent elements in a

row are adjacent in memory.

C409.2

BTL1

47

How to select the appropriate array access pattern

One common data access pattern is striding through elements of an array.

The performance of the application would be better if the array could be

arranged so that the selected elements were contiguous.

C409.2

BTL1

48

List out the techniques to reduce the latency

 Out of order execution

 Hardware prefetching

 Software prefetching

C409.2

BTL1

49

List out the non technical reasons why functionality get placed in

libraries

 Libraries often represent a convenient product for an organizational

unit. One group of developers might be responsible for a particular

library of code, but that does not automatically imply that a single

library represents the best way for that code to be delivered to the

end users.

 Libraries are also used to group related functionality. For example,

an application might contain a library of string-handling functions.

Such a library might be appropriate if it contains a large body of

code. On the other hand, if it contains only a few small routines, it

might be more appropriate to combine it with another library.

C409.2

BTL1

50

Why Algorithm complexity is important

Algorithmic complexity represents the expected performance of a section of

code as the number of elements being processed increases. In the limit, the

code with the greatest algorithmic complexity will dominate the runtime of

the application

C409.2

BTL1

.

PART B

Q. No. Questions CO
Bloom’

s Level

1.

Explain about Synchronization and data sharing in detail.

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011 Pg.No:121-126

C409.2 BTL5

2.

Explain Synchronization primitives mutexes and locks.

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011 Pg.No:126-128

C409.2 BTL5

3.

Explain Synchronization primitives in semaphores and barriers in

detail.

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011 Pg.No:128-129

C409.2 BTL5

4.

Explain the concepts of deadlocks and live locks

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011 Pg.No:132-133

C409.2 BTL5

5.

Explain communication between threads using condition variables and

signals.

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011 Pg.No:133-139

C409.2 BTL5

6.

Explain communication between threads using message queues and

pipes.

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011 Pg.No:138-139

C409.2 BTL5

7.

Explain data races and scalability in parallel program. (apr/may2017)

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011 Pg.No:121-126

C409.2 BTL5

8.

Explain Synchronization primitives in parallel program challenges.

(Apr/may2017)

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011 Pg.No:126-130

C409.2 BTL5

9

Explain the various approaches to parallel programming. .(Nov/Dec

2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:43-47

C409.2 BTL5

10.

What is a data race? What are the tools used for detecting data races?

How to avoid races? (Nov/Dec 2017) (Apr/May 2018)

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011 Pg.No:121-125

C409.2 BTL5

11

(i)Discuss in detail about producer consumer synchronization (ii)Write

a simple semaphore to send a message (Apr/May 2018)

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011

C409.2 BTL5

12

Write a short notes on deadlocks, livelocks and named pipes

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011

C409.2 BTL5

13

Discuss in detail about the importance of algorithmic complexity

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011

C409.2 BTL2

14

Explain the outline about necessity of structure reflects in performance

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011

C409.2 BTL4

15

Write in detail and summarize about hardware constraints applicable

in improving scaling

2. Darryl Gove, “Multicore Application Programming for Windows, Linux,

and Oracle Solaris”, Pearson, 2011

C409.2 BTL5

UNIT III

 SHARED MEMORY PROGRAMMING WITH OpenMP

OpenMP Execution Model – Memory Model – OpenMP Directives – Work-sharing Constructs –

Library functions – Handling Data and Functional Parallelism – Handling Loops – Performance

Considerations.

Q. No. Questions CO
Bloom’

s Level

1.

What is OpenMP?

Like Pthreads, OpenMP is an API for shared-memory parallel

programming. The “MP” in OpenMP stands for “multiprocessing,” a term

that is synonymous with shared-memory parallel computing. Thus, OpenMP

is designed for systems in which each thread or process can potentially have

access to all available memory, and, when we’re programming with

OpenMP, we view our system as a collection of cores or CPUs, all of which

have access to main memory.

C409.3

BTL1

2.

What is Pthread.

Pthreads is lower level and provides us with the power to program

virtually any conceivable thread behavior. This power, however, comes with

some associated cost—it’s up to us to specify every detail of the behavior of

each thread.

C409.3 BTL1

3.

What the difference between Pthreads and OpenMP.

 Pthreads requires that the programmer explicitly specify the

behavior of each thread. OpenMP, on the other hand, sometimes allows the

programmer to simply state that a block of code should be executed in

parallel, and the precise determination of the tasks and which thread should

execute them is left to the compiler and the run-time system. This suggests a

further difference between OpenMP and Pthreads, that is, that Pthreads (like

MPI) is a library of functions that can be linked to a C program, so any

Pthreads program can be used with any C compiler, provided the system has

a Pthreads library. OpenMP, on the other hand, requires compiler support

for some operations, and hence it’s entirely possible that you may run across

a C compiler that can’t compile OpenMP programs into parallel programs.

C409.3 BTL1

4.

What is the Execution Model of OpenMp.

The OpenMP API uses the fork-join model of parallel execution.

Multiple threads of execution perform tasks defined implicitly or explicitly

by OpenMP directives. The OpenMP API is intended to support programs

that will execute correctly both as parallel programs (multiple threads of

C409.3 BTL1

execution and a full OpenMP support library) and as

sequential programs (directives ignored and a simple OpenMP stubs

library).

5.
What is an initial thread in OpenMP?

An OpenMP program begins as a single thread of execution, called

an initial thread.

C409.3 BTL1

6.

How to compile and running OpenMP programs

To compile this with gcc we need to include the -fopenmp option
$ gcc –g –Wall –fopenmp –o omp_hello omp_hello.c

To run the program, we specify the number of threads on the command line.

For example, we might run the program with four threads and type

$./omp_hello 4

7

What is termed as initial task region. .(Nov/Dec 2017)

The initial task region, that is defined by an implicit inactive parallel

region surrounding the whole program.When any thread encounters a

parallel construct, the thread creates a team of itself and zero or

more additional threads and becomes the master of the new team. A set

of implicit tasks, one per thread, is generated

C409.3 BTL1

8

Define odd even transportation sort? . (Apr/May 2017)

• Parallelizable version of Bubble sort

• Requires N passes through the array.

• Each pass through the array analyzes either:

– Every pair of odd indexed elements and the preceding

element, or

– Every pair of even indexed elements and the preceding

element.

• Within each pass, elements that are not in order are swapped.

C409.3 BTL1

9.
Develop a”hello word” program inthat uses open MP. . (Apr/May 2017)

Hello world program in C using MPI:
 #include <stdio.h>

C409.3 BTL1

 #include <mpi.h>

 main(int argc, char **argv)

 {

 int ierr;

 ierr = MPI_Init(&argc, &argv);

 printf("Hello world\n");

 ierr = MPI_Finalize();

 }

10

Define Message Queue.(Nov/Dec 2017)

Message queues provide an asynchronous communications protocol,

meaning that the sender and receiver of the message do not need to interact

with the message queue at the same time. Messages placed onto the queue

are stored until the recipient retrieves them.

C409.3 BTL1

11.

What is an initial task region?

An initial thread executes sequentially, as if enclosed in an implicit

task region, called an initial task region, that is defined by the implicit

parallel region surrounding the whole program.

C409.3 BTL1

12

Discuss the Structure of the OpenMP Memory Model

The OpenMP API provides a relaxed-consistency, shared-memory

model. All OpenMP threads have access to a place to store and to retrieve

variables, called the memory. In addition, each thread is allowed to have its

own temporary view of the memory.

C409.3 BTL1

13
What is threadprivate memory?

Each thread also has access to another type of memory that must not

be accessed by other threads, called threadprivate memory.

C409.3 BTL1

14

Show the format of directive in OpenMP.

#pragma omp directive-name [clause[[,] clause]...] new-line

Each directive starts with #pragma omp. The remainder of the

directive follows the conventions of the C and C++ standards for compiler

directives. In particular, white space can be used before and after the #, and

sometimes white space must be used to separate the words in a directive.

C409.3

BTL2

15

What is meant by Stand-alone directives?

Stand-alone directives do not have any associated executable user code.

Instead, they represent executable statements that typically do not have

succinct equivalent statements in the base languages. There are some

restrictions on the placement of a stand-alone directive within a program. A

stand-alone directive may be placed only at a point where a base language

executable statement is allowed

C409.3 BTL1

16

What is the use of parallel construct?

This fundamental construct starts parallel execution.

#pragma omp parallel [clause[[,]clause] ...] new-line

structured-block

where clause is one of the following:

C409.3 BTL1

#pragma omp parallel [clause[[,]clause] ...] new-line

structured-block

if(scalar-expression)

num_threads(integer-expression)

default(shared | none)

private(list)

firstprivate(list)

shared(list)

copyin(list)

reduction(redution-identifier :list)

proc_bind(master | close | spread)

17

What is Worksharing Constructs?

A worksharing construct distributes the execution of the associated

region among the members of the team that encounters it. Threads execute

portions of the region in the context of the implicit tasks each one is

executing. If the team consists of only one thread then the worksharing

region is not executed in parallel.

C409.3

BTL1

18

List some worksharing constructs.

The OpenMP API defines the following worksharing constructs.

• loop construct

• sections construct

• single construct

• workshare construct

C409.3

BTL4

19

List the the Restrictions apply to worksharing constructs.

The following restrictions apply to worksharing constructs:

• Each worksharing region must be encountered by all threads in a team or

by none at all, unless cancellation has been requested for the innermost

enclosing parallel region.

• The sequence of worksharing regions and barrier regions encountered

must be the same for every thread in a team.

C409.3

BTL4

20

Show the syntax of the loop construct.

The syntax of the loop construct is as follows:

#pragma omp for [clause[[,] clause] ...] new-line

for-loops

where clause is one of the following:

private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier: list)

schedule(kind[, chunk_size])

collapse(n)

ordered

nowait

C409.3 BTL1

21 What is meant by binding?

The binding thread set for a loop region is the current team. A loop region

C409.3 BTL1

binds to the innermost enclosing parallel region. Only the threads of the

team executing the binding parallel region participate in the execution of

the loop iterations and the implied barrier of the loop region if the barrier is

not eliminated by a nowait clause

22

What is the use of collapse clause.

The collapse clause may be used to specify how many loops are

associated with the loop construct. The parameter of the collapse clause

must be a constant positive integer expression. If no collapse clause is

present, the only loop that is associated with the loop construct is the one

that immediately follows the loop directive.

C409.3

BTL1

23

List the Restrictions to the loop construct.

Restrictions to the loop construct are as follows:

• All loops associated with the loop construct must be perfectly

nested; that is, there must be no intervening code nor any OpenMP

directive between any two loops.

• The values of the loop control expressions of the loops associated

with the loop construct must be the same for all the threads in the

team.

• Only one schedule clause can appear on a loop directive.

• Only one collapse clause can appear on a loop directive.

• chunk_size must be a loop invariant integer expression with a

positive value.

• The value of the chunk_size expression must be the same for all

threads in the team.

• The value of the run-sched-var ICV must be the same for all

threads in the team.

• When schedule(runtime) or schedule(auto) is specified,

chunk_size must not be specified.

• Only one ordered clause can appear on a loop directive.

• The ordered clause must be present on the loop construct if any

ordered region ever binds to a loop region arising from the loop

construct.

• The loop iteration variable may not appear in a threadprivate directive

C409.3

BTL4

24

How to Determine the Schedule of a Worksharing Loop?

When execution encounters a loop directive, the schedule clause (if

any) on the directive, and the run-sched-var and def-sched-var ICVs are

used to determine how loop iterations are assigned to threads.. If the loop

directive does not have a schedule clause then the current value of the def-

sched-var ICV determines the schedule. If the loop directive has a schedule

clause that specifies the runtime schedule kind then the current value of the

run-sched-var ICV determines the schedule. Otherwise, the value of the

schedule clause determines the schedule.

C409.3 BTL1

25 What is The sections construct.

The sections construct is a non-iterative work sharing construct that

C409.3 BTL1

contains a set of structured blocks that are to be distributed among and

executed by the threads in a team. Each structured block is executed once by

one of the threads in the team in the context of its implicit task.

26

Show the the syntax of the sections construct.

The syntax of the sections construct is as follows:

#pragma omp sections [clause[[,] clause] ...] new-line

{[

#pragma omp section new-line]

structured-block

[#pragma omp section new-line

structured-block]

...

}

where clause is one of the following

private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier:list)

nowait

C409.3

BTL1

27

List the Restrictions to the sections construct .

• Orphaned section directives are prohibited. That is, the section

directives must appear within the sections construct and must not be

encountered elsewhere in thesections region.

• The code enclosed in a sections construct must be a structured

block.

• Only a single nowait clause can appear on a sections directive.

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier:list)

• A throw executed inside a sections region must cause execution to

resume within

the same section of the sections region, and the same thread that

threw the

exception must catch it.

C409.3

BTL4

28

Show The syntax of the single construct .

!$omp single [clause[[,] clause] ...]

structured-block

!$omp end single [end_clause[[,] end_clause] ...]

where clause is one of the following:

private(list)

firstprivate(list)

and end_clause is one of the following:

C409.3 BTL1

copyprivate(list)

nowait

29

Show the syntax of the workshare construct.

!$omp workshare

structured-block

!$omp end workshare [nowait]

The enclosed structured block must consist of only the following:

• array assignments

• scalar assignments

• FORALL statements

• FORALL constructs

• WHERE statements

• WHERE constructs

• atomic constructs

C409.3 BTL1

30

List the restrictions apply to the workshare construct:

• All array assignments, scalar assignments, and masked array

assignments must be intrinsic assignments.

• The construct must not contain any user defined function calls

unless the function is ELEMENTAL

C409.3

BTL4

31

 What is the use of schedule clause.

If more than one loop is associated with the loop construct, then the

iterations of all associated loops are collapsed into one larger iteration space

that is then divided according to the schedule clause. The sequential

execution of the iterations in all associated loops determines the order of the

iterations in the collapsed iteration space

C409.3

BTL1

32

What is the use of single construct.

The single construct specifies that the associated structured block is

executed by only one of the threads in the team (not necessarily the master

thread), in the context of its implicit task. The other threads in the team,

which do not execute the block, wait at an implicit barrier at the end of the

single construct unless a nowait clause is specified

C409.3

BTL1

33

List the Restrictions to the single construct are as follows:

• The copyprivate clause must not be used with the nowait clause.

• At most one nowait clause can appear on a single construct.

C409.3

BTL4

34

What is workshare construct?

The workshare construct divides the execution of the enclosed

structured block into separate units of work, and causes the threads of the

team to share the work such that each unit is executed only once by one

thread, in the context of its implicit task.

C409.3

BTL1

35 Explain Scope of a variable (Apr/May 2018) C409.3 BTL1

36 Define Race Condition (Apr/May 2018) C409.3 BTL1

37

State the trapezoidal rule in OpenMP (Nov/Dec 2018)
for (i = 1; i <= n-1; i++)

{

x_i = a + i*dx;
approx += f(x_i);

}

approx = dx*approx;

C409.3

BTL1

38

Define Coherence and consistency

 Coherence refers to the behavior of the memory system when a

single memory location is accessed by multiple threads.

 Consistency refers to the ordering of accesses to different memory

locations, observable from various threads in the system

C409.3

BTL1

39

Define data race
 A data race is defined to be accesses to a single variable by at least

two threads, at least one of which is a write, not separated by a

synchronization operation.

 OpenMP does guarantee certain consistency behavior, however.

That behavior is based on the OpenMP flush operation.

C409.3

BTL1

40

Define OpenMP flush operation

 The OpenMP flush operation is applied to a set of variables

called the flush set. Memory operations for variables in the flush

set that precede the flush in program execution order must be

firmly lodged in memory and available to all threads before the

flush completes, and memory operations for variables in the flush

set, that follow a flush in program order cannot start until the

flush completes.

41

Mention the actions to be taken to move the value from one thread to

another thread

 The first thread writes the value to the shared variable,

 The first thread flushes the variable

 The second thread flushes the variable and

 The second thread reads the variable

C409.3

BTL1

42
List out the two methods available for enabling nested parallel regions

1.The omp_set_nested() library routine

2. Setting of the OMP_NESTED environment variable to TRUE

C409.3
BTL1

43

What is data dependences

1. OpenMP compilers don’t check for dependences among iterations in a

loop that’s being parallelized with a parallel for directive. It’s up to us, the

programmers, to identify these dependences.

2. A loop in which the results of one or more iterations depend on other

C409.3

BTL1

iterations cannot, in general, be correctly parallelized by OpenMP.

44

Define Atomic Directive
The atomic directive ensures that a specific memory location is updated

atomically, rather than exposing it to the possibility of multiple,

simultaneous writing threads.

The atomic directive supports no OpenMP clauses.

Syntax

#pragma omp atomic expression

C409.3

BTL1

45

Define Critical Directive

Specifies that code is only executed on one thread at a time. OpenMP does

provide the option of adding a name to a critical directive:

Syntax

pragma omp critical(name)

C409.3

BTL1

46

List out the two types of locks in OpenMP to destroy lock data

structures

 Simple locks

 Nested Locks

C409.3

BTL1

47

Define Barrier Directive and Master Directive

A barrier directive will cause the threads in a team to block until all the

threads have reached the directive.

Syntax

#pragma omp barrier

Specifies that only the master thread should execute a section of the

program.

Syntax

pragma omp master

C409.3

BTL1

48

Which are the OpenMP clauses supported by Single directive

 copyprivate

 firstprivate

 nowait

 private

C409.3

BTL1

49

Define Synchronization Clauses

 Critical

 Atomic

 Ordered

 Barrier

 Nowait

C409.3

BTL1

50

List out the three types of Scheduling?

 Static

 Dynamic

 Guided

C409.3

BTL1

51 Define Data parallelism

Data parallelism is a form of parallelization across multiple

C409.3 BTL1

processors in parallel computing environments. It focuses on

distributing the data across different nodes, which operate on the

data in parallel. It can be applied on regular data structures like

arrays and matrices by working on each element in parallel.

52

List out the four discrete steps to parallelization

C409.3

BTL1

53

What are Loop Carried Dependencies

Loop-Carried Dependence Verification in OpenMP. Data dependence

analysis is a very difficult task, mainly due to the limitations imposed by

pointer aliasing, and by the overhead of dynamic data dependence analysis.

C409.3

BTL1

. ` PART B

Q. No. Questions CO
Bloom’s

Level

1.

Explain OpenMP Execution Model in detail with example.(Nov/Dec

2017) (Apr/May 2018)
1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:210-215

C409.3

BTL5

2.

Explain the Memory Model of OpenMP. (Apr/May 2018)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:213-215

C409.3 BTL5

3.

Explain the OpenMP Directives . (Apr/may2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:224-231

C409.3 BTL5

4.

Explain the Library functions used in OpenMP.

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:

C409.3 BTL5

5.

Explain in detail how to Handle Loops in OpenMP (Nov/Dec 2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No: 236-240

C409.3 BTL5

6.

Explain OpenMP directives. . (Apr/may 2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:224-231

C409.3 BTL5

7.

How data and functional parallelism are handled in shared memory

programming with open MP? (Apr/may2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:212-215

C409.3 BTL5

8.

Explain in detail about the handling loops in parallel operations

(Nov/Dec 2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:236-240

C409.3 BTL5

9

Write an example program for shared memory programming with

Pthread (Apr/May 2018)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:236-240

C409.3 BTL5

10

Explain in detail about the synchronization primitives in parallel

program challenges (Apr/May 2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:236-240

C409.3 BTL5

11

Explain the type shared memory model

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

 BTL5

12

Collect the all information about internal control variable

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

 BTL1

13

Explain briefly about General Data Parallelism

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

 BTL4

14

(i)Explain the NoWait Clause

(ii)Explain the single pragma

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

 BTL4

15

(i)Illustrate the runtime library definitions

(ii)llustrate the execution environment routines

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

 BTL3

UNIT IV

DISTRIBUTED MEMORY PROGRAMMING WITH MPI

MPI program execution – MPI constructs – libraries – MPI send and receive – Point-to-point and

Collective communication – MPI derived datatypes – Performance evaluation.

PART A

Q. No. Questions CO

Bloom

’s

Level

1.

What is MPI?

One process calls a send function and the other calls a receive function. The

implementation of message-passing that will be using is called MPI

(Message-Passing Interface). MPI is not a new programming language. It

defines a library of functions that can be called from C, C++, and

FORTRAN Programs

C409.4 BTL1

2.

How to execute MPI programs?

Many systems use the command called mpicc to compile and run MPI

programs:

mpicc -g -Wall -o mpi hello mpi hello.c

C409.4

BTL1

3.

What is the use of Wrapper Script. (Apr/May 2017)

A wrapper script is a script whose main purpose is to run some

program. In this case, the program is the C compiler.The wrapper

simplifies the running of the compiler by telling it where to find the

necessary header files and which libraries to link with the object file.

C409.4

BTL1

4.

Show the syntax of MPI_init and MPI_finalize

The syntax of MPI_ Init ():

int MPI _Init(

int* argc p /* in/out */,

char*** argv p /* in/out */);

The syntax of MPI_ Finalize():

int MPI_ Finalize(void);

C409.4

BTL1

5.

What is Communicator in MPI?

In MPI a communicator is a collection of processes that can send

messages to each other. One of the purposes of MPI Init is to define a

communicator that consists of all of the processes started by the user

when she started the program. This communicator is called MPI_

COMM_WORLD.

C409.4

BTL1

6.

What is a SPMD program?

A single program is written so that different processes carry out different

actions, and this is achieved by simply having the processes branch on the

basis of their process rank. This approach to parallel programming is called

single program, multiple data, or SPMD

C409.4 BTL1

7.

Give the syntax of MPI_Get_count

The syntax of MPI_Get_count is

int MPI_Get_count(

MPI_Status* status_p /* in */,

MPI_Datatype type /* in */,

int* count p /*out */);

C409.4

BTL1

8.

What is Non-overtaking?

If process q sends two messages to process r, then the first

message sent by q must be available to r before the second message.

There is no restriction on the arrival of messages sent from different

processes. ie., if q and t both send messages to r, then even if q sends its

message before t sends its message, there is no requirement that q’s

message become available to r before t’s message. This is essentially

because MPI can’t impose performance on a network.

C409.4

BTL1

9

Evaluate the performance evaluation methods in distributed memory

programming. .(Nov/Dec 2017,
1.Timing performance

2.performance Results

3.Speedup performance

4.efficiency performance

5.Scalability performance

C409.4 BTL5

10

What is wildcard argument?

The wildcard arguments:

o Only a receiver can use a wildcard argument. Senders must specify a

process rank and a nonnegative tag. Thus, MPI uses a “push”

communication mechanism rather than a “pull” mechanism.

There is no wildcard for communicator arguments; both senders and

receivers must always specify communicators

C409.4

BTL1

11 Show the area of the trapezoid.

Area of one trapezoid = h/2[f (xi) + (f (xi+1)]
C409.4 BTL1

12
Define collective communications in MPI.

In MPI parlance, communication functions that involve all the

processes in a communicator are called collective communications.

C409.4
BTL1

13

What is Local Variables? Give Examples.

Local variables are variables whose contents are significant only on

the process that’s using them. Some examples are: local a, local b and

C409.4

BTL1

local n.

14

What is Global Variables? Give Examples.

Variables whose contents are significant to all the processes are

sometimes called global variables. Some examples are: a, b and n.

C409.4

BTL1

15
What is point to point communications in MPI?

MPI_Send and MPI_Recv are often called point-to-point

communications.

C409.4
BTL1

16

List any two points stating that how collective communication differ

from point to point communication.

 All the processes in the communicator must call the same collective

function. Example, a program that attempts to match a call to MPI_Reduce

on one process with a call to MPI_ Recv on another process is erroneous,

and, in all likelihood, the program will hang or crash.

C409.4 BTL4

17

What is a butterfly-structured global sum?

The processes exchange partial results instead of using one-way

communications. Such a communication pattern is sometimes called a

butterfly-structured global sum.

C409.4

BTL1

18
What is broadcast?

A collective communication in which data belonging to a single process

is sent to all of the processes in the communicator is called a broadcast

C409.4
BTL1

19

Show a broadcast function.

A broadcast function:

int MPI_Bcast (

void* data p /* in/out */,

int count /* in */,

MPI_Datatype datatype /* in */,

int source proc /* in */,

MPI_Comm comm /* in */);

C409.4

BTL1

20

Define block partition of the vector.

The work consists of adding the individual components of the vectors,

so we might specify that the tasks are just the additions of corresponding

components. Then there is no communication between the tasks, and the

problem of parallelizing vector addition boils down to aggregating the

tasks and assigning them to the cores. If the number of components is n

and we have comm_sz cores or processes, let’s assume that n evenly

divides comm_sz and define local n D n=comm sz. Then we can simply

assign blocks of local n consecutive

components to each process. This is often called a block partition of

the vector.

C409.4

BTL1

21

Show MPI Scatter function.

The communication MPI provides a function:

int MPI Scatter(

void* send_buf_p /* in */,

int send_count /* in */,

MPI_Datatype send_type /* in */,

C409.4

BTL1

void* recv_buf_p /* out */,

int recv_count /* in */,

MPI_Datatype recv_type /* in */,

int src_proc /* in */,

MPI_Comm comm /* in */);

22

Give MPI Gather function.

The communication in this function can be carried out by MPI Gather,

int MPI_Gather(

void* send_buf_p /* in */,

int send_count /* in */,

MPI_Datatype send_type /* in */,

void* recv_buf_p /* out */,

int recv_count /* in */,

MPI_Datatype recv_type /* in */,

int dest_proc /* in */,

MPI_Comm comm /* in */);

C409.4

BTL1

23

What is Derived data type in MPI?

In MPI, a derived data type can be used to represent any collection of

data items in memory by storing both the types of the items and their

relative locations in memory.

C409.4

BTL1

24

Show the use MPI_Type_create_struct.

We can use MPI Type create struct to build a derived datatype that

consists of individual elements that have different basic types:

int MPI_Type_create_struct(

int count /*

 in */,

int array_of_blocklengths[] /*

 in */,

MPI_Aint array_of_displacements[] /*

in */,

MPI_Datatype array_of_types[] /*

in */,

MPI_Datatype* new_type_p /*

out */);

C409.4

BTL1

25

Show the ratio of the serial and parallel runtime.

The most widely used measure of the relation between the serial and the

parallel run-times is the speedup. It’s just the ratio of the serial run-time

to the parallel run-time:

 Tserial (n)

 S (n, p) = -----------------

Tparallel (n, p)

C409.4

BTL1

26
Show “per process” speedup?

The “Per Process speedup is

C409.4
BTL1

 S (n, p) Tserial (n)
 E (n, p) = ------------- = -------------------------

 p p * T parallel (n, p)

27

what is a wrapper script? . (apr/may2017)

 A wrapper script is a script whose main purpose is to run some program. The

wrapper the running of the compiler by telling it where to find the necessary header files and

which libraries to link with the object file .

C409.4

BTL1

28

How to design a parallel program?

A parallel program can be designed using four basic steps:

1. Partition the problem solution into tasks.

2. Identify the communication channels between the tasks.

3. Aggregate the tasks into composite tasks.

4. Map the composite tasks to cores.

C409.4

BTL1

29

What is linear speedup?

The ideal value for S (n,p) is p. If S (n,p) = p, then our parallel program

with comm_ sz = p processes is running p times faster than the serial

program. This speedup, sometimes called linear speedup.

C409.4

BTL1

30

What is block-cyclic partition?

Instead of using a cyclic distribution of individual components, use a cyclic

distribution of blocks of components, so a block-cyclic distribution isn’t

fully specified until we decide how large the blocks are

C409.4

BTL1

31

What are the possibilities for choosing a destination when sending

requests for work with MPI
MPI is designed to allow users to create programs that can run efficiently on most

parallel architectures. The design process included vendors (such as IBM, Intel,

TMC, Cray, Convex, etc.), parallel library authors (involved in the development of
PVM, Linda, etc.), and applications specialists

C409.4

BTL1

32
List the restrictions work sharing constructs
The sequence of work-sharing constructs and barrier directives encountered must
be the same for every thread in a team

C409.4
BTL1

33 Write the evaluation methods is distributed memory programming C409.4 BTL1

34 Give the commands for MPI C409.4 BTL1

35 Define and broadcast and butterfly MPI C409.4 BTL1

36

What is MPI W_Time

MPI provides a function, MPI_Wtime, that returns the number of seconds

that have elapsed since some time in the past:

 Double MPI_Wtime(void);

C409.4

BTL1

37

Define MPI_Barrier

The MPI collective communication function MPI_Barrier insures that no

process will return from calling it until every process in the communicator

has started calling it.

C409.4

BTL1

38

Define Speed-Up and Efficiency

The most widely used measure of the relation between the serial and the

parallel run-times is the speedup. It‘s just the ratio of the serial run-time to

the parallel run-time:

S(n,p)=TSerial(n)/TSerial(n,p)

C409.4

BTL1

39

How the Toverhead is represented

The parallel run-time is denoted byTparallel. Since it depends on both the

input size, n, and the number of processes, comm._sz= p, we‘ll frequently

denote it as Tparallel(n,p). The parallel program will divide the work of the

serial program among the processes, and add in some overhead time, which

we denoted Toverhead:
Tparallel (n,p)=Tserial (n/p)+Toverhead

C409.4

BTL1

40

Define Speed up

The most widely used measure of the relation between the serial and the

parallel run-times is the speedup. It‘s just the ratio of the serial run-time to

the parallel run-time:

S(n,p)=Tserial(n)/Tparallel(n,p)

C409.4

BTL1

41

Define Efficiency

This speedup, sometimes called linear speedup. Another widely used

measure of parallel performance is parallel efficiency.

E(n,p)= S(n,p)/p= Tserial(n)/P* Tparallel(n,p)

C409.4

BTL1

42

What is MPI derived data types

In MPI, a derived datatype can be used to represent any collection of data

items in memory by storing both the types of the items and their relative

locations in memory.

C409.4

BTL1

43

Define Gather

 Gathers distinct messages from each task in the group to a single

destination task. This routine is the reverse operation of MPI_Scatter. The

data stored in the memory referred to by send_buf_p on process 0 is stored

in the first block in recv_buf p, the data stored in the memory referred to by

send buf_p on process 1 is stored in the second block referred to by

recv_buf_p, and so on.

C409.4

BTL1

44
Define Scatter

Distributes distinct messages from a single source task to each task in the

group.

C409.4
BTL1

45

List out the types of collective operations

Synchronization - processes wait until all members of the group have

reached the synchronization point.

• Data Movement - broadcast, scatter/gather, all to all

Collective Computation (reductions) - one member of the group collects

data from the other members and performs an operation (min, max, add,

multiply, etc.) on that data.

C409.4

BTL1

46

Define MPI_Allreduce
Consider a situation in which all of the processes need the result of a global

sum in order to complete some larger computation.
For example, if we use a tree to compute a global sum, we might ―reverse‖

the branches to distribute the global sum.

C409.4

BTL1

47
List out the two possibilities when the message are assembled

 the sending process can buffer the message or

 it can block

C409.4
BTL1

48

What are the types of MPI type
 The MPI type MPI_Status is a struct with at least the three members MPI_

SOURCE, MPI_TAG, and MPI_ERROR.

 Suppose our program contains the definition MPI_Status status; Then, after
a call to MPI Recv in which &status is passed as the last argument, we can

determine the sender and tag by examining the two members

status.MPI SOURCE

status.MPI TAG

C409.4

BTL1

49 What is status_p argument

 The Amount of Data In The Message

C409.4 BTL1

 The Sender of The Message, Or

 The Tag of The Message.

50

Mention the syntax for MPI_send

C409.4

BTL1

51

Write a note on Distributed memory machines (Nov/Dec 2018)

Programming on a distributed memory machine is a matter of organizing a

program as a set of independent tasks that communicate with each other via
messages. In addition, programmers must be aware of where data is stored, which

introduces the concept of locality in parallel algorithm design. An algorithm that

allows data to be partitioned into discrete units and then runs with minimal
communication between units will be more efficient than an algorithm that requires

random access to global structures.

C409.4

BTL1

52
How to compile an MPI Program (Nov/Dec 2018)

Many systems use a command called mp icc for compilation mp icc is a

script that‘s a wrapper for the C compiler.

C409.4
BTL1

.

PART B

Q. No. Questions CO

Bloom

’s

Level

1.

What is MPI? Write a program”hello,world” that makes some use of

MPI. how to compile and execute MPI programs. .(Nov/Dec 2017).

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:86-90

C409.4

BTL1

2.

Explain about Trapezoidal rule in MPI in detail

1.Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:94-96

C409.4

BTL1

3.
Give in detail about Collective Communication.

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:101-115

C409.4
BTL1

4.

Explain the following MPI functions:

 MPI_Reduce

 MPI_Allreduce

 MPI_Scatter

 MPI_Gather

 MPI_Allgather
1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:88-91

C409.4

BTL1

5.

Compare and contrast Collective communication Vs Point to point

communication.(16) (Nov/Dec 2017).

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:105-106

C409.4 BTL2

6.

Disscus about MPI Derived data types with example programs. (10)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:116-118

C409.4 BTL6

7.

i.Explain about Performance Evaluation of MPI Programs in

detail.(Apr/May 2017)

ii.What are the performance issues in multicore processor?

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:119-126

C409.4

BTL5

8.

i.Explain tree structured communication

ii.What are the differences between point to point and collective

communication? (Apr/May 2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:102-103

C409.4

BTL5

9

(i)Explain Loop Handling in detail

(ii)Describe about MPI programs execution with example (Apr/May

2018)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.4

BTL5

10
Explain the virtual memory in detail (Apr/May 2018)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.4
BTL5

11

(i)Describe the Attribute Caching

(ii)Discuss about the communicators

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.4

BTL2

12

(i)Describe the Distributed array datatype constructor

(ii)Explain the Cartesian constructor

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.4

BTL5

13

(i) Generalize the group of process

(ii) Explain the virtual topology

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.4

BTL6

14

(i)Describe the MPI program execution

(ii)Describe about MPI Init and Finalize

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.4

BTL1

15

(i)Describe about the Datatype constructor

(ii)Discuss about the subarray datatype constructor

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.4

BTL5

UNIT V

PARALLEL PROGRAM DEVELOPMENT

Case studies - n-Body solvers – Tree Search – OpenMP and MPI implementations and

comparison.

PART A

Q. No. Questions CO
Bloom’

s Level

1.

What is an n-body problem?

In an n-body problem, it needs to find the positions and velocities of a

collection of interacting particles over a period of time. An n-body solver is a

program that finds the solution to an n-body problem by simulating the behavior

of the particles. The input to the problem is the mass, position, and velocity of

each particle at the start of the simulation, and the output is the position and

velocity of each particle at a sequence of user-specified times, or simply the

position and velocity of each particle at the end of a user-specified time period.

C409.5

BTL1

2.

Show the pseudocode of a serial n-body solver.

1 Get input data;

2 for each timestep {

3 if (timestep output) Print positions and velocities of particles;

4 for each particle q

5 Compute total force on q;

6 for each particle q

7 Compute position and velocity of q;

8 }

9 Print positions and velocities of particles;

C409.5 BTL1

3.
List the two algorithms in the n-body solver.

 The n-body solver with the original force calculation, the basic algorithm,

and the solver with the number of calculations reduced the reduced algorithm

C409.5 BTL1

4.

List the two algorithms in the n-body solver.

 The n-body solver with the original force calculation, the basic

algorithm, and the solver with the number of calculations reduced the reduced

algorithm

C409.5 BTL1

5.
Differentiate between two algorithms in n-body solver

The n-body solver with the original force calculation, the basic algorithm, and the

solver with the number of calculations reduced, the reduced algorithm.

6.
Define Graph.

A graph is a collection of vertices and edges or line segments joining pairs of

vertices.

C409.5 BTL1

7.

List the use of Recursive depth-first search algorithm.

The algorithm makes use of several global variables:

 n: the total number of cities in the problem

 digraph: a data structure representing the input digraph

 hometown: a data structure representing vertex or city 0, the salesperson’s

hometown

 best tour: a data structure representing the best tour so far

C409.5 BTL1

8

What are the disadvantages of recursive depth first stage

It also has the disadvantage that at any given instant of time only the current tree node is accessible.

This could be a problem when we try to parallelize tree search by dividing tree nodes among the

threads or processes

8.

List the similarities parallelizing the solvers using pthreads.

The more important similarities are:

 By default local variables in Pthreads are private, so all shared variables are

global in the Pthreads version.

 The principal data structures in the Pthreads version are identical to those in

the OpenMP version: vectors are two-dimensional arrays of doubles, and the

mass, position, and velocity of a single particle are stored in a struct. The

forces are stored in an array of vectors.

 Startup for Pthreads is basically the same as the startup for OpenMP: the

main thread gets the command-line arguments, and allocates and initializes

C409.5 BTL1

the principal data structures.

 The main difference between the Pthreads and the OpenMP implementations

is in the details of parallelizing the inner loops. Since Pthreads has nothing

analogous to a parallel for directive, we must explicitly determine which

values of the loop variables correspond to each thread’s calculations. To

facilitate this, a function Loop schedule, which determines

 the initial value of the loop variable,

 the final value of the loop variable, and

 the increment for the loop variable.

 The input to the function is

 the calling thread’s rank,

 the number of threads,

 the total number of iterations, and

an argument indicating whether the partitioning should be block or cyclic

9.

Define communication structure

 A communication structure is called a ring pass. In a ring pass, imagine the

processes as being interconnected in a ring. Process 0 communicates directly with

processes 1 and comm._ sz-1, process 1 communicates with processes 0 and 2, and

so on. The communication in a ring pass takes place in phases, and during each

phase each process sends data to its “lower-ranked” neighbor, and receives data

from its “higher-ranked” neighbor. Thus, 0 will send to comm._sz -1 and receive

from 1. 1 will send to 0 and receive from 2, and so on. In general, process q will

send to process (q-1+comm._sz)%comm_sz and receive from process

(q+1)%comm_sz.

C409.5

BTL1

9

List the properties of function First_index.

 The function First index should determine a global index glb part2 with the

following properties:

1. The particle glb_part2 is assigned to the process with rank owner.

2. glb_part1 < glb_part2 < glb_part1 + comm_sz.

C409.5 BTL1

10

What is a word about I/O.

The basic I/O was designed for use by single-process, single-threaded

programs, and when multiple processes or multiple threads attempt to access the

I/O buffers; the system makes no attempt to schedule their access.

C409.5 BTL1

11

What is race condition? .(Nov/Dec 2017)

A race condition is an undesirable situation that occurs when a device or system

attempts to perform two or more operations at the same time, but because of the

nature of the device or system, the operations must be done in the proper

C409.5 BTL1

sequence to be done correctly.

12

Show the Pseudocode for the MPI implementation of the reduced n-body

solver.

1 source = (my_rank + 1) % comm._sz;

2 dest = (my_rank - 1 + comm._sz) % comm._sz;

3 Copy loc_pos into tmp_pos;

4 loc_forces = tmp_forces = 0;

5

6 Compute forces due to interactions among local particles;

7 for (phase = 1; phase < comm._sz; phase++) {

8 Send current tmp_pos and tmp_forces to dest;

9 Receive new tmp_pos and tmp_forces from source;

10 /* Owner of the positions and forces we’re receiving */

11 owner = (my_rank + phase) % comm._sz;

12 Compute forces due to interactions among my particles

13 and owner’s particles;

14 }

15 Send current tmp_pos and tmp_forces to dest;

16 Receive new tmp_pos and tmp_forces from source;

C409.5 BTL1

13

What is NP-complete problem? .(Apr/May 2017)

In computational complexity theory, a decision problem is NP-complete

when it is both in NP and NP-hard. The set of NP-complete problems is

often denoted by NP-C or NPC. The abbreviation NP refers to

"nondeterministic polynomial time".

C409.5 BTL1

14

What is Depth-first search?

Depth-first search (DFS) is an algorithm .for traversing or searching tree or

graph data structures. One starts at the root (selecting some arbitrary node as

the root in the case of a graph) and explores as far as possible along each

branch before backtracking.

C409.5 BTL1

15

What is Recursive depth-first search?

Depth-first search (DFS) is an algorithm that traverses a graph in search of

one or more goal nodes. The defining characteristic of this search is that,

whenever DFS visits a maze cell c, it recursively searches the sub-maze

whose origin is c. This recursive behaviour can be simulated by an iterative

algorithm using a stack. A cell can have three states:

Unvisited. The cell has not yet been visited by DFS.

 Visit In Progress. The cell has been discovered, but not yet finished. Ie, the

recursive search which begins at this node has not yet terminated.

 Visited. The cell has been discovered, and the submazes which start at this

node have been completely visited also.

C409.5 BTL1

16
What problem occurs when test lock condition and update lock condition

combined?

The combination of “test lock condition” and “update lock condition” can

C409.5 BTL1

https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Decision_problem
https://en.wikipedia.org/wiki/NP_(complexity)
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Nondeterministic_algorithm
https://en.wikipedia.org/wiki/Polynomial_time

cause a problem: the lock condition (e.g. the cost of the best tour) can

change between the time of the first test and the time that the lock is

acquired. Thus, the threads also need to check the lock condition after they

acquire the lock.

17

Show the pseudocode for updating the best tour.

The pseudocode for updating the best tour should look something like this:

if (new tour cost < best tour cost) {

Acquire lock protecting best tour;

if (new tour cost < best tour cost)

Update best tour;

Relinquish lock;

}

C409.5 BTL1

18

Show the syntax for mutex checking.

Pthreads has a nonblocking version of pthreads_mutex_lock called

pthread_mutex_trylock. This function checks to see if the mutex is

available. If it is, it acquires the mutex and returns the value 0. If the mutex

isn’t available, instead of waiting for it to become available, it will return a

nonzero value.

C409.5 BTL1

19

Define MPI.

The message passing interface (MPI) is a standardized means of

exchanging messages between multiple computers running a parallel

program across distributed memory

C409.5 BTL1

20

Show a pseudocode for a recursive solution to TSP using depth firs

search.(Apr/May2017)

C409.5 BTL1

21

What are the features of distributed memory?(Nov/Dec 2017)

distributed memory refers to a multiprocessor computer system in which each

processor has its own private memory. Computational tasks can only operate on

local data, and if remote data is required, the computational task must communicate

C409.5 BTL1

https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Computer_memory

with one or more remote processors.

22

Show the syntax of MPI_Pack and MPI_Unpack.

int MPI_Pack(

void* data to be packed /* in */

int to be packed count / _ in _/,

MPI_Datatype datatype /_ in _/,

void_ contig buf /_ out _/,

int contig buf size /_ in _/,

int_ position p /_ in/out _/,

MPI Comm comm /_ in _/);

int MPI Unpack(

void_ contig buf /_ in _/,

int contig buf size /_ in _/,

int_ position p /_ in/out _/,

void_ unpacked data /_ out _/,

int unpack count /_ in _/,

MPI Datatype datatype /_ in _/,

MPI Comm comm /_ in _/);

C409.5

BTL1

23

List the use of MPI_IN_PLACE argument.

The use of argument MPI_IN_PLACE is that the input and output buffers

are the same. This can save on memory and the implementation may be able

to avoid copying from the input buffer to the output buffer

C409.5 BTL1

24

What the use of functions MPI Scatter and MPI Gather.

The functions MPI_Scatter and MPI_Gather can be use to split an array of

data among processes and collect distributed data into a single array,

respectively

C409.5 BTL1

25

What are the use of functions MPI_Scatterv and MPI_Gatherv.

When the amount of data going to or coming from each process is the

same for each process. If we need to assign different amounts of data to each

process, or to collect different amounts of data from each process we can use

MPI_Scatterv and MPI_Gatherv, respectively.

C409.5 BTL1

26

Show the syntax of MPI_Scatterv.

int MPI Scatterv(

void* sendbuf /* in */,

int* sendcounts /* in */,

int* displacements /* in */,

MPI_Datatype sendtype /* in */,

Void* recvbuf /* out */,

int recvcount /* in */,

MPI_Datatype recvtype /* in */,

int root /* in */,

MPI_Comm comm /* in */);

C409.5 BTL1

27 Show the syntax of MPI_ Gatherv.

C409.5 BTL1

int MPI_Gatherv(

void* sendbuf /* in */,

int sendcount /* in */,

MPI_Datatype sendtype /* in */,

void* recvbuf /* out */,

int* recvcounts /* in */,

int* displacements /* in */,

MPI_Datatype recvtype /* in */,

int root /* in */,

MPI_Comm comm /* in */);

28
What are the three modes provided by MPI?

MPI provides three other modes for sending: synchronous, standard, and

ready.

C409.5 BTL1

29

List the use of functions MPI_Pack and MPI_Unpack.

MPI provides the function MPI_Pack for storing a data structure in a single,

contiguous buffer before sending. Similarly, the function MPI_Unpack can

be used to take data that’s been received into a single contiguous buffer and

unpack it into a local data structure

C409.5 BTL1

30

List the use of ready mode.

Ready sends (MPI_Rsend) are erroneous unless the matching receive

has already been started when MPI_Rsend is called. The ordinary send

MPI_Send is called the standard mode send.

C409.5 BTL1

31

List the use of Synchronous mode.

Synchronous sends won’t buffer the data; a call to the synchronous send

function MPI_Ssend won’t return until the receiver has begun receiving the

data.

C409.5 BTL1

32

How to compute n-body forces

for each particle q
forces[q] = 0;
for each particle q {
for each particle k > q
{
x _diff = pos[q][X] - pos[k][X];
y_diff = pos[q][Y] - pos[k][Y];
dist = sqrt(x diff_x diff + y diff_y diff);
dist_cubed = dist_dist_dist;
force qk[X] = G_masses[q]_masses[k]/dist cubed _ x_diff;
force qk[Y] = G_masses[q]_masses[k]/dist cubed _ y_diff
forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] -= force qk[X];
forces[k][Y] -= force qk[Y];
}
}

C409.5 BTL1

33

List the data structures used for serial implementation

The data structures are the tour, the digraph, and, in the iterative implementations, the stack. The tour

and the stack are essentially list structures. For tour instead of array structure with three members:

the array storing the cities, the number of cities, and the cost of the partial tour.

When the digraph are represented using List.

C409.5 BTL1

34

Difference between Parallelizing the two n-body solvers using pthread

 and OpenMP.

The main difference between the Pthreads and the OpenMP implementations is in the

parallelizing the inner loops. Since Pthreads has nothing analogous to a parallel for directive, we

must explicitly determine which values of the loop variables correspond to each thread’s

calculations. To facilitate this a function Loop schedule which contains

. the initial value of the loop variable,

. the final value of the loop variable, and

. the increment for the loop variable.

C409.5 BTL1

35

How the performance of the reduced solver is much superior to the performance

of the basic solver?

The efficiency of the basic solver on 16 nodes is about 0.95, while the efficiency of the reduced solver on

16 nodes is only about 0.70. A point to stress here is that the reduced MPI solver makes much more

efficient use of memory than the basic MPI solver the basic solver must provide storage for all n positions
on each process, while the reduced solver only needs extra storage for n=comm_sz positions and

n=comm_sz forces

C409.5 BTL1

36

How can we use OpenMP to map tasks/particles to cores in the basic version of our
n-body solver?

for each timestep
{
if (timestep output) Print positions and velocities of particles;
for each particle q
Compute total force on q;
for each particle q
Compute position and velocity of q;
}
The two inner loops are both iterating over particles. So, in principle, parallelizing
the two inner for loops will map tasks/particles to cores, and we might try something
like this:
for each timestep
{
if (timestep output) Print positions and velocities of
particles;

C409.5 BTL1

pragma omp parallel for
for each particle q
Compute total force on q;
pragma omp parallel for
for each particle q
Compute position and velocity of q;
}

37

Write the pseudocode for the MPI version of the basic n-body solver?

Get input data;
2 for each timestep {
3 if (timestep output)
4 Print positions and velocities of particles;
5 for each local particle loc q
6 Compute total force on loc q;
7 for each local particle loc q
8 Compute position and velocity of loc q;
9 Allgather local positions into global pos
array;
10 }
11 Print positions and velocities of particles;

C409.5 BTL1

38

Write the pseudocode for the MPI implementation of the reduced n-body solver

1 source = (my_rank + 1) % comm _sz;
2 dest = (my_rank - 1 + comm_sz) % comm_sz;
3 Copy_loc_pos_into_tmp pos;
4 loc_forces = tmp_forces = 0;
5
6 Compute forces due to interactions among local particles;
7 for (phase = 1; phase < comm sz; phase++) {
8 Send current tmp_pos and tmp_forces to dest;
9 Receive new tmp_pos and tmp_forces from source;
10 /_ Owner of the positions and forces we’re receiving _/
11 owner = (my_rank + phase) % comm_sz;
12 Compute forces due to interactions among my particles
13 and owner’s particles;
14 }

C409.5 BTL1

15 Send current tmp_pos and tmp_forces to dest;
16 Receive new tmp_pos and tmp_forces from source;

39

What are the two phases for computation of forces?

The following choices with respect to the data structures:
Each process stores the entire global array of particle masses.
Each process only uses a single n-element array for the positions.
Each process uses a pointer loc_pos that refers to the start of its block of pos.

C409.5 BTL1

40

Write the pseudo code for an implementation of a depth-first solution to TSP without
using recursion?

for (city = n-1; city >= 1; city--)
Push(stack, city);
while (!Empty(stack)) {
city = Pop(stack);
if (city == NO CITY) // End of child list, back up
Remove last city(curr tour);}
else {
Add city(curr tour, city);
if (City count(curr tour) == n) {
if (Best tour(curr tour)) {
Update best tour(curr tour);
Remove last city(curr tour);
} else {
Push(stack, NO CITY);
for (nbr = n-1; nbr >= 1; nbr--)
if (Feasible(curr tour, nbr))
Push(stack, nbr);
}
}/_ if Feasible _/
} /_ while !Empty _/

C409.5 BTL1

41 How the function Push_copy is used in TSP

C409.5 BTL1

It is necessary to push onto the stack to create a copy of the tour before actually pushing it on to the stack
using the function Push _copy. The extra memory is required to allocating storage for a new tour and

copying the existing tour is time-consuming. Reduce the costs by saving freed tours in our own data

structure, and when a freed tour is available we can use it in the Push _copy function instead of calling

malloc.

42

What are the algorithms for identifying which subtrees we assign to the processes or

threads

 depth-first
search

 breadth-first
search

C409.5 BTL1

43

Define the term POSIX or PThreads

Pthreads are libraries of type definitions, functions, and macros that can be used in C programs. POSIX is

a standard for Unix-like operating systems—for example, Linux and Mac OS X. It specifies a variety of
facilities that should be available in such systems. In particular, it specifies an application programming

interface (API) for multithreaded programming. Pthreads is not a programming language (such as C or

Java). Rather, like MPI, Pthreads specifies a library that can be linked with C programs. Unlike MPI, the
Pthreads API is only available on POSIX systems—Linux, Mac OS X, Solaris, HPUX, and so on

C409.5 BTL1

44

What are the reason for parameter threads_in_cond_wait used in Tree

search?

There are also two cases to consider:

o threads _in_cond_wait < thread_count, it tells us how many threads are waiting

o threads_in_cond_wait == thread count,all the treads are out of work, and its time to quit.

C409.5 BTL1

45

What are the global variables for Recursive depth first search?

n: the total number of cities in the problem .
digraph: a data structure representing the input digraph .
hometown: a data structure representing vertex or city 0, the salesperson’s hometown . best
tour: a data structure representing the best tour so far.

C409.5 BTL1

46

Mention the performance of MPI solvers

The performance of the reduced solver is much superior to the performance of the

basic solver, although the basic solver achieves higher efficiencies.

A point to stress here is that the reduced MPI solver makes much more efficient

use of memory than the basic MPI solver; the basic solver must provide storage for

all n positions on each process, while the reduced solver only needs extra storage

for n/commsz positions and n/commsz forces.

C409.5 BTL1

47 Mention the principal data structures on pthread

 The vectors are two-dimensional arrays of doubles, and the mass, position, and

C409.5 BTL1

velocity of a single particle are stored in a struct. The forces are stored in an array of

vectors.

48

Name any two OpenMp environment variables (Nov/Dec 2018)

omp_set_num_threads(num_threads)
omp_get_num_threads()
omp_get_max_threads()
omp_get_thread_num()

C409.5 BTL1

49

List any two scoping clauses in OpenMP (Nov/Dec 2018)

 Shared Variables

 Private Variables

C409.5 BTL1

50

What are the reason for parameter threads_in_cond_wait used in Tree

search?

there are also two cases to consider:

 threads _in_cond_wait < thread_count, it tells us how many

threads are waiting

 threads_in_cond_wait == thread count,all the treads are out of
work, and its time to quit.

C409.5 BTL1

PART-B

Q. No. Questions CO

Bloom

’s

Level

1.

1.Explain n-Body solvers in OpenMP.

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:271-297

C409.5 BTL5

2.

Explain about Tree Search.

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:229-318

C409.5 BTL5

3.

Explain OpenMP implementations in detail.

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:15-20

C409.5 BTL5

4.

Explain MPI implementations in detail.

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No: 86-88

C409.5 BTL4

5.

Compare OpenMP and MPI implementations.

Refer Notes

C409.5 BTL4

6.

Explin how to Parallelizing the tree search in detail.

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No: 306-308

C409.5 BTL5

7.

i.How to parallelize the basic solver using MPI. .(Apr/May2017)

 ii.Explain Non recursive depth first search. .(Apr/May2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No: 316-317 & 303-304

C409.5 BTL5

8.

Explain the implementation of tree search using MPI and dynamic

partitioning. .(Apr/May2017)

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No:229-318

C409.5 BTL5

9

What does the n-body problem do/give the pseudocode for serial n-

body solver and for computing n-body forces. .(Nov/Dec 2017).

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No: 271-297

C409.5 BTL1

10

How will you parallelize the reduced solver using Open Mp? How will

you parallelize the reduced solver using Open MP? .(Nov/Dec 2017).

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011 Page No: 271-297

C409.5 BTL1

11
Generalize about the two Serial program

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.5 BTL6

12
Describe about the Parallelizing the reduced solver using OpenMP

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.5 BTL2

13
Describe about the Recursive and non recursive DFS

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.5 BTL2

14
Examine the Data structures for the serial implementation

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.5 BTL3

15

Express detail about the static parallelizing of tree search using

PThreads

1. Peter S. Pacheco, “An Introduction to Parallel Programming”, Morgan-

Kauffman/Elsevier, 2011

C409.5 BTL1

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	CS6801 MULTI-CORE ARCHITECTURES AND PROGRAMMING
	BATCH 2015-2019
	Program Educational Objectives (PEOs)
	Program Specific Outcomes (PSOs)

