

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS6660

COMPILER DESIGN

Question Bank

III YEAR A & B / BATCH : 2016 -20

Vision of Institution

To build Jeppiaar Engineering College as an Institution of Academic Excellence in Technical

education and Management education and to become a World Class University.

Mission of Institution

M1 To excel in teaching and learning, research and innovation by promoting the

principles of scientific analysis and creative thinking

M2
To participate in the production, development and dissemination of knowledge and

interact with national and international communities

M3
To equip students with values, ethics and life skills needed to enrich their lives and

enable them to meaningfully contribute to the progress of society

M4 To prepare students for higher studies and lifelong learning, enrich them with the

practical and entrepreneurial skills necessary to excel as future professionals and

contribute to Nation’s economy

Program Outcomes (POs)

PO1

Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

PO2

Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

PO3

Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the

cultural, societal, and environmental considerations

PO4

Conduct investigations of complex problems: Use research-based knowledge

and research methods including design of experiments, analysis and interpretation

of data, and synthesis of the information to provide valid conclusions.

PO5

Modern tool usage: Create, select, and apply appropriate techniques, resources,

and modern engineering and IT tools including prediction and modeling to

complex engineering activities with an understanding of the limitations.

PO6

The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO7

Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

PO8

Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9
Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

PO10

Communication: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, and give and receive clear instructions.

PO11

Project management and finance: Demonstrate knowledge and understanding

of the engineering and management principles and apply these to one’s own work,

as a member and leader in a team, to manage projects and in multidisciplinary

environments.

PO12

Life-long learning: Recognize the need for, and have the preparation and ability

to engage in independent and life-long learning in the broadest context of

technological change.

Vision of Department

To emerge as a globally prominent department, developing ethical computer professionals,

innovators and entrepreneurs with academic excellence through quality education and research.

Mission of Department

M1
To create computer professionals with an ability to identify and formulate the

engineering problems and also to provide innovative solutions through effective

teaching learning process.

M2 To strengthen the core-competence in computer science and engineering and to create

an ability to interact effectively with industries.

M3 To produce engineers with good professional skills, ethical values and life skills for the

betterment of the society.

M4 To encourage students towards continuous and higher level learning on technological

advancements and provide a platform for employment and self-employment.

Program Educational Objectives (PEOs)

PEO1 To address the real time complex engineering problems using innovative approach

with strong core computing skills.

PEO2 To apply core-analytical knowledge and appropriate techniques and provide

solutions to real time challenges of national and global society

PEO3 Apply ethical knowledge for professional excellence and leadership for the

betterment of the society.

PEO4 Develop life-long learning skills needed for better employment and

entrepreneurship

Program Specific Outcomes (PSOs)

Students will be able to

PSO1

An ability to understand the core concepts of computer science and engineering and to

enrich problem solving skills to analyze, design and implement software and hardware

based systems of varying complexity.

PSO2
To interpret real-time problems with analytical skills and to arrive at cost effective and

optimal solution using advanced tools and techniques.

PSO3

An understanding of social awareness and professional ethics with practical proficiency in

the broad area of programming concepts by lifelong learning to inculcate employment and

entrepreneurship skills.

SYLLABUS

UNIT I INTRODUCTION TO COMPILERS 5

Translators-Compilation and Interpretation-Language processors -The Phases of Compiler-

ErrorsEncountered in Different Phases-The Grouping of Phases-Compiler Construction Tools -

Programming Language basics.

UNIT II LEXICAL ANALYSIS 9

Need and Role of Lexical Analyzer-Lexical Errors-Expressing Tokens by Regular Expressions-

Converting Regular Expression to DFA- Minimization of DFA-Language for Specifying

LexicalAnalyzers-LEX-Design of Lexical Analyzer for a sample Language.

UNIT III SYNTAX ANALYSIS 10

Need and Role of the Parser-Context Free Grammars -Top Down Parsing -General Strategies-

Recursive Descent Parser Predictive Parser-LL(1) Parser-Shift Reduce Parser-LR Parser-LR

(0)Item-Construction of SLR Parsing Table -Introduction to LALR Parser - Error Handling and

Recovery in Syntax Analyzer-YACC-Design of a syntax Analyzer for a Sample Language .

UNIT IV SYNTAX DIRECTED TRANSLATION & RUN TIME ENVIRONMENT 12

Syntax directed Definitions-Construction of Syntax Tree-Bottom-up Evaluation of S-

AttributeDefinitions- Design of predictive translator - Type Systems-Specification of a simple

type checker-Equivalence of Type Expressions-Type Conversions.

RUN-TIME ENVIRONMENT: Source Language Issues-Storage Organization-Storage

Allocation-Parameter Passing-Symbol Tables-Dynamic Storage Allocation-Storage Allocation in

FORTAN.

UNIT V CODE OPTIMIZATION AND CODE GENERATION 9

Principal Sources of Optimization-DAG- Optimization of Basic Blocks-Global Data Flow

Analysis-Efficient Data Flow Algorithms-Issues in Design of a Code Generator - A Simple Code

Generator Algorithm.

TEXTBOOK:

1. Alfred V Aho, Monica S. Lam, Ravi Sethi and Jeffrey D Ullman, “Compilers –

Principles,Techniques and Tools”, 2nd Edition, Pearson Education, 2007.

REFERENCES:

1. Randy Allen, Ken Kennedy, “Optimizing Compilers for Modern Architectures: A

Dependence-based Approach”, Morgan Kaufmann Publishers, 2002.

2. Steven S. Muchnick, “Advanced Compiler Design and Implementation, “Morgan Kaufmann

Publishers - Elsevier Science, India, Indian Reprint 2003.

3. Keith D Cooper and Linda Torczon, “Engineering a Compiler”, Morgan Kaufmann Publishers

Elsevier Science, 2004.

4. Charles N. Fischer, Richard. J. LeBlanc, “Crafting a Compiler with C”, Pearson Education,

2008.

Course Outcomes (COs)

C311.1 Examining the functioning of compilation process

C311.2 Evaluating the role of tokens in analysis phase of compiler.

C311.3 Evaluating the role of Parser in a compiler.

C311.4

Summarize the semantic action taken by the compiler during semantic phase of the

compiler.

C311.5

Analyse the method of finding code generation and code optimization techniques in

compilation.

INDEX

Unit # Ref. Book Page Numbers

Unit 1

Alfred V Aho, Monica S. Lam, Ravi Sethi and

Jeffrey D Ullman, “Compilers –

Principles,Techniques and Tools”, 2nd Edition,

Pearson Education, 2007.

Page 1 -25

Unit 2

Alfred V Aho, Monica S. Lam, Ravi Sethi and

Jeffrey D Ullman, “Compilers –

Principles,Techniques and Tools”, 2nd Edition,

Pearson Education, 2007.

Page 109-185

Unit 3

Alfred V Aho, Monica S. Lam, Ravi Sethi and

Jeffrey D Ullman, “Compilers –

Principles,Techniques and Tools”, 2nd Edition,

Pearson Education, 2007.

Page 191-287

Unit 4

Alfred V Aho, Monica S. Lam, Ravi Sethi and

Jeffrey D Ullman, “Compilers –

Principles,Techniques and Tools”, 2nd Edition,

Pearson Education, 2007.

Page 303-440

Unit 5

Alfred V Aho, Monica S. Lam, Ravi Sethi and

Jeffrey D Ullman, “Compilers –

Principles,Techniques and Tools”, 2nd Edition,

Pearson Education, 2007.

Page 505-553

1

UNIT I INTRODUCTION

Translators-Compilation and Interpretation-Language processors -The Phases of Compiler-

ErrorsEncountered in Different Phases-The Grouping of Phases-Compiler Construction Tools -

Programming Language basics.

S.

No

.

Question Course

Outcom

e

Blooms

Taxanom

y Level

1 1. Define Token.APRIL/MAY2011,MAY/JUNE 2013

The token can be defined as a meaningful group of characters over

the character set of the programming language like identifiers,

keywords, constants and others.

C311.1

BTL1

2 2. Define Symbol Table.NOV/DEC 2016, MAY/JUNE 2014

A Symbol table is a data structure containing a record for each

identifier, with fields for the attributes of the identifier. The data

structure allows us to find the record for each identifier quickly and

to store or retrieve data from that record quickly.

C311.1

BTL1

3 What is a Complier? MAY/JUNE 2007
A Complier is a program that reads a program written in one

language-the source language-and translates it in to an equivalent
program in another language-the target language. As an important
part of this translation process, the compiler reports to its user the
presence of errors in the source program.

C311.1

BTL1

4

What is an interpreter? NOV/DEC 2017

Interpreter is a program which converts source language

into machine language line by line. No intermediate object code is

generated, hence are memory efficient. Ex: Python, COBOL.

C311.1

BTL1

5

3. What do you mean by Cross-Compiler? NOV/DEC 2017
 A cross compiler is a compiler capable of creating executable
code for a platform other than the one on which the compiler is run.
(ie). A compiler may run on one machine and produce target code for
another machine.

C311.1

BTL1

6 4. What are the cousins of compiler?

APRIL/MAY2004,APRIL/MAY2005,APRIL/MAY

2012,MAYY/JUNE 2013, MAY/JUNE 2012, APRIL/MAY

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Platform_(computing)

2

2017
 The following are the cousins of compilers

i. Preprocessors

ii. Assemblers

iii. Loaders

iv. Link editors.

C311.1

BTL1

7 5. What are the four obsoletes of quality What are the main two

parts of compilation? What are they performing?

MAY/JUNE 2016 , APRIL/MAY 2010, APRIL/MAY 2017,

APRIL/MAY 2018

The two main parts are

-Analysis part breaks up the source program into

constituent pieces and creates . An intermediate representation of

the source program.

-Synthesis part constructs the desired target program from the

intermediate representation.

C311.1

BTL1

8 6. What are an assembler and interpreter?

 APRIL/MAY 2011
Assembler is a program, which converts the assembly language in

to machine language.

Interpreter is a program which converts source language into
machine language line by line.

C311.1

BTL1

9 7. State any two reasons as to why phases of compiler should be

grouped. MAY/JUNE 2014

The reasons for grouping,

1. Implementation purpose

2. Compiler work is based on two things; one is based on

language other one is based on machine.

C311.1

BTL1

10 State some software tools that manipulate source program?

i. Structure editors
ii. Pretty printers

iii. Static checkers
iv. Interpreters.

C311.1

BTL1

3

11 What is a Structure editor?
A structure editor takes as input a sequence of commands to

build a source program .The structure editor not only performs
the text creation and modification functions of an ordinary text
editor but it also analyzes the program text putting an

appropriate hierarchical structure on the source program.

C311.1

BTL1

12 What are a Pretty Printer and Static Checker?
 A Pretty printer analyses a program and prints it in such a

way that the structure of the program becomes clearly visible.
• A static checker reads a program, analyses it and attempts
to discover potential bugs with out running the program.

C311.1

BTL1

13 How many phases does analysis consists?
 Analysis consists of three phases

 i .Linear analysis

 ii .Hierarchical analysis

 iii. Semantic analysis

C311.1

BTL1

14 What happens in Hierarchical analysis?
This is the phase in which characters or tokens are grouped
hierarchically in to nested collections with collective

meaning.

C311.1

BTL1

15 What happens in Semantic analysis?

 This is the phase in which certain checks are performed to
ensure that the components of a program fit together
meaningfully

C311.1

BTL1

16 State some compiler construction tools? NOV/DEC

2016, APRIL /MAY 2008
v. Parse generator

vi. Scanner generators
vii. Syntax-directed

viii. translation engines

ix. Automatic code generator
x. . Data flow engines.

C311.1

BTL1

4

17 What is a Loader? What does the loading process do?
A Loader is a program that performs the two functions i.
Loading ii .Link editing The process of loading consists of

taking relocatable machine code, altering the relocatable
address and placing the altered instructions and data in
memory at the proper locations.

C311.1

BTL1

18 What does the Link Editing does?
 Link editing: This allows us to make a single program from
several files of relocatable machine code. These files may

have been the result of several compilations, and one or more
may be library files of routines provided by the system and
available to any program that needs them

C311.1

BTL1

19 What is a preprocessor? Nov/Dev 2004
A preprocessor is one, which produces input to compilers. A
source program may be divided into modules stored in

separate files. The task of collecting the source program is
sometimes entrusted to a distinct program called a
preprocessor. The preprocessor may also expand macros into
source language statements.

C311.1

BTL1

20 State some functions of Preprocessors

i) Macro processing
ii) File inclusion
iii) Relational Preprocessors

iv) Language extensions

C311.1

BTL1

21 State the general phases of a compiler

i) Lexical analysis
ii) Syntax analysis
iii) Semantic analysis

iv) Intermediate code generation
v) Code optimization
vi) Code generation

C311.1

BTL1

22 What is an assembler?
Assembler is a program, which converts the source language

in to assembly language.

C311.1

BTL1

23 Depict diagrammatically how a language is processed.

 MAY/JUNE 2016

5

C311.1

BTL1

24 What is linear analysis?
Linear analysis is one in which the stream of characters

making up the source program is read from left to right and

grouped into tokens that are sequences of characters having a

collective meaning. Also called lexical analysis or scanning.

C311.1

BTL1

25 What are the classifications of a compiler?
 Compilers are classified as:

· Single- pass

 Multi-pass

· Load-and-go

· Debugging or optimizing

C311.1

BTL1

26 List the phases that constitute the front end of a compiler.
 The front end consists of those phases or parts of

phases that depend primarily on the source language and are

largely independent of the target machine. These include

 · Lexical and Syntactic analysis

 · The creation of symbol table

 · Semantic analysis

 · Generation of intermediate code

A certain amount of code optimization can be done by the front

end as well. Also includes error handling that goes along with each

of these phases.

C311.1

BTL1

6

27 Mention the back-end phases of a compiler.
 The back end of compiler includes those portions that

depend on the target machine and generally those portions do not

depend on the source language, just the intermediate language.

These include
 Code optimization
 Code generation, along with error handling and symbol- table

operations.

C311.1

BTL1

28 Define compiler-compiler.
Systems to help with the compiler-writing process are often

been referred to as compiler-compilers, compiler-generators

or translator-writing systems.

Largely they are oriented around a particular model of

languages , and they are suitable for generating compilers of

languages similar model.

C311.1

BTL1

29 What are the advantages of a interpreter ?

Modification of user program can be easily made and

implemented as execution proceeds.

Type of object that denotes a various may change

dynamically.

Debugging a program and finding errors is simplified task for

a program used for interpretation.

The interpreter for the language makes it machine

independent.

C311.1

BTL1

30 What are the disadvantages of a interpreter

The execution of the program is slower.

Memory consumption is more

C311.1

BTL1

31 What are the components of a Language processing system?

Preprocessor

Compiler

Assembler

Loader-Linker editor

C311.1 BTL1

32 Mention the list of compilers.

BASIC compilers

C# compilers

C311.1 BTL1

7

C compilers

C++ compilers

COBOL compilers

33 What is the main difference between phase and pass of a

compiler?

A phase is a sub process of the compilation process whereas

combination of one or more phases into a module is called pass.

C311.1

BTL1

34 Write short notes on error handler?

The error handler is invoked when a flaw in the source program is

detected. It must warn the programmer by issuing a diagnostic, and

adjust the information being passed from phase to phase so that

each phase can proceed. So that as many errors as possible can be

detected in one compilation.

C311.1

BTL1

35 How will you group the phases of compiler?
Front and Back Ends: The phases are collected into a front end and

a back end.

Front End: Consists of those phases or parts of phases that depend

primarily on the source language and are largely independent of target

machine

Back End: Includes those portions of the compiler that depend on the

target machine and these portions do not depend on the source

language.

Passes: It is common for several phases to be grouped into one pass,
and for the activity of these phases to be interleaved during the pass.

C311.1

BTL1

36 Why lexical and syntax analyzers are separated out?

 Reasons for separating the analysis phase into lexical and

syntax analyzers: Simpler design. Compiler efficiency is improved.

Compiler portability is enhanced.

C311.1

BTL1

37 Mention the basic issues in parsing.

 There are two important issues in parsing. Specification of

syntax Representation of input after parsing.

C311.1

BTL1

38 Define parser.

 Hierarchical analysis is one in which the tokens are grouped

hierarchically into nested collections with collective meaning. Also

termed as Parsing.

C311.1

BTL1

39 What happens in linear analysis?

This is the phase in which the stream of characters making up the

source program is read from left to right and grouped in to tokens

that are sequences of characters having collective meaning.

C311.1

BTL1

40 Give the properties of intermediate representation?

a) It should be easy to produce.

b) It should be easy to translate into the target program

C311.1

BTL1

8

41 What are the tools available in analysis phase?

Structure editors

Pretty printer

Static checkers

Interpreters.

C311.1

BTL1

42 Define assembler and its types?

It is defined by the low level language is assembly language and

high level language is machine language is called assembler.

One pass assembler

Two pass assembler

C311.1

BTL1

43 What are the functions performed in synthesis phase?

Intermediate code generation

Code generation

Code optimization

C311.1

BTL1

45 What do you meant by phases?

Each of which transforms the source program one representation to

another. A phase is a logically cohesive operation that takes as

input one representation of the source program and produces as

output another representation.

C311.1

BTL1

46 Write short notes on symbol table manager?

The table management or bookkeeping portion of the compiler

keeps track of the names used by program and records essential

information about each, such as its type (int, real etc.,) the data

structure used to record this information is called a symbol table

manger.

C311.1

BTL1

47 What is front end and back end?

The phases are collected into a front end and a back end. The front

end consists of those phases or parts of phases, that depends

primarily on the source language and is largely independent of the

target machine. The back ends that depend on the target machine

and generally these portions do not depend on the source language.

C311.1

BTL1

48 What do you meant by passes?

A pass reads the source program or the output of the previous pass,

makes the transformations specified by its phases and writes output

into an intermediate file, which may then be read by a subsequent

pass. In an implementation of a compiler, portions of one or more

phases are combined into a module called pass.

C311.1

BTL1

49 What Are The Various Types Of Intermediate Code

Representation?

There are mainly three types of intermediate code representations.

1. Syntax tree

2. Postfix

C311.1

BTL1

9

3. Three address code

50 Define Token.

 Sequence of characters that have a collective meaning.

C311.1

BTL1

PART B

1 What are the various phases of a compiler? Explain each phase in

detail by using the input “a=(b+c)*(b+c)*2”. (Page No.10)

 APRIL/MAY 2011, APRIL/MAY 2012, MAY/JUNE 2014,

MAY/JUNE 2013, NOV/DEC 2016, NOV/DEC 2017

C311.1

BTL5

2 Explain the various Compiler Construction Tools. (Page No.22)

 APRIL/MAY 2011, APRIL/MAY 2012,

NOV/DEC2014,MAY/JUNE 2015, NOV/DEC 2016,

APRIL/MAY 2017, NOV/DEC 2017

C311.1

BTL5

3 What are the cousins of a Compiler? Explain them in detail.

Explain the need for grouping of phases of compiler. . (Page No.16)

NOV/DEC 2014, APRIL/MAY 2017

C311.1

BTL5

4 Write about the Error handling in different phases. (OR) Explain

various Error encountered in different phases of compiler.

(Page No.11) MAY/JUNE 2016, NOV/DEC 2016

C311.1

BTL5

5 Draw the transition diagram for relational operators and unsigned

numbers.(Page No.131&133) APRIL/MAY 2017

C311.1

BTL2

6 For the following expression

 MAY/JUNE 2016, APRIL/MAY 2017

Position: =initial+ rate*60.Write down the output after each phase.

 (Page No.13)

C311.1 BTL2

7 i) Explain language processing system with neat diagram. (Page

No.5) MAY/JUNE 2016

ii) Explain the need for grouping of phases (Page No. 20)

C311.1 BTL5

10

MAY/JUNE 2016, NOV/DEC 2016

8 i). Analyze the given expressions 4:*+=cba with different

phases of the compiler (Page No.10)

(ii). Classify the concepts of compiler and Interpreter. (Page No.2)

C311.1 BTL 4&3

9 Generalize the important terminologies used in programming

language basics (Page No.25)

C311.1 BTL 6

10 (i).How to solve the source program to target machine code by

using language processing system. (Page No.4)

(ii).Write in detail about the cousins of the compiler. (Page No.1-5)

C311.1 BTL 3

11 (i).Describe the errors encountered in different phases of

compiler.(Page No.194)

(ii).Explain the functions of Preprocessor. (Page No.1-3)

C311.1 BTL 2

12 (i).Tell the various phases of the compiler and examine with

programs segment (Page No.10)

(ii).Discuss in detail about symbol table. (Page No.5)

C311.1 BTL 1

13 Describe the topic on (Page No.12)

(i) Parser Generators

(ii) Syntax directed translation engines

(iii)Scanner Generators.

C311.1 BTL 1

14 What is meant by lexical analysis? Identify the lexemes that

makeup the token in the following program segment.indicate the

correspond token and pattern.

 Void swap(int i, int j)

{

 int t; t = i ; i = j ; j = t ;

} REFER NOTES

C311.1 BTL 6

15 (i).Give the Properties of intermediate representation. (Page No.91)

(ii).Discuss the concepts of Parameter pass Mechanisms. (Page

No.33 to 35)

C311.1 BTL 2

11

UNIT II LEXICAL ANALYSIS

Need and Role of Lexical Analyzer-Lexical Errors-Expressing Tokens by Regular Expressions-

Converting Regular Expression to DFA- Minimization of DFA-Language for Specifying Lexical

Analyzers-LEX-Design of Lexical Analyzer for a sample Language.

S.

No.

Question Course

Outcome

Blooms

Taxanomy

Level

1 Write a grammar for branching statements. MAY/JUNE 2016

Stmt-> if expr then stmt

 | if expr then stmt else stmt

 | є

 expr-> term relop term

 | term

 term -> id

C311.2

BTL1

2 What is a lexeme? Define a regular set.

APRIL/MAY2011,MAY/JUNE2013 MAY/JUNE2014,

NOV/DEC 2017

A Lexeme is a sequence of characters in the source program that is

matched by the pattern for a token. A language denoted by a

regular expression is said to be a regular set.

C311.2

BTL1

3 What is a regular expression? State the rules, which define

regular expression? MAY/JUNE 2007,APRIL/MAY

2018

Regular expression is a method to describe regular
Language Rules:

1) €-is a regular expression that denotes {€} that is the set

containing the empty string

2) If a is a symbol in ∑,then a is a regular expression that

C311.2

BTL1

12

denotes {a}

3) Suppose r and s are regular expressions denoting the

languages L(r) and L(s) Then,

a) (r)/(s) is a regular expression denoting L(r) U

L(s).

b) (r)(s) is a regular expression denoting

L(r)L(s)

c) (r)* is a regular expression denoting L(r)*.

d) (r) is a regular expression denoting L(r).

4 What are the Error-recovery actions in a lexical analyzer?

APRIL/MAY 2012, MAY/JUNE 2013,APRIL/MAY

2015,APRIL/MAY 2018

Deleting an extraneous character

Inserting a missing character

Replacing an incorrect character by a correct

character

Transposing two adjacent characters

C311.2

BTL1

5 Draw a transition diagram to represent relational operators.

NOV/DEC 2007

 Start < = return(relop,

LE) >

 Other

return(relop, NE) = *

 return(relop,EQ)

return(relop,LT)

 > =

C311.2

BTL2

6 What are the issues to be considered in the design of lexical

analyzer? MAY/JUNE 2009

How to Precisely Match Strings to Tokens

How to Implement a Lexical Analyzer

C311.2

BTL1

6

5

8

7

4

3

0 1 2

13

7 Write short notes on buffer pair.

APRIL/MAY 2008

Lexical analyzer will detect the tokens from the source

language with the help of input buffering. The reason is, the

lexical analyzer will scan the input character by character, it will

increase the cost file read operation. So buffering is used. The

buffer is a pair in which each half is equal to system read

command.

C311.2

BTL1

8 How the token structure is is specified? Or Define Patterns.

 APRIL/MAY 2010, MAY/JUNE 2013

 Token structure is specified with the help of Pattern. The

pattern can be described with the help of Regular Expression

C311.2

BTL1

9

What is the role of lexical analyzer? NOV/DEC 2011,

NOV/DEC 2014, NOV/DEC 2017

Its main task is to read input characters and produce as

output a sequence of tokens that parser uses for syntax analysis.

Additionally task is removing blank, new line and tab characters

C311.2

BTL1

10 Give the transition diagram for an identifier.
 NOV/DEC 2011

C311.2

BTL2

11 Why is buffering used in lexical analysis? What are the

commonly used buffering methods?

 MAY/JUNE 2014

 Lexical analyzer needs to get the source program statement

from character by character, without buffering it is difficult to

synchronize the speed between the read write hardware and the

C311.2

BTL1

14

lexical program. Methods are two way buffering and sentinels.

12 Write regular expression to describe a languages consist of

strings made of even numbers a and b.

 NOV/DEC 2014

 ((a+b)(a+b))*

C311.2

BTL1

13 What are the various parts in LEX program? APRIL/MAY

2017

 Lex specification has three parts

declarations

%%

pattern specifications

%%

support routines

C311.2

BTL1

14 Write regular expression for identifier and number.

NOV/DEC 2012, APRIL/MAY 2017

For identifier (a-z)((a-z)|(0-9))*other symbols

For numbers (0-9)(0-9)*

C311.2

BTL1

15 What is the need for separating the analysis phase into lexical

analysis and parsing? (Or) What are the issues of lexical

analyzer?

• Simpler design is perhaps the most important

consideration. The separation of lexical analysis from

syntax analysis often allows us to simplify one or the other

of these phases.

• Compiler efficiency is improved

• Compiler portability is enhanced

C311.2

BTL1

16 What is Lexical Analysis?

The first phase of compiler is Lexical Analysis. This is also

known as linear analysis in which the stream of characters

making up the source program is read from left-to-right and

grouped into tokens that are sequences of characters having a

C311.2

BTL1

15

collective meaning.

17 What is a sentinel? What is its usage?

 April/May 2004

A Sentinel is a special character that cannot be part of the

source program. Normally we use ‘eof’ as the sentinel. This is

used for speeding-up the lexical analyzer.

C311.2

BTL1

18 What is a regular expression? State the rules, which define

regular expression?

 Regular expression is a method to describe regular

language

 Rules:

 1) ε-is a regular expression that denotes {ε} that is the set

containing the empty string

 2) If a is a symbol in ∑,then a is a regular expression that

denotes {a}

 3) Suppose r and s are regular expressions denoting the

languages L(r) and L(s) Then,

a) (r)/(s) is a regular expression denoting L(r) U L(s).

 b) (r)(s) is a regular expression denoting L(r)L(s)

 c) (r)* is a regular expression denoting L(r)*.

 d) (r) is a regular expression denoting L(r).

C311.2

BTL1

19 Construct Regular expression for the language L= {w ε{a,b}/w

ends in abb}

 Ans: {a/b}*abb.

C311.2

BTL2

20 What is recognizer?

 Recognizers are machines. These are the machines which

accept the strings belonging to certain language. If the valid

strings of such language are accepted by the machine then it is

said that the corresponding language is accepted by that

machine, otherwise it is rejected.

C311.2

BTL1

21 Differentiate tokens, patterns, lexeme.

16

 NOV/DEC 2016
· Tokens- Sequence of characters that have a collective

meaning.

· Patterns- There is a set of strings in the input for which

the same token is produced as output. This set of strings is

described by a rule called a pattern associated with the

token

· Lexeme- A sequence of characters in the source program

that is matched by the pattern for a token.

C311.2

BTL2

22 List the operations on languages.

 MAY/JUNE 2016
· Union – L U M ={s | s is in L or s is in M}

· Concatenation – LM ={st | s is in L and t is in M}

· Kleene Closure – L* (zero or more concatenations of L)

· Positive Closure – L+ (one or more concatenations of L)

C311.2

BTL1

23 Write a regular expression for an identifier.
An identifier is defined as a letter followed by zero or more

letters or digits.

The regular expression for an identifier is given as

 letter (letter | digit)*

C311.2

BTL1

24 Mention the various notational short hands for representing

regular expressions.
· One or more instances (+)

· Zero or one instance (?)

· Character classes ([abc] where a,b,c are alphabet symbols

denotes the regular expressions a | b | c.)

· Non regular sets

C311.2

BTL1

25 What is the function of a hierarchical analysis?
Hierarchical analysis is one in which the tokens are

grouped hierarchically into nested collections with

collective meaning. Also termed as Parsing.

C311.2

BTL1

26 What does a semantic analysis do?

Semantic analysis is one in which certain checks are

performed to ensure that components of a program fit

together meaningfully. Mainly performs type checking.

C311.2

BTL1

17

27 What is a lexical error ?

Lexical errors are the errors thrown by your lexer when unable to

continue. Which means that there's no way to recognise a lexeme

as a valid token for you lexer. Syntax errors, on the other side, will

be thrown by your scanner when a given set of already recognised

valid tokens don't match any of the right sides of your grammar

rules.

C311.2

BTL1

28 State the conventions of a transition diagram.

Certain states are said to be accepting or final .These states

indicates that a lexeme has been found, although the actual lexeme

may not consist of all positions b/w the lexeme Begin and forward

pointers we always indicate an accepting state by a double circle.

In addition, if it is necessary to return the forward pointer one

position, then we shall additionally place a * near that accepting

state.

One state is designed the state ,or initial state ., it is indicated by an

edge labeled “start” entering from nowhere .the transition diagram

always begins in the state before any input symbols have been

used.

C311.2

BTL1

29 What is DFA?

 • A Deterministic Finite Automaton (DFA) is a special

form of a NFA.

• No state has ε- transition

• For each symbol a and state s, there is at most one labeled

edge a leaving s. i.e. transition function is from pair of state-

symbol to state (not set of states).

C311.2

BTL1

30 Define NFA.

 A NFA accepts a string x, if and only if there is a path from

the starting state to one of accepting states such that edge labels

along this path spell out x. ε- transitions are allowed in NFAs. In

other words, we can move from one state to another one without

consuming any symbol.

C311.2

BTL1

31 What is a finite automata? C311.2 BTL1

18

A recognizer for a language is a program that takes a string x,

and answers “yes” if x is a sentence of that language, and “no”

otherwise.

• We call the recognizer of the tokens as a finite automaton.

• A finite automaton can be: deterministic (DFA) or non-

deterministic (NFA).

32
Differentiate NFA and DFA. NOV/DEC 2017

NFA DFA

NFA or Non Deterministic

Finite Automaton is the one in

which there exists many paths

for a specific input from

current state to next state.

Deterministic Finite

Automaton is a FA in

which there is only one

path for a specific input

from current state to next

state. There is a unique

transition on each input

symbol.

Transition Function δ : Q X ∑

 2Q

Transition Function δ : Q

X ∑ Q

C311.2

BTL2

33 What are the rules that define the regular expression over

alphabet? (Or) List the rules that form the BASIS.

 NOV/DEC 2016

 • € is a regular expression denoting { € }, that is, the

language containing only the empty string.

• For each ‘a’ in Σ, is a regular expression denoting { a },

the language with only one string consisting of the single symbol

‘a’ .

• If R and S are regular expressions, then

(R) | (S) means L(r) U L(s)

R.S means L(r).L(s)

R* denotes L(r*)

C311.2

BTL1

34 Construct Regular expression for the language L= {w ε{0,1}/w

19

consists of odd number of 0’s}

RE = 0(001)*11

C311.2 BTL1

35 Give the parts of a string?

Prefix of s, suffix of s, substring of s, proper prefix, proper suffix,

proper substring and subsequence of s.

C311.2

BTL1

36 What are the implementations of lexical analyzer?

a) Use a lexical analyzer generator, such as Lex compiler, to

produce the lexical analyzer from a regular expression based

specification.

b) Write the lexical analyzer in a conventional systems-

programming language using the I/O facilities of that language to

read the input.

c) Write the lexical analyzer in assembly language and explicitly

manage the reading of input.

C311.2

BTL1

37 Define the length of a string?

It is the number of occurrences of symbols in string, “s” denoted

by |s|.

Example: s=abc, |s| =3.

C311.2

BTL1

38 Define regular set?

A language denoted by a regular expression is said to be a regular

set.

C311.2

BTL1

39 Define character class with example.

 The notation [abc] where a, b, c are alphabet symbols denotes

the regular expression a/b/c.

Example:

[A-z] = a | b | c | -------| z

Regular expression for identifiers using character classes

[a – z A – Z] [A – Z a – z 0 – 9] *

C311.2

BTL1

40 Write the R.E. for the set of statements over {a,b,c} that

contain no two consecutive b’s

Answer: (B/c) (A/c/ab/cb) *

C311.2

BTL2

41 Describe the language denoted by the R.E. (0/1)*0(0/1)(0/1)

Answer:

The set of all strings of 0’s and 1’s with the third symbol

from the right end is 0.

C311.2

BTL1

42 What are the tasks in lexical analyzer?
 One task is stripping out from the source program

comments and white space in the form of blank, tab, new

C311.2

BTL1

20

line characters.

 Another task is correlating error messages from the

compiler with the source program.

43 Define parser.

Hierarchical analysis is one in which the tokens are grouped

hierarchically into nested collections with collective meaning.

Also termed as Parsing.

C311.2

BTL1

44 Write the R.E. for the set of statements over {a,b,c} that contain

an even no of a’s.

 Ans: ((b/c)* a (b/c) * a)* (b/c)*

C311.2

BTL1

45 Describe the language denoted by the following R.E. 0(0/1)*0

Answer:

 The set of all strings of 0’s and 1’s starting and ending with 0.

C311.2

BTL1

46 Describe the language denoted by the following R.E.

(00/11)*((01/10)(00/11)*(01/10)(00/11)*)

Answer:

 The set of all strings of 0’s and 1’s with even number of 0’s

C311.2

BTL1

47 Draw the NFA for (0/1)*

C311.2

BTL2

48 Draw the DFA for a(abb)*

C311.2

BTL2

49 Draw the Deterministic Finite Automata for the language

Even no.of 0’s and 1’s.

C311.2

BTL2

50 Draw the Non Deterministic Finite Automata for the language

Odd no.of 0’s and 1’s.

C311.2

BTL2

PART B

1 Explain Input Buffering with example. (Page No.88)

NOV/DEC 2011

C311.2

BTL5

2 Explain the role of Lexical Analyzer in detail with necessary

examples. (Page No.84)

 MAY/JUNE 2016, MAY/JUNE 2013, APRIL/MAY 2011,

NOV/DEC 2016

Discuss how finite automata is used to represent tokens and

perform lexical analysis with examples. NOV/DEC 2016

C311.2

BTL5

21

3

Explain the specification of tokens. (Page No.92)

MAY/JUNE 2016,MAY/JUNE 2013, APRIL/MAY 2008,

NOV/DEC 2014

C311.2

BTL5

4 Elaborate in detail the recognition of tokens. (Page No.98)

APRIL/MAY 2012, NOV/DEC 2014

C311.2

BTL6

5 Write an algorithm to convert NFA to DFA and minimize DFA.

Give an example.NOV/DEC 2017 (Page No.140)

C311.2

BTL5

6 What are the issues in Lexical analysis? (Page No.84)

MAY/JUNE 2016,APRIL/MAY 2012, MAY/JUNE 2013,

MAY/JUNE 2014, APRIL/MAY 2017, NOV/DEC 2017

C311.2

BTL5

7 (i) Minimize the regular expression (a+b)*abb. (or) Conversion

of regular expression (a/b)*abb to NFA. (Page

No.121) MAY/JUNE 2016,

NOV/DEC 2016

(ii)Write an algorithm for minimizing the number of states of a

DFA. (Page No.141) NOV/DEC 2016

C311.2

BTL2

8 (i) Design a lexical analyzer for recognizing the tokens such as

identifiers and keywords. (Page No.98)

(ii) Describe the error recovery schemes in the lexical phase of a

compiler. (Page No.85) MAY/JUNE 2015

C311.2

BTL2

9 (i) Differentiate tokens, patterns, lexeme. (Page No.85)

 MAY/JUNE 2016, APRIL/MAY 2017

(ii) Write notes on regular expressions. (Page No.94)

C311.2

BTL2

10 (i) Write notes on regular expression to NFA. Construct Regular

expression to NFA for the sentence (a/b)*a and ab*/ab

 (Page No.121) NOV/DEC 2017

(ii) Construct DFA to recognize the language (a/b)*ab.

 (Page No.135) MAY/JUNE 2016

C311.2

BTL5

11 Convert the Regular Expression abb(a/b)* to DFA using Direct

method and minimize it. APRIL/MAY 2017 (Page No.135)

C311.2

BTL2

22

12 Write an algorithm for constructing a DFA from a regular

expression. Discuss with an example. (Page No.179)
C311.2 BTL 2

13 Solve the given regular expression (a/b)* abb (a/b)* into NFA

using Thompson construction and then to minimized DFA.

(Page No.152,180)

C311.2 BTL 3

14 (i).Solve the following regular expression into minimized DFA.

(a/b)*baa (Page No.180)

(ii).Comparison between NFA and DFA. (Page No.152)

C311.2 BTL 3 &

4

15 i).Describe the Input buffering techniques in detail. (Page

No.115)

(ii).Elaborate in detail the recognition of tokens. (Page No.128)

C311.2 BTL 1

23

UNIT III SYNTAX ANALYSIS

Need and Role of the Parser-Context Free Grammars -Top Down Parsing -General Strategies-

Recursive Descent Parser Predictive Parser-LL(1) Parser-Shift Reduce Parser-LR Parser-LR (0)Item-

Construction of SLR Parsing Table -Introduction to LALR Parser - Error Handling and Recovery in

Syntax Analyzer-YACC-Design of a syntax Analyzer for a Sample Language

S.

No.

Question Course

Outcome

Blooms

Taxanomy

Level

1 Differentiate Top Down Parser And Bottom Up Parser? Give

Example for each. APRIL/MAY 2010

Top down Parser are the parsers which constructs the parse tree

from the root to the leaves in pre- order for the given input string.

Predictive Parser, Recursive Descendent Parser.

Bottom Up Parser are the parsers which constructs the parse tree

from the leaves to the root for the given input string. LR Parser,

SLR Parser.

C311.3

BTL2

2 Compare syntax tree and parse tree. NOV/DEC 2017

 Syntax tree is a variant of a parse tree in which each leaf

represents an operand and each interior node represents an

operator.

 A parse tree may be viewed as a graphical representation

for a derivation that filters out the choice regarding

replacement order. Each interior node of a parse tree is

labeled by some nonterminal A and that the children of the

node are labeled from left to right by symbols in the right

side of the production by which this A was replaced in the

derivation. The leaves of the parse tree are terminal

symbols.

C311.3

BTL2

3 Define Handles. MAY/JUNE 2007

A handle of a string is a substring that matches the right side of a

production. This reduction helps in constructing the parse tree or

right most derivation.

C311.3

BTL1

4 Define ambiguous grammar with an example, and specify it

demerits. MAY/JUNE 2016 MAY/JUNE 2012,

APRIL/MAY 2012

C311.3

BTL1

24

If a grammar produces more than one parse tree for the given

input string then it is called ambiguous grammar. Its demerit is

It is difficult to select or determine which parse tree is suitable for

an input string.

 Ex:
 E E+E / E*E / id

5 Mention the properties of parse tree.

 NOV/DEC 2012

 The root is labeled by the start symbol.

 Each leaf is labeled by a token or by

 Each interior node is labeled by a non terminal

 If A is the Non terminal, labeling some interior node and

x1, x2, x3 .xn are the labels of the children.

C311.3

BTL1

6 What do you mean by a syntax tree?

 NOV/DEC 2012

Syntax tree is a variant of a parse tree in which each leaf

represents an operand and each interior node represents an

operator.

C311.3

BTL1

7 Define Handle pruning. NOV/DEC2011,

APRIL/MAY 2011, NOV/DEC 2016 ,APRIL/MAY 2018

A technique to obtain the rightmost derivation in reverse (called

canonical reduction sequence) is known as handle pruning (i.e.)

starting with a string of terminals w to be parsed. If w is the

sentence of the grammar then =n where n is the nth right

sentential form of unknown right most derivation.

C311.3

BTL1

8
How will you define a context free grammar?

A context free grammar consists of terminals, non-terminals, a

start symbol, and productions.

i. Terminals are the basic symbols from which strings are

formed. “Token” is a synonym for

terminal. Ex: if, then, else.

ii. Nonterminals are syntactic variables that denote sets of

strings, which help define the language generated by the

grammar. Ex: stmt, expr.

iii. Start symbol is one of the nonterminals in a grammar

and the set of strings it denotes is the language defined by the

grammar. Ex: S.

 iv. The productions of a grammar specify the manner in

C311.3

BTL1

25

which the terminals and non-terminals can be combined to form

strings Ex: expr-> id

9 Differentiate sentence and sentential form.

Sentence Sentential form

If S=>w then the string w is

called Sentence of G.

If S=>a then a is a sentential

form of G.

Sentence is a string of

terminals. Sentence is a

sentential form with no

nonterminals.

Sentential form may contain

non terminals

C311.3

BTL2

10 What is left factoring? Give an example. NOV/DEC 2007

 Left factoring is a grammar transformation that is useful

for producing a grammar suitable for predictive parsing.

C311.3

BTL1

11 Derive the string and construct a syntax tree for the input

string ceaedae using the grammar S->SaA|A,A->AbB|B,B-

>cSd|e MAY/JUNE 2009

S->SaA

S->AaA

S->cSdaA

S->cSaAdaA

S->cAaAdaA

S->cBaAdaA

S->ceaBdaA

S->ceaedaB

C->ceaedae

C311.3

BTL2

12 List the factors to be considered for top-down parsing.

MAY/JUNE 2009

We begin with the start symbol and at each step, expand one of

the remaining non-terminals by replacing it with the right side of

one of its productions. We repeat until only terminals remain.

The top-down parse produces a leftmost derivation of the

C311.3

BTL1

26

sentence

13
Draw syntax tree for the expression a=b*– c+b*– c.

NOV/DEC 2017

C311.3

BTL2

14 Construct a parse tree of (a+b)*c for the grammer E-

>E+E/E*E/(E)/id. (or) grammar –(id+id APRIL/MAY

2008, NOV/DEC 2016

 *

 + c

 a b

C311.3

BTL2

15 Eliminate Left Recursion for the grammar AAc|Aad|bd

APRIL/MAY 2017

Abd A'

A'c A'|ad A'| є

C311.3

BTL2

16 What are the various conflicts that occur during shift reduce

parsing? APRIL/MAY 2017

Reduce/Reduce conflict

Shift/ Reduce conflict

C311.3

BTL1

17 Eliminate Left Recursion for the given grammar.

 MAY/JUNE 2007

E E + T | T T T * F | F F (E)| id

E TE'

C311.3

BTL2

27

E' +TE' | є

T FT'

T' *FT' | є

F (E) | id

18 Write the algorithm for FIRST and FOLLOW in parser.

 MAY/JUNE 2016

FIRST(α) is the set of terminals that begin strings derived

from α.

Rules

To compute FIRST(X), where X is a grammar symbol

 If X is a terinal, then FIRST(X)={X}

 If X-> є is a production, then add є to

FIRST(X)

 If X is a non terminal and X->Y1 Y2..Yk is a

production. Then add FIRST(Y1) to FIRST

(X). If Y1 derives є. Then add FIRST(Y2) to

FIRST(X)

FOLLOW (A) is the set of terminals α that appear immediately

to the right of A. For rightmost sentential form of A, $ will be in

FOLLOW (A).

Rules

 If $ is the input end-marker, and S is the start symbol,

$ ∈ FOLLOW(S).

 If there is a production, A → αBβ, then (FIRST (β) –

ε) ⊆ FOLLOW (B).

 If there is a production, A → αB, or a production

A → αBβ, where ε ∈ FIRST (β), then FOLLOW (A) ⊆

FOLLOW (B).

C311.3

BTL1

19 What is dangling reference?

28

MAY/JUNE 2012,APRIL/MAY 2012

 A dangling reference occurs when there is a reference

to storage that has been deallocated. It is a logical error to use

dangling references, since the value of deallocated storage is

undefined according to the semantics of most languages.

C311.3 BTL1

20 Write the rule to eliminate left recursion in a grammar.

 NOV/DEC 2012

 A - > Aα|β : A -> βA’ ; A’ -> αA’|£

C311.3

BTL1

21 Mention the role of semantic analysis.

 NOV/DEC 2012

 It is used to check the type information of the syntactically

verified statements.

C311.3

BTL1

22 What is the output of syntax analysis phase? What are the

three general types of parsers for grammars?

Parser (or) parse tree is the output of syntax analysis phase

 General types of parsers:

 1) Universal parsing

 2) Top-down

3) Bottom-up

C311.3

BTL1

23 What are the different strategies that a parser can employ

to recover from a syntactic error?

 • Panic mode

 • Phrase level

• Error productions

 • Global correction

C311.3

BTL1

24 What are the goals of error handler in a parser?

The error handler in a parser has simple-to-state goals:

 • It should report the presence of errors clearly and

accurately

C311.3

BTL1

29

.• It should recover from each error quickly enough to be able

to detect subsequent errors.

 • It should not significantly slow down the processing of

correct programs.

25 What is phrase level error recovery?

 On discovering an error, a parser may perform local

correction on the remaining input; that is, it may replace a

prefix of the remaining input by some string that allows the

parser to continue. This is known as phrase level error

recovery.

C311.3

BTL1

26 Define context free language. When will you say that two

CFGs are equal?

• A language that can be generated by a grammar is said to

be a context free language.

 • If two grammars generate the same language, the

grammars are said to be equivalent.

C311.3

BTL1

27 Give the definition for leftmost and canonical derivations.

 • Derivations in which only the leftmost nonterminal in any

sentential form is replaced at each step are termed leftmost

derivations

 • Derivations in which the rightmost nonterminal is replaced

at each step are termed canonical derivations.

C311.3

BTL1

28 What is a parse tree?

 A parse tree may be viewed as a graphical representation for

a derivation that filters out the choice regarding replacement

order. Each interior node of a parse tree is labeled by some

nonterminal A and that the children of the node are labeled

from left to right by symbols in the right side of the

production by which this A was replaced in the derivation.

The leaves of the parse tree are terminal symbols.

C311.3

BTL1

29 Why do we use regular expressions to define the lexical

syntax of a language?

 i. The lexical rules of a language are frequently quite simple,

C311.3

BTL1

30

and to describe them we do not need a notation as powerful

as grammars.

 ii. Regular expressions generally provide a more concise and

easier to understand notation for tokens than grammars.

 iii. More efficient lexical analyzers can be constructed

automatically from regular expressions than from arbitrary

grammars

 iv. Separating the syntactic structure of a language into

lexical and non lexical parts provides a convenient way of

modularizing the front end of a compiler into two

manageable-sized components.

30 When will you call a grammar as the left recursive one?

A grammar is a left recursive if it has a nonterminal A such

that there is a derivation A⇒Aα for some stringα.

C311.3

BTL1

31 Define left factoring.

 Left factoring is a grammar transformation that is

useful for producing a grammar suitable for predictive

parsing. The basic idea is that when it is not clear which of

two alternative productions to use to expand a nonterminal

“A”, we may be able to rewrite the “A” productions to refer

the decision until we have seen enough of the input to make

the right choice.

C311.3 BTL1

32 Left factor the following grammar:

 S → iEtS | iEtSeS |a E → b.

 Ans: The left factored grammar is,

 S → iEtSS′ | a

S′ → eS | ε

 E → b

C311.3 BTL2

33 Why SLR and LALR are more economical to construct than

canonical LR?

 For a comparison of parser size, the SLR and LALR

tables for a grammar always have the same number of states,

and this number is typically several hundred states for a

language like Pascal. The canonical LR table would typically

C311.3 BTL1

31

have several thousand states for the same size language.

Thus, it is much easier and more economical to construct

SLR and LALR tables than the canonical LR tables.

34 Write the configuration of an LR parser?

 A configuration of an LR parser is a pair whose first

component is the stack contents and whose second

component is the unexpended

 input: (s0 X1 s1 X2 s2 …Xm sm , ai ai+1 … an $)

C311.3 BTL1

35 What is meant by goto function in LR parser? Give an

example

 • The function goto takes a state and grammar symbol as

arguments and produces a state

. • The goto function of a parsing table constructed from a

grammar G is the transition function of a DFA that

recognizes the viable prefixes of G.

 Ex: goto(I,X) Where I is a set of items and X is a grammar

symbol to be the closure of the set of all items [A→αX.β]

such that [A→α.Xβ] is in I

C311.3 BTL1

36 LR (k) parsing stands for what?

 The “L” is for left-to-right scanning of the input, the “R” for

constructing a rightmost derivation in reverse, and the k for

the number of input symbols of lookahead that are used in

making parsing decisions.

C311.3 BTL1

37 What do you mean by viable prefixes?

• The set of prefixes of right sentential forms that can appear

on the stack of a shiftreduce parser are called viable prefixes.

• A viable prefix is that it is a prefix of a right sentential form

that does not continue the past the right end of the rightmost

handle of that sentential form.

C311.3 BTL1

38 What is meant by Predictive parsing?

Nov/Dec 2007

A special form of Recursive Descent parsing, in which the

look-ahead symbol unambiguously determines the procedure

selected for each nonterminal, where no backtracking is

required.

C311.3 BTL1

39 Write the rule to eliminate left recursion in a grammar. C311.3 BTL 6

32

Prepare and Eliminate the left recursion for the grammar

S →Aa | b

A →Ac | Sd |ε

Ans:

RulesA - > Aα|β : A -> βA’ ; A’ -> αA’|£

ILR SAa|b

 ASdA’|A’

 A’cA’| ε

40 Define a context free grammar.

A context free grammar G is a collection of the following

V is a set of non terminals

T is a set of terminals

S is a start symbol

P is a set of production rules

G can be represented as G = (V,T,S,P)

Production rules are given in the following form

Non terminal → (V U T)*

C311.3 BTL1

41 Define ambiguous grammar.

A grammar G is said to be ambiguous if it generates more than

one parse tree for some sentence of language L(G).

C311.3 BTL1

42 List the properties of LR parser.

1. LR parsers can be constructed to recognize most of the

programming languages for

which the context free grammar can be written.

2. The class of grammar that can be parsed by LR parser is a

superset of class of

grammars that can be parsed using predictive parsers.

3. LR parsers work using non backtracking shift reduce

technique yet it is efficient one.

C311.3 BTL1

43 Mention the types of LR parser.

SLR parser- simple LR parser

LALR parser- lookahead LR parser

Canonical LR parser

C311.3 BTL1

44 What are the problems with top down parsing?

The following are the problems associated with top down

parsing:

Backtracking

Left recursion

Left factoring

Ambiguity

C311.3 BTL1

45 Write short notes on YACC.

YACC is an automatic tool for generating the parser program.

YACC stands for Yet Another Compiler Compiler which is

basically the utility available from UNIX. Basically YACC is

LALR parser generator. It can report conflict or ambiguities in

the form of error messages.

C311.3 BTL1

46 Define LR(0) items. C311.3 BTL1

33

An LR(0) item of a grammar G is a production of G with a dot at

some position of the

right side. Thus, production A → XYZ yields the four items

A→.XYZ

A→X.YZ

A→XY.Z

A→XYZ.

47 What are kernel & non-kernel items?

Kernel items, whish include the initial item, S'→ .S, and all

items whose dots are not at the left end.

Non-kernel items, which have their dots at the left end.

C311.3 BTL1

48 Solve the following grammar is ambiguous: S→aSbS / bSaS /

ε

LMD 1:

S=>aSbS

 =>abSaSbS

 =>abaSbS

 =>ababS

 =>abab

LMD 2:

S=>aSbS

 =>abS

 =>abaSbS

 =>ababS

 =>abab

C311.3 BTL1

49 Define sentential form?

If G = (V, T, P, S) is a CFG, then any string “α” in (VUT)* such

that S* α is a sentential form.

C311.3 BTL1

50 Define yield of the string?
A string that is derived from the root variable is called the yield

of the tree.

C311.3 BTL1

51 Summarize the merits and demerits of LALR

parser.APRIL/MAY 2018

• This is the extension of LR(O) items, by

introducing the one symbol of lookahead on the

input.

• It supports large class of grammars.

• The number of states is LALR parser is lesser

than that of LR(1) parser. Hence, LALR is

preferable as it can be used with reduced memory.

• Most syntactic constructs of programming

language can be stated conveniently.

C311.3 BTL1

52 Draw the activation tree for the following code. APRIL/MAY 2018 C311.3 BTL1

34

 int main()

{

 printf(‘Enter Your Name”);

 scanf(“%s”,username);

 int show_data(username);

 printf(“Press Any Key to Continue…”);

 ….

 int show_data(char *user)

 {

 printf(“Your Name is %s”, username);

 return 0;

 }

}

REFER NOTES

PART B

1 1. (i) Explain Top- Down parsing and Bottom up Parsing.

 (Page No. 181&195) MAY/JUNE 2007

(ii)Explain Error Recovery in Predictive Parsing. (Page No.192)

 MAY/JUNE 2007,

NOV/DEC 2007, APRIL/MAY 2005

C311.3

BTL5

2 2. Construct an SLR parsing table for the above grammar. (Page

No.218)

 E -> E + T

 E -> T

 T -> T * F

 T -> F

 F -> (E)

 F-> id MAY/JUNE 2009, APR/MAY 2011,

APRIL/MAY 2008 , MAY/JUNE 2014 NOV/DEC 2012,

MAY/JUNE 2015, NOV/DEC 2016

(OR)

Construct an SLR parsing table for the given grammar.

C311.3

BTL2

35

APRIL/MAY 2017 (Refer Notes) G: E -> E+T | T

T -> TF | F F -> F* | a | b

3 3. Explain LR parsing algorithm with an example.(Page No. 218)

NOV/DEC 2017

C311.3

BTL5

4 4. Construct the predictive parser or non recursive predictive

parsing table for the following grammar:

 S -> (L) | a

 L -> L, S | S

 Construct the behavior of the parser on the sentence (a, a) and

(a,(a,(a,a))) using the grammar specified above. APRIL/MAY

2012 , MAY/JUNE 2007, APRIL/MAY 2005,NOV/DEC 2012,

MAY/JUNE 2012 MAY/JUNE 2013 , APRIL/MAY 2017

(Refer Notes)

C311.3

BTL2

5 5. Construct Parsing table for the grammar and find moves made by

predictive parser on input id + id * id and find FIRST and

FOLLOW. (Page No.186)

NOV/DEC 2016, NOV/DEC 2017

 E -> E + T

 E -> T

 T -> T * F

 T -> F

 F -> (E)

 F-> id

6.

C311.3

BTL2

6 7. Give an algorithm for finding the FIRST and FOLLOW positions

for a given non-terminal.

(Page No.188) MAY/JUNE 2009 APRIL/MAY

2008

C311.3

BTL5

7 Explain Context free grammars with examples (Page No.

165) MAY/JUNE 2016

C311.3

BTL5

8 8. Consider the grammar,

 E -> E + T

 E -> T

 T -> T * F

 T -> F

 F -> (E)

 F-> id

Construct a LALR parsing table for the grammar given above.

Verify whether the input string id + id * id is accepted by the

C311.3

BTL2

36

grammar or not. (Page No. 240)

MAY/JUNE 2009 APRIL/MAY 2008

9 9. Check whether the following grammar is a LL(1)

grammar.MAY/JUNE 2016 APRIL/MAY2005

S-> iEtS | iEtSeS | a

 E-> b

Also define the FIRST and FOLLOW procedures. (Page No. 191)

C311.3

BTL2

10 Consider the grammar E -> E + E | E * E | (E) | id . Show the

sequence of moves made by the shift-reduce parser on the

input id1 + id2 * id3 and determine whether the given string

is accepted by the parser or not. (Page No. 198)

 MAY/JUNE2016

C311.3

BTL2

11 What is a shift-reduce parser? Explain in detail the conflicts

that may occur during shift-reduce

parsing. (Page No.201) MAY/JUNE 2012, APRIL/MAY 2012

C311.3

BTL5

12 Consider the grammar given below.

 E -> E + T

 E -> T

 T -> T * F

 T -> F

 F -> (E)

 F-> id

 Construct an LR parsing table for the above grammar. Give the

moves of LR parser on id*id+id (Page No.218 &

220) MAY/JUNE 2007

C311.3

BTL2

13 (i)Explain the non-recursive predictive parsing with its

algorithm. (Page No.190) MAY/JUNE

2016,APRIL/MAY 2005, NOV/DEC 2007

 (ii)Explain the LR parsing algorithm in detail. (Page. No.

218) NOV/DEC 2007, APRIL/MAY 2005

C311.3

BTL5

14 10. (i)What is an ambiguous grammar? Is the following grammar

ambiguous? Prove

 E -> E + E | E * E | (E) | id.

 MAY/JUNE 2014

(OR) G: E -> E + E | E * E | (E) | -E |id. for the sentence

id+id*id. (Refer Notes) NOV/DEC 2016

 (ii)List all LR(0) items for the following grammar

C311.3

BTL2

37

 (Refer Notes) MAY/JUNE 2013

 S->AS|b

 A->SA|a

15 Design a syntax rule (YACC) for arithmetic expression.

(Page No.257)

C311.3

BTL5

16 11. Consider the grammar given below.

S -> CC

C -> aC

C -> d

Construct a CLR parsing table for the above grammar. (Page

No.230)

C311.3

BTL2

17 12. Construct parse tree for the input string w = cad using top-down

parser. (Page No.181) NOV/DEC 2016

 S - > cAd

 A - > ab | a

13.

C311.3

BTL2

38

UNIT IV SYNTAX DIRECTED TRANSLATION & RUN TIME ENVIRONMENT

Syntax directed Definitions-Construction of Syntax Tree-Bottom-up Evaluation of S-

AttributeDefinitions- Design of predictive translator - Type Systems-Specification of a simple

type checker-Equivalence of Type Expressions-Type Conversions.

RUN-TIME ENVIRONMENT: Source Language Issues-Storage Organization-Storage

Allocation-Parameter Passing-Symbol Tables-Dynamic Storage Allocation-Storage Allocation in

FORTAN.

S.

No.

Question Course

Outcome

Blooms

Taxanomy

Level

1 What are the limitations of static allocation?

 APRIL/MAY 2011

The size of the data object and constraints on its position

in memory must be known at compile time.

Recursive procedures are restricted, because all activations

of a procedure use the same

bindings for local names.

Data structures cannot be created dynamically, since there

is no mechanism for storage allocation at run time.

C311.4

BTL1

2 1. Draw the DAG for the statement a = (a*b+c)–(a*b+c).

NOV/DEC 2017

=

 -

+

 * c

 a b

C311.4

BTL1

3 Define DAG. MAY/JUNE

2016 , NOV/DEC 2007, MAY/JUNE 2007

A DAG for a basic block is a directed acyclic graph with

C311.4

BTL1

39

the following labels on nodes:

i) Leaves are labeled by unique identifiers, either variable

names or constants.

ii) Interior nodes are labeled by an operator symbol.

iii)Nodes are also optionally given a sequence of

identifiers for labels.

4 2. When does dangling references occur

 MAY/JUNE 2016

When there is a reference to storage that has been

de-allocated, logical error occurs as it uses dangling

reference where the value of de-allocated storage is

undefined according to the semantics of most languages.

C311.4

BTL1

5 3. Mention the two rules for type checking.

 NOV/DEC 2011, APRIL/MAY 2017
Type checker for a language is based on information

about the syntactic constructs in the language, the

notion of types, and the rules for assigning types to

language constructs.

C311.4

BTL1

6 What is syntax directed translation? (or) Write down

syntax directed definition of a simple desk calculator.

 NOV/DEC 2016

A syntax directed definition specifies the values of

attributes by associating semantic rules with the grammar

productions

Production E->E1+T

Semantic Rule E.code=E1.code||T.code||’+’

C311.4

BTL1

7 What do you mean by binding of names?

APRIL/MAY 2017

A binding is an association between two entities:

Name and memory location (for variables)

C311.4

BTL1

40

Name and function

Typically a binding is between a name and the object it

refers to.

8 What is synthesized attributes?

A synthesized attribute at node N is defined only in

terms of attribute values of children of N and at N

C311.4

BTL1

9 4. What is inherited attributes ?

An inherited attribute at node N is defined only in terms

of attribute values at N’s parent, N itself and N’s siblings

C311.4

BTL1

10 What is a syntax tree? Draw the syntax tree for the

assignment statement

a := b * -c + b * -c.

APRIL/MAY 2011, NOV/DEC 2011 NOV/DEC

2012

A syntax tree depicts the natural hierarchical structure

of a source program.

Syntax tree:

C311.4

BTL1

11 What are the fields of activation record?

C311.4

BTL1

41

12 What is the order of calling sequence ?

The caller evaluates the actual parameters

The caller stores a return address and the old value of top-

sp into the callee's activation record.

The callee saves the register values and other status

information.

The callee initializes its local data and begins execution.

C311.4

BTL1

13 What are the functions and properties of Memory

Manager?

Two basic functions:

Allocation

Deallocation

Properties of memory managers:

Space efficiency

Program efficiency

Low overhead

C311.4

BTL1

14 What is static checking?

A compiler must check that the source program follows

both syntactic and semantic conversions of the source

language. This checking called static checking detects and

reports programming errors.

C311.4

BTL1

15 Give some examples of static checking?

Type checks:

A compiler should report an error if an operator is applied

to an incompatible operand.

Flow of control checks:

Statements that cause flow of control to leave a construct

must have some place to which to transfer the flow of

control.

C311.4

BTL1

42

16 What is a Procedure?

A procedure definition is a declaration that associates an

identifier with a statement. The identifier is the procedure

name , and the statement is the procedure body.

C311.4

BTL1

17 What is an Activation tree?

An activation tree is used to depict the way control enters

and leaves activations,

i)Each node represents an activation of a procedure.

ii)The root represents the activation of the main program.

iii)The node for a is the parent of the node for b if and only

if control flows from activation a to b.

iv)The node for a is to the left of the node for b if and only

if the lifetime of a occurs before the lifetime of b.

C311.4

BTL1

18 What is the use of a control stack?

A control stack is used to keep track of live procedure

activations.The idea is to push the node for an activation

onto the control stack as the activation begins and to pop

the node when the activation ends.

C311.4

BTL1

19 What are the types of storage allocation strategies?

(OR) List Dynamic Storage allocation techniques.

NOV/DEC 2016, NOV/DEC 2017

Static allocation : Lays out storage for all objects at

compile time.

Stack allocation : Manages the run-time storage as a stack.

Heap allocation : Allocates and deallocates storage as

needed at run time from a data area known as heap

C311.4

BTL1

20 Define dependency graph.

If an attribute b at a node in a parse tree depends on an

attribute c, then the semantic rule for b at the node

must be evaluated after the semantic rule that defines

C311.4

BTL1

43

c. The interdependencies among the inherited and

synthesized attributes at the nodes in a parse tree can

be depicted by a directed graph called dependency

graph.

21 What methods have been proposed for evaluating

semantic rules?

Parse – tree methods

Rule – based methods

Oblivious methods

C311.4

BTL1

22 What are the functions used to create the nodes of

syntax tree?

mknode(op,left,right)

mkleaf(id, entry)

mkleaf(num,val)

C311.4

BTL1

23 What is a topological sort?

A topological sort of a directed acyclic graph is any

ordering m1,m2,….,mk of the nodes of the graph such that

edges go from nodes earlier in the ordering to later nodes.

C311.4

BTL1

24 What is a type expression?

The type of a language construct will be denoted by a

“type expression” . Informally a type expression is either a

basic type or is formed by applying an operator called a

type constructor to other type expressions.

C311.4

BTL1

25 What is a type system?

A type system is a collection of rules for assigning type

expressions to the various parts of a program. A type

checker implements a type system.

C311.4

BTL1

26 What are coercions?

Conversion from one type to another is said to be implicit

if it is to be done automatically by the compiler. Implicit

C311.4

BTL1

44

type conversions are also called coercions.

27 What is an intermediate code?

Intermediate codes are machine independent codes, but

they are close to machine instructions.The given program

in a source languageis converted to an equivalent program

in an intermediate languaue by the intermediate code

generator.

C311.4

BTL1

28 What are quadruples?

Quadruples are close to machine instructions, but they are

nor actual machine instructions.

C311.4

BTL1

29 What is three address code?

We use the term “three address code” because each

statement usually contains three addresses (two for

operands, one for the result).

General form :

X:=Y op Z

C311.4

BTL1

30 What are the representations of three address code?

Quadruples

Triples

Indirect triples.

C311.4

BTL1

31 What do you mean by strongly typed language?

A language is strongly typed if its compiler can guarantee

that the programs that it accepts will execute without type

errors.

C311.4

BTL1

32 What is sound type system?

A sound type system eliminates the need for dynamic

checking for type errors because it allows us to determine

statically that these errors cannot occur when target

program runs.

C311.4

BTL1

33 Define environment and state.

45

The term environment refers to a function that maps a

name to a storage location.

The term state refers to a function that maps a storage

location to the value held there.

C311.4 BTL1

34 Define symbol table.

Symbol table is a data structure used by the compiler to

keep track of semantics of the variables. It stores

information about scope and binding information about

names.

C311.4 BTL1

35 What are the various ways to pass a parameter in a

function?

Call by value

Call by reference

Copy-restore

Call by name

C311.4

BTL2

36 What are the functions used to create the nodes of

syntax trees?

Mknode (op, left, right)

 Mkleaf (id,entry)

 Mkleaf (num, val)

C311.4

BTL2

37 What are the functions for constructing syntax trees

for expressions?

i) The construction of a syntax tree for an expression is

similar to the translation of the expression into

postfix form.

 ii) Each node in a syntax tree can be implemented as a

record with several fields

C311.4

BTL2

38 Give short note about call-by-name?

Call by name, at every reference to a formal parameter in a

procedure body the name of the corresponding actual

parameter is evaluated. Access is then made to the

C311.4

BTL2

46

effective parameter.

39 Define an attribute. Give the types of an attribute?

 An attribute may represent any quantity, with each

grammar symbol, it associates a set of attributes and with

each production, a set of semantic rules for computing

values of the attributes associated with the symbols

appearing in that production. Example: a type, a value, a

memory location etc., i) Synthesized attributes. ii)

Inherited attributes.

C311.4

BTL1

40 Give the 2 attributes of syntax directed translation into

3-addr code?

i) E.place, the name that will hold the value of E

and

 ii) E.code , the sequence of 3-addr statements

evaluating E.

C311.4
BTL2

41 What are the advantages of generating an intermediate

representation?
i) Ease of conversion from the source program to the

intermediate code.
ii) Ease with which subsequent processing can be

performed from the intermediate code.

C311.4

BTL2

42 Define annotated parse tree?
A parse tree showing the values of attributes at each node

is called an annotated parse tree. The process of

computing an attribute values at the nodes is called

annotating parse tree.

C311.4

BTL1

43 Define translation scheme?
A translation scheme is a CFG in which program

fragments called semantic action are embedded within the

right sides of productions. A translation scheme is like a

syntax-directed definition, except that the order of

evaluation of the semantic rules is explicitly shown.

C311.4

BTL1

44 What are the various data structure used for

implementing the symbol table?
1. Linear list
2. Binary tree

C311.4

BTL2

47

3. Hash table

45 Write a short note on declarations?
Declarations in a procedure, for each local name, we

create a symbol table entry with information like the type

and the relative address of the storage for the name. The

relative address consists of an offset from the base of the

static data area or the field for local data in an activation

record. The procedure enter (name, type, offset) create a

symbol table entry.

C311.4

BTL2

46 Write the 3-addr code for the statements a =b*-c + b*-

c?
 Three address codes are: a=b*-c + b*-c

T1 = -c
T2 = b*T1
T3 = -c
T4 = b*T3
T5 = T2+T4
a:= T5.

C311.4

BTL3

47 List out the two rules for type checking

 Type Synthesis

Type inference

C311.4

BTL2

48 What is S-Attributed Syntax Directed

Translation(SDT)?

If an SDT uses only synthesized attributes, it is called as

S-attributed SDT. S-attributed SDTs are evaluated in

bottom-up parsing, as the values of the parent nodes

depend upon the values of the child nodes.

C311.4

BTL2

49 What is L-Attributed Syntax Directed

Translation(SDT)?

If an SDT uses either synthesized attributes or inherited

attributes with a restriction that it can inherit values from

left siblings only, it is called as L-attributed SDT.

Attributes in L-attributed SDTs are evaluated by depth-

first and left-to-right parsing manner.

C311.4

BTL2

48

50 When stack allocation is not possible ?

The values of local names must be retained when an

activation ends.

A called activation outlives the caller.

C311.4

BTL1

PART B

1 Discuss the various storage allocation strategies in detail.

MAY/JUNE 2016,APRIL/MAY 2011,

NOV/DEC 2011, NOV/DEC 2007, NOV/DEC

2014,MAY/JUNE 2013, APRIL/MAY 2017 (Page

No.401)

C311.4

BTL6

2 Explain in detail about the specification of a simple type

checker. MAY/JUNE 2016, MAY/JUNE

2012,APRIL/MAY 2012, NOV/DEC 2014 MAY/JUNE

2013, NOV/DEC 2016, APRIL/MAY 2017

(Page No.348)

C311.4

BTL5

3 Explain in detail about the translation of source language

details into run time environment. (Page

No.473) MAY/JUNE2009

C311.4

BTL5

4 Explain about runtime storage management. (Page

No.470) NOV/DEC 2017

C311.4

BTL5

5 Explain about the parameter passing. (Page No.424)

APRIL/MAY 2017

C311.4

BTL5

6 Construct a syntax directed definition for constructing a

syntax tree for assignment statements

MAY/JUNE 2016

S -> id: = E

E -> E1 + E2

E -> E1 * E2

E -> - E1

E -> (E1)

E -> id (Page No.288)

C311.4

BTL2

7 Write about Bottom-Up evaluation S-Attributed

definitions. (Page No.293)

C311.4

BTL5

8 What is L-attributed definition? Give some example.

(Page No.296)

49

C311.4 BTL1

9 Explain synthesized attribute and inherited attribute with

suitable examples. (Page No.281)

C311.4

BTL5

10 Explain the specification of simple type checker for

statements, expressions and functions. (Page No.348)
NOV/DEC 2017

C311.4

BTL5

11 A syntax Directed Translation scheme that takes strings of

a’s , b’s and c’s as input and produces as output the

number of substrings in the input string that corresponds

to the pattern a(a|b)*c+(a|b)*b. For example the translation

of the input string “abbcabcababc” is “3”.

i) Write a context free grammar that generate all strings

of a’s, b’s and c’s.

ii) Give the semantic attributes for the grammar symbols.

iii) For each production of the grammar present a set of

rules for evaluation of the semantic attributes.

 (Page No.280) NOV/DEC

2016

C311.4

BTL2

12 (i).Discuss in detail about the Syntax Directed Definitions.

(Page No.304)

(ii).Discuss in detail about the specification of simple type

checker. (Page No.348)

C311.4 BTL 2

13 Generate an intermediate code for the following code

segment with the required syntax-directed translation

scheme.

if (a > b)

x = a + b

else

 x = a – b (Page No.303)

C311.4 BTL 6

14 Compare and contrast of static, stack and Heap allocation.

(Page No.401)

C311.4 BTL 6

15 Analyze the grammar and syntax-directed translation for C311.4 BTL 4

50

desk calculator and show the annotated parse tree for

exprerssion (3 + 4) * (5 + 6). (Page No.303)

51

UNIT V CODE OPTIMIZATION AND CODE GENERATION

Principal Sources of Optimization-DAG- Optimization of Basic Blocks-Global Data Flow

Analysis-Efficient Data Flow Algorithms-Issues in Design of a Code Generator - A Simple Code

Generator Algorithm.

S.

No.

Question Course

Outcome

Blooms

Taxanomy

Level

1 What are basic blocks? NOV/DEC 2011.

APRIL/MAY 2005, APRIL/MAY 2010,APRIL/MAY

2008, NOV/DEC 2014 MAY/JUNE 2013,

APRIL/MAY 2017

A sequence of consecutive statements which may be

entered only at the beginning and when entered are

executed in sequence without halt or possibility of branch

, are called basic blocks.

C311.5

BTL1

2 What do you mean by copy propagation?

APRIL/MAY 2017

After the assignment of one variable to another, a

reference to one variable may be replaced with the value

of the other variable.

If w := x appears in a block, all subsequent uses of w can

be replaced with uses of x.

Before

b := z + y

a := b

x := 2 * a

After

b := z + y

a := b

x := 2 * b

C311.5

BTL1

3 What is a flow graph?

NOV/DEC 2011. MAY/JUNE 2012,NOV/DEC 2014

APRIL/MAY 2008, MAY/JUNE 2013

The basic block and their successor relationships shown

C311.5

BTL1

52

by a directed graph is called a flow graph. The nodes of a

flow graph are the basic blocks.

4 Mention the applications of DAGs. (Or) List the

advantages of DAG. NOV/DEC 2012

MAY/JUNE 2013

 We can automatically detect common sub expressions.

 We can determine the statements that compute the

values, which could be used outside the

block.

We can determine which identifiers have their values

used in the block.

C311.5

BTL1

5 Write the three address code sequence for the

assignment statement. MAY/JUNE 2016

d:=(a-b)+(a-c)+(a-c)

t1=a-b

t2=a-c

t3=t1+t2

t4=t3+t2

d=t4

C311.5

BTL1

6 What is meant by peephole optimization?

MAY/JUNE 2007

Peephole optimization is a technique used in many

compliers, in connection with the optimization of either

intermediate or object code. It is really an attempt to

overcome the difficulties encountered in syntax directed

generation of code.

C311.5

BTL1

7 What are the issues in the design of code generators?

 NOV/DEC 2007

Input to the code generator

Target programs

Memory management

Instruction selection

Register allocation

Choice of evaluation order

Approaches to code generation

C311.5

BTL1

8 What is register descriptor and address descriptor?

 NOV/DEC 2012
A register descriptor keeps track of what is currently in

each register.

An address descriptor keeps track of the location where

the current value of the name can be found at run time.

C311.5

BTL1

9 Define DAG.

53

NOV/DEC 2007, MAY/JUNE 2007

A DAG for a basic block is a directed acyclic graph with

the following labels on nodes:

Leaves are labeled by unique identifiers, either

variable names or constants.

Interior nodes are labeled by an operator symbol.

Nodes are also optionally given a sequence of

identifiers for labels.

C311.5

BTL1

10 Name the techniques in Loop optimization.

 MAY/JUNE 2014

Code Motion, Induction variable elimination, Reduction

in strength

C311.5

BTL1

11 Draw DAG to represent a[i]=b[i]; a[i]=&t;

 NOV/DEC 2014

 = =

 [] [] &

 a i b t

C311.5

BTL2

12 Represent the following in flow graph

 NOV/DEC 2014

 i=1; sum=0;while (i<=10){sum+=i;i++;}

C311.5

BTL2

 i = 1

 Sum =

0

 i<= 10

 Sum+ = i

 i ++

54

13 How to perform register assignment for outer loops?

MAY/JUNE 2012

Outer loop L1 contains an inner loop L2 names

allocated registers in L2 need not be allocated registers in

L1- L2

C311.5

BTL1

14 Define local optimization.

 APRIL/MAY 2011

The optimization performed within a block of code is

called a local optimization.

C311.5

BTL1

15 Define constant folding.

 MAY/JUNE 2013

Deducing at compile time that the value of an expression

is a constant and using the constant instead is known as

constant folding.

C311.5

BTL1

16 What is code motion? APRIL/MAY

2004, MAY/JUNE 2007, APRIL/MAY-2008
Code motion is an important modification that decreases

the amount of code in a loop.

C311.5

BTL1

17 What are the properties of optimizing compilers?

MAY/JUNE 2016, MAY/JUNE 2013,

NOV/DEC 2007, NOV/DEC 2017

 Transformation must preserve the meaning of programs.

 Transformation must, on the average, speed up the

programs by a measurable amount

 A Transformation must be worth the effort.

The source code should be such that it should produce

minimum amount of target code.

There should not be any unreachable code.

Dead code should be completely removed from source

language.

C311.5

BTL1

18 Define Local transformation & Global

Transformation.

A transformation of a program is called Local, if it can be

C311.5

BTL1

55

performed by looking only at the statements in a basic

block otherwise it is called global.

19 What is meant by Common Sub-expressions?

An occurrence of an expression E is called a common

sub-expression, if E was previously computed, and the

values of variables in E have not changed since the

previous computation.

C311.5

BTL1

20 What is meant by Dead Code? Or Define Live

variable?APRIL/MAY 2011, NOV/DEC 2012

A variable is live at a point in a program if its value can

be used subsequently otherwise, it is dead at that point.

The statement that computes values that never get used is

known Dead code or useless code. .

C311.5

BTL1

21 What is meant by Reduction in strength?

Reduction in strength is the one which replaces an

expensive operation by a cheaper one such as a

multiplication by an addition

C311.5

BTL1

22 What is meant by loop invariant computation?

An expression that yields the same result independent of

the number of times the loop is executed is known as loop

invariant computation.

C311.5

BTL1

23 Define data flow equations.

A typical equation has the form

Out[S] = gen[S] U (In[S] – kill[S])

and can be read as, “the information at the end of a

statement is either generated within the statement, or

enters at the beginning and is not killed as control flows

through the statement”. Such equations are called data

flow equations.

C311.5

BTL1

24 When is a flow graph reducible?

APRIL/MAY 2012 MAY/JUNE 2012

A flow graph is reducible if and only if we can partition

the edges into two disjoint groups often called the

forward edges and back edges.

C311.5

BTL1

25 What is induction variable?

A variable is called an induction variable of a loop if

every time the variable changes values, it is incremented

or decremented by some constant.

C311.5

BTL1

26 What is a cross complier?

 NOV/DEC 2007, MAY/JUNE 2014

A cross compiler is a compiler capable of creating

C311.5

BTL1

http://en.wikipedia.org/wiki/Compiler

56

executable code for a platform other than the one on

which the compiler is run. (ie). A compiler may run on

one machine and produce target code for another

machine.

27 What is global data flow analysis?

 NOV/DEC 2014

It is a process in which the values are computed using

data flow properties. They are available expressions,

reaching definition, live variable and busy variable.

C311.5

BTL1

28 How would you represent the dummy blocks with no

statements indicated in global data flow analysis?

MAY/JUNE 2014

Refer notes

C311.5

BTL1

29 What is the use of algebraic identities in optimization

of basic blocks? MAY/JUNE 2012

The algebraic identities are used in Peephole optimization

techniques.

Simple transformations can be applied on the code in

order to optimize it for ex: 2*a optimized to

a + a.

C311.5

BTL1

30 List the characteristics of peephole optimization.

 NOV/DEC 2016

· Redundant instruction elimination

· Flow of control optimization

· Algebraic simplification

· Use of machine idioms

C311.5

BTL1

31 Define code generations?
It is the final phase in compiler model and it takes

as an input an intermediate representation of the source

program and output produces as equivalent target

programs. Then intermediate instructions are each

translated into a sequence of machine instructions that

perform the same task.

C311.5

BTL1

http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Platform_(computing)

57

32 Give the variety of forms in target program.

· Absolute machine language.

· Relocatable machine language.

· Assembly language.

C311.5

BTL2

33 Give the factors of instruction selections.

· Uniformity and completeness of the instruction sets

· Instruction speed and machine idioms

· Size of the instruction sets.

C311.5

BTL2

34 What are the sub problems in register allocation

strategies?

· During register allocation, we select the set of variables

that will reside in register at a point in the program.

· During a subsequent register assignment phase, we pick

the specific register that a variable reside in.

C311.5

BTL2

35 Write the step to partition a sequence of 3 address

statements into basic blocks.

1. First determine the set of leaders, the first statement

of basic blocks.

· The rules we can use are the following.

· The first statement is a leader.

· Any statement that is the target of a conditional or

unconditional goto is a leader.

· Any statement that immediately follows a goto or

conditional goto statement is a leader.

 2. For each leader, its basic blocks consists of the

leader and all statements

 Up to but not including the next leader or the end of

the program.

C311.5

BTL2

36 Write the code sequence for the d:=(a-b)+(a-c)+(a-c).

Statement Code

generation
Register

descriptor
Address

descriptor

t:=a-b

MOV

a,R0
SUB b,R0

R0

contains t
t in R0

u:=a-c MOV

a,R1
SUB c,R1

R0

contains t
R1

t in R0
u in R1

C311.5

BTL3

58

contains

u

v:=t+u ADD

R1,R0
R0

contains

v
R1

contains

u

u in R1
v in R0

d:=v+u ADD

R1,R0
MOV

R0,d

R0

contains

d

d in R0
d in R0

and

memory

37 JkWrite the global data flow equation

Data-flow information can be collected by setting up and

solving systems of equations of the form : out [S] = gen

[S] U (in [S] – kill [S]) This equation can be read as “

the information at the end of a statement is either

generated within the statement , or enters at the beginning

and is not killed as control flows through the statement.”

C311.5

BTL1

38 Define use of machine idioms.
 The target machine may have harder instructions to

implement certain specific operations efficiently.

Detecting situations that permit the use of these

instructions can reduce execution time significantly.

C311.5

BTL1

39 What are the structure preserving transformations on

basic blocks?

· Common sub-expression elimination

· Dead-code elimination

· Renaming of temporary variables

· Interchange of two independent adjacent statement

C311.5

BTL2

40 Define Common sub-expression elimination with ex.
 It is defined as the process in which eliminate the

statements which has the
 Same expressions. Hence this basic block may be

transformed into the equivalent
 Block.

Ex:
 a : =b + c
 b :=a - d
 c :=b + c

After elimination:
 a : =b + c
 b :=a - d
 c :=a

C311.5

BTL1

59

41 Define Dead-code elimination with ex.
 It is defined as the process in which the statement

x=y+z appear in a basic
 block, where x is a dead that is never subsequently used.

Then this statement may
 be safely removed without changing the value of basic

blocks.

C311.5

BTL1

42 Define Renaming of temporary variables with ex.
 We have the statement u:=b + c ,where u is a new

temporary variable, and change all uses of this instance of

t to u, then the value of the basic block is not changed.

C311.5

BTL1

43 Prepare the total cost of the following target code.

MOV a, R0

 ADD b, R0

MOV C, R0

 ADD R0,R1

 MOV R1,X

MOV a, R0 cost=2

 ADD b, R0 cost=2

MOV C, R0 cost=2

 ADD R0,R1 cost=1

 MOV R1,X cost=2

 Total cost=9

C311.5

BTL3

44 Define code optimization and optimizing compiler
The term code-optimization refers to techniques

a compiler can employ in an attempt to produce a better

object language program than the most obvious for a

given source program.
Compilers that apply code-improving

transformations are called
Optimizing-compilers.

C311.5

BTL1

45 Write the labels on nodes in DAG.
 A DAG for a basic block is a directed acyclic graph

with the following

 Labels on nodes:

· Leaves are labeled by unique identifiers, either variable

names or constants.

· Interior nodes are labeled by an operator symbol.

· Nodes are also optionally given a sequence of

identifiers for labels.

C311.5

BTL2

60

46 What are the different data flow properties?

 Available expressions

 Reaching definitions

 Live variables

 Busy variables

C311.5

BTL2

47 What do you mean by machine dependent and

machine independent optimization?

The machine dependent optimization is based on the

characteristics of the target machine for the instruction set

used and addressing modes used for the instructions to

produce the efficient target code.

The machine independent optimization is based on the

characteristics of the programming languages for

appropriate programming structure and usage of efficient

arithmetic properties in order to reduce the execution

time.

C311.5

BTL2

48 What are the basic goals of code movement?

 To reduce the size of the code i.e. to obtain the

space complexity.

 To reduce the frequency of execution of code i.e. to

obtain the time complexity.

C311.5

BTL2

49 How do you calculate the cost of an instruction?

The cost of an instruction can be computed as one plus

cost associated with the source and destination

addressing modes given by added cost.

MOV R0,R1 1

MOV R1,M 2

SUB 5(R0),*10(R1) 3

C311.5

BTL1

61

50 Identify the constructs for optimization in

basic blocks. NOV/DEC 2016

 It is a linear piece of code.

 Analyzing and optimizing is easier.

 Has local scope - and hence effect is limited.

 Substantial enough, not to ignore it.

 Can be seen as part of a larger (global) optimization

problem.

C311.5

BTL3

PART B

1 i)What are the issues in design of a code generator?

Explain in detail. (PageNo:506)

MAY/JUNE 2016, NOV/DEC 2007, Nov/Dec 2011,

April/May 2012 , MAY/JUNE 2007 APRIL/MAY 2005

APRIL/MAY 2008,MAY/JUNE 2012, NOV/DEC 2016,

APRIL/MAY 2017, NOV/DEC 2017

(ii)Define basic block. Write an algorithm to partition a

sequence of

three-address statements into basic blocks. (Page No:528

)

MAY/JUNE 2012, APRIL/MAY 2011, APRIL/MAY

2012

C311.5

BTL5

2 (i) Explain in the DAG representation of the basic block

with example. (Page. No. 598)

APRIL/MAY 2012 APRIL/MAY 2005, APRIL/MAY

2008, MAY/JUNE 2012, MAY/JUNE 2015,

APRIL/MAY 2017

(ii) How to generate a code for a basic block from its dag

representation? Explain.

(Page No: 546)

APRIL/MAY 2011, NOV/DEC 2011

C311.5

BTL5

3 (i) Explain the structure-preserving transformations for

basic blocks. (Page No:530)

NOV/DEC 2011

(ii) Explain the simple code generation algorithm in

detail. (Page No.535) APRIL/MAY 2012,

APRIL/MAY 2008 April/May 2011, NOV/DEC 2011,

NOV/DEC 2012,MAY/JUNE 2012,

C311.5

BTL5

62

MAY/JUNE 2013, MAY/JUNE 2016

4 For the statement given, write three address

statements and construct DAG. MAY/JUNE 2013

 a+a*(b-c)+(b-c)*d

(Refer Notes)

C311.5

BTL2

5 Explain the principle sources of code optimization in

detail. (Page No:592) MAY/JUNE 2016

NOV/DEC 2011, MAY/JUNE 2012 ,MAY/JUNE 2007

,MAY/JUNE 2009 ,APRIL/MAY 2008, APRIL/MAY

2005, NOV/DEC 2014 MAY/JUNE 2013 MAY/JUNE

2012, NOV/DEC 2017

C311.5

BTL5

6 (i)Write about Data Flow Analysis of structural programs.

(Page No:611)

NOV/DEC 2011, APRIL/MAY 2012, MAY/JUNE 2014

MAY/JUNE 2013 MAY/JUNE 2012

(ii)Explain in detail optimization of basic blocks with

example. (Page No.598)

NOV/DEC 2011, MAY/JUNE 2009, MAY/JUNE 2014,

NOV/DEC 2014, APRIL/MAY 2017

C311.5

BTL5

7 (i)Write an algorithm to construct the natural loop of a

back edge. (Page

No:604)

 APRIL/MAY 2011

(ii) Explain in detail about code-improving

transformations. (Page No:633) APRIL/MAY 2011

C311.5 BTL5

8 (i) Discuss in detail about global data flow analysis.

(Page No:608) NOV/DEC 2016

(ii) Explain three techniques for loop optimization with

examples.

(Page No:633)

NOV/DEC 2012, MAY/JUNE 2013, MAY/JUNE

C311.5 BTL5

63

2015

9 (i) Write an algorithm for constructing natural loop of a

back edge. .

(Page No:604) NOV/DEC 2016

(ii) Explain any four issues that crop up when designing a

code generator (PageNo:506)

C311.5 BTL5

10 (i).Explain in detail about optimization of basic blocks.

(Page No.598)

(ii).Construct the DAG for the following Basic block &

explain it.

1. t1: = 4 * i

2. t2:= a [t1]

3. t3: = 4 * i

4. t4:= b [t3]

5. t5:=t2*t4

6. t6:=Prod+t5

7. Prod:=t6

8. t7:=i+1

9. i:= t7

10. if i<= 20 goto (1). (Page. No. 598)

C311.5 BTL 4

11 Explain loop optimization in detail and apply it to the

code given below.

 i= 0

a:=n-3

if I < a then loop else end

label loop

b:= i -4

c:= p + b

d := m[c]

e := d-2

f:= i – 4

g:= p + f

m[g]:= e

i = i +1

a:= n- 3

if i < a then loop else end

label end RFER NOTES

C311.5 BTL 3

12 Develop a DAG and optimal target code for the

expression. x = ((a + b) / (b-c)) – (a + b) * (b-c) +f.

C311.5 BTL 6

64

RFER NOTES

13 Create DAG and three – address code for the following C

program.

i = 1;

s = 0;

while (i<= 10)

{

s = s+ a[i] [i];

i = i + 1; }

RFER NOTES

C311.5 BTL 6

14 (i).Identify the optimization techniques applied on

procesure calls? Explain with example. (Page No:633)

(ii).Describe the concepts of Efficient Data flow

algorithms. (Page No:597)

C311.5 BTL 1

15 (i).Describe the common examples of function preserving

transformations and loop optimization process? (Page

No:586)

(ii).List the types of optimization. (Page No:583)

C311.5 BTL 1

	Program Educational Objectives (PEOs)
	Program Specific Outcomes (PSOs)

