

 JEPPIAAR ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS6502

 OBJECT ORIENTED ANALYSIS AND DESIGN

QUESTION BANK

III YEAR A & B / BATCH: 2015 -2019

1

VISION OF INSTITUTION

To build Jeppiaar Engineering College as an Institution of Academic Excellence in Technical

education and Management education and to become a World Class University.

MISSION OF INSTITUTION

M1
To excel in teaching and learning, research and innovation by promoting the principles

of scientific analysis and creative thinking

M2
To participate in the production, development and dissemination of knowledge and

interact with national and international communities

M3
To equip students with values, ethics and life skills needed to enrich their lives and

enable them to meaningfully contribute to the progress of society

M4

To prepare students for higher studies and lifelong learning, enrich them with the

practical and entrepreneurial skills necessary to excel as future professionals and

contribute to Nation’s economy

PROGRAM OUTCOMES (POs)

PO1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of computer science

engineering problems.

PO2

Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

PO3

Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

2

PO4

Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

PO5

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

PO6

The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

PO7

Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

PO8
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9
Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

PO10

Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

PO11

Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12
Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

3

Vision of Department:

To emerge as a globally prominent department, developing ethical computer professionals,

innovators and entrepreneurs with academic excellence through quality education and research.

Mission of Department

M1

To create computer professionals with an ability to identify and formulate the engineering

problems and also to provide innovative solutions through effective teaching learning

process.

M2
To strengthen the core-competence in computer science and engineering and to create an

ability to interact effectively with industries.

M3
To produce engineers with good professional skills, ethical values and life skills for the

betterment of the society.

M4
To encourage students towards continuous and higher level learning on technological

advancements and provide a platform for employment and self-employment.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO 01: To address the real time complex engineering problems using innovative approach

with strong core computing skills.

4

PEO 02: To apply core-analytical knowledge and appropriate techniques and provide solutions

to real time challenges of national and global society.

PEO 03: Apply ethical knowledge for professional excellence and leadership for the betterment

of the society.

PEO 04​: Develop life-long learning skills needed for better employment and entrepreneurship.

PROGRAMME SPECIFIC OUTCOME (PSOs)

PSO1 – An ability to understand the core concepts of computer science and engineering and to

enrich problem solving skills to analyze, design and implement software and hardware based

systems of varying complexity.

PSO2 ​- To interpret real-time problems with analytical skills and to arrive at cost effective and

optimal solution using advanced tools and techniques.

PSO3 - An understanding of social awareness and professional ethics with practical proficiency

in the broad area of programming concepts by lifelong learning to inculcate employment and

entrepreneurship skills.

5

JEPPIAAR ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CS6502-OBJECT ORIENTED ANALYSIS AND DESIGN

III YEAR - 2018-2019

V SEM

UNIT I UML DIAGRAMS

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams–
Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and
Deployment Diagrams.

UNIT II DESIGN PATTERNS

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling
– High Cohesion – Controller - Design Patterns – creational - factory method - structural –
Bridge – Adapter - behavioral – Strategy – observer.

UNIT III CASE STUDY

Case study – the Next Gen POS system, Inception -Use case Modeling - Relating Use cases –

6

include, extend and generalization - Elaboration - Domain Models - Finding conceptual classes
and description classes – Associations – Attributes – Domain model refinement – Finding
conceptual class Hierarchies - Aggregation and Composition.

UNIT IV APPLYING DESIGN PATTERNS

System sequence diagrams - Relationship between sequence diagrams and use cases Logical

architecture and UML package diagram – Logical architecture refinement - UML class diagrams
– UML interaction diagrams - Applying GoF design patterns.

UNIT V CODING AND TESTING

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration
Testing – GUI Testing – OO System Testing.

TEXT BOOK:

1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development”, Third Edition, Pearson Education, 2005.

REFERENCES:

1. Simon Bennett, Steve Mc Robb and Ray Farmer, “Object Oriented Systems Analysis and
Design Using UML”, Fourth Edition, Mc-Graw Hill Education, 2010.

2. Erich Gamma, a n d Richard Helm, Ralph Johnson, John Vlissides, ​“​Design patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995.

3. Martin Fowler, “UML Distilled: A Brief Guide to the Standard Object Modeling Language”,
Third edition, Addison Wesley, 2003.

4. Paul C. Jorgensen, “Software Testing:- A Craftsman’s Approach”, Third Edition, Auerbach
Publications, Taylor and Francis Group, 2008.

COURSE OUTCOMES :

7

C303
.1 Understand ​the various UML Diagrams

C303
.2 Analyse​ various UML design Patterns

C303
.3 Create ​inception elaboration and domain models

C303
.4 Apply​ UML design Patterns

C303
.5 Create ​Code and compare various testing techniques

8

INDEX

UNIT NO REFERENCE BOOK PAGE NO

Unit - I Craig Larman, "Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development”,
Third Edition, Pearson Education, 2005.

Unit - II

Craig Larman, "Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development”,
Third Edition, Pearson Education, 2005.

Unit - III Craig Larman, "Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development”,
Third Edition, Pearson Education, 2005.

Unit - IV

Craig Larman, "Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development”,
Third Edition, Pearson Education, 2005.

Unit - V

Craig Larman, "Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development”,
Third Edition, Pearson Education, 2005.

9

Unit-I

 UML Diagrams

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams–

Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and

Deployment Diagram

PART-A

S.NO QUESTIONS CO BLOOM’S

LEVEL

1 is Object-Oriented Analysis and Design?
[​APR/MAY 2011,MAY/JUNE 2013,
NOV/DEC 2013, MAY/JUNE 2014,
APR/MAY 2017]

g ​object-oriented analysis​, there is an
emphasis on finding and describing the
objects or concepts in the problem domain.
Flight information system, some of the
concepts include Plane, Flight, and Pilot.

g ​object-oriented design​, (or simply, object
design) there is an emphasis on defining
software objects and how they collaborate to
fulfill the requirements. The combination of
these two concepts shortly known as object
oriented analysis and design.

Ex: A plane software object may have a

tailNumber attribute​ and a ​getFlight

History method.

C303.1 BTL1

2 is UML?​[MAY/JUNE 2012, MAY/JUNE
2013,​ ​MAY/JUNE 2014]

The Unified Modeling Language is a is a
modeling Language used for specifying,

C303.1 BTL1

10

constructing,visualizing and documentation of
the software system and its components.
It includes Graphical tools which helps
anlaysis and design in object oriented software
Engineering. It is directly connected to
programming Languages which help in coding
the proposed system.
The Unified Modeling Language was
developed by ​Grady Booch​, ​Ivar Jacobson and
James Rumbaugh at ​Rational Software in the
1990s

3 What is Analysis and Design?

Analysis emphasizes an investigation of the
problem and requirements, rather than a
solution. Design emphasizes a conceptual
solution (in software and hardware) that
fulfills the requirements, rather than its
implementation. For example, a description of
a database schema and software objects.

C303.1 BTL1

4 Define Design Class Diagrams [​NOV/DEC
2015,MAY/JUNE 2016]

A static view of the class definitions is
usefully shown with a design class diagram.
This illustrates the attributes and methods of
the classes.

student
String:name

Int:Regno
Display()

C303.1 BTL1

5 What are the three ways and perspectives to
Apply UML? [​MAY/JUNE 2015,
NOV/DEC 2015, NOV/DEC 2016,
APR/MAY 2017​]

Three ways of using UML

1. UML as sketch​: Informal and
incomplete diagrams created to explore

C303.1 BTL1

11

http://en.wikipedia.org/wiki/Grady_Booch
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/James_Rumbaugh
http://en.wikipedia.org/wiki/Rational_Software

difficult parts of the problem, or
solution space.

2. UML as blueprint: ​Relatively detailed
design diagrams used either for reverse
engineering or forward engineering.

i. If reverse engineering, a UML
tool reads the source code and
generate UML diagrams.

ii. If Forward engineering using
UML tool the software
developers draw some diagrams
and code can be generated
automatically.

3. UML as programming language​: (ie)
the code can be generated
automatically from the UML diagrams
that are designed by the software
engineers. Complete executable
specification of a software system in
UML.

UML can be applied as three perspectives

1. Conceptual perspective
➢ Using this perspective the

things in the real world
situation are described by the
UML diagram.

2. Specification perspective
➢ Using this perspective the UML

diagrams describe the software
abstractions or components
with specifications and
interfaces.

3. Implementation perspective
➢ the diagrams describe

software implementations in
a particular technology(
such as java).

6 What is Inception? [​APR /MAY 2011​]
Inception is the initial short step to establish a

common vision and basic scope for the
Project. It will include analysis of perhaps
10% of the use cases, analysis of the critical
non-Functional requirement, creation of a
business case, and preparation of the

C303.1 BTL1

12

development Environment so that
programming can start in the elaboration
phase. Inception in one Sentence: Envision
the product scope, vision, and business case.

7 What are Actors?[​NOV/DEC
2011,APR/MAY 2018​]
An actor is something with behavior, such as a
person (identified by role), computer system,
or organization; for example, a cashier.

C303.1 BTL1

8 What is a scenario?
A scenario is a specific sequence of actions
and interactions between actors and the
system; it is also called a use case instance. It
is one particular story of using a system, or
one path through the use case; for example, the
scenario of successfully purchasing items with
cash, or the scenario of failing to purchase
items because of a credit payment denial.

C303.1 BTL1

9 Define Use case. [​NOV/JUN 2013​,
NOV/DEC 2011, APR/MAY 2018​]
A use case is a collection of related success
and failure scenarios that describe an actor
using a system to support a goal. ​Use cases are
text documents, not diagrams, and use-case
modeling is primarily an act of writing text,
not drawing diagrams.

C303.1 BTL1

10 What are Three Kinds of Actors?
PRIMARY ACTOR:

➢ has user goals fulfilled through using

services of the SuD(system under
design).

Example: librarian is the primary actor for the
usecase issuing of books.

SUPPORTING ACTOR:

C303.1 BTL1

13

➢ provides services to the SuD..

Example: Payment validation system is a
supporting actor for the online
purchase system.

OFF STAGE ACTOR:

➢ These actors help in behavior of the

system.
For example​: Tax calculation agency is the off
stage actor

11 What Tests Can Help Find Useful Use
Cases?​ ​[​MAY/JUNE 2016,NOV/DEC 2016]
 1. The Boss Test
 2. The EBP Test
 3. The Size Test

C303.1 BTL1

12 What are Use Case Diagrams?
Use cases are text documents, not diagrams,
and use-case modeling is primarily an act of
writing text, not drawing diagrams​.
Use case diagrams are usually referred to as

behavior diagrams used to describe a set of
actions (use cases) that some system or
systems (subject) can perform in collaboration
with one or more external users of the system
(actors).

C303.1 BTL1

13 What is an activity diagram[APR/MAY
2018]

A UML activity diagram shows sequential and
parallel activities in a process. They are useful
for modeling business processes, workflows,
data flows, and complex algorithms. Basic
UML activity diagram notation illustrates an
action, partition, fork, join, and object node. In
essence, this diagram shows a sequence of
actions, some of which may be parallel. Most
of the notation is self-explanatory; two subtle
points: once an action is finished, there is an
automatic outgoing transition the diagram can
show both control flow and data flow

C303.1 BTL1

14 are interactive diagrams?List out the
components involved in interactive
diagrams?​[NOV /DEC 2012, MAY/JUNE
2013]

C303.1 BTL1

14

The term ​interaction diagram ​is a
generalization of two more specialized UML
diagram types; both can be used to express
similar message interactions:
Collaboration diagrams
Sequence diagrams
Components involved in interactive
diagrams
i.Lifeline Boxes and Lifelines
ii.Singleton objects
iii.Messages

15 is the use of component diagram?[​NOV/DEC
2011, MAY/JUNE 2012] [MAY/JUNE 2013]

A component diagram shows how physical
components of a system are organized.A
component diagram represents a modular part
of a system that encapsulates its contents and
whose manifestation is replaceable within its
environment. A Component defines its
behavior in terms of provided and required
interfaces.

C303.1 BTL1

16 Give the use of UML state diagram? [

MAY/JUNE 2014​]

1. Represents the events and states of
object and the behavior of object in reaction
to an event
2. Shows the life cycle of the object

C303.1 BTL1

17 What is meant by State chart Diagrams?

A UML state chart diagram, illustrates the
interesting events and states of an object, and
the behavior of an object in reaction to an
event. Transitions are shown as arrows,
labeled with their event. States are shown in
rounded rectangles. It is common to include an
initial pseudo-state, which automatically
transitions to another state when the instance is
created.

C303.1 BTL1

15

18 guish between method and message in
object? ​[​MAY/JUNE 2015, NOV/DEC
2015​]

Methods are similar to functions, procedures
or subroutines in more traditional
programming languages. ​Messag​e essentially
are non-specific function calls.

Method is the implementation. ​Message ​is the
instruction.

In an object oriented system, a ​method is
invoked by sending an object a message. An
object understans a message when it can match
the message to a method that has the same
name as the message.

C303.1 BTL1

19 What is Analysis?

Analysis​: - ​Analysis emphasizes on

investigation of the problem and requirements

rather than a solution​. ​For example if a new

online trading system is desired, how will it be

used? what are its functions?

C303.1 BTL1

20 What is Design?

Design emphasizes a conceptual solution
that fulfills the requirements, rather than
its implementation. For example a
description of a database schema and
software objects..

C303.1 BTL1

21 Define class Diagrams ​(MAY/JUN
2016)

C303.1

16

It will show the attributes and methods
of the classes. The class diagram is a
static diagram. It represents the static
view of an application. Class diagram is
not only used for visualizing, describing
and documenting different aspects of a
system but also for constructing
executable code of the software
application.

BTL1

22 Define Software development process

A software development process or life
cycle is a structure imposed on
the development of a software product.
There are several models for
such processes, each describing
approaches to a variety of tasks or
activities that take place during
the process. It describes an approach to
building, deploying and possibly
maintaining software.

C303.1 BTL1

23 What is the use of Unified Process ?

The UP has emerged as a popular
software development process for
building object-oriented systems.The
Unified Process is a design framework
which guides the tasks, people and
products of the design process. It is a
framework because it provides the inputs
and outputs of each activity. The Unified
Software Development
Process or Unified Process is a

C303.1 BTL1

17

popular ​iterative and
incremental​ ​software development
process​ framework. The best-known and
extensively documented refinement of
the Unified Process is the ​Rational
Unified Process​(RUP). Other examples
are ​OpenUP​ and ​Agile Unified Process​.

24 Define Iterative and Incremental
Development?

The system grows incrementally over time
iteration and thus this approach is also know as
iterative and incremental development.
Iterative and Incremental development is any
combination of both iterative design or
iterative method and incremental build model
for software development.
The combination is of long standing and has
been widely suggested for
large development efforts.

C303.1 BTL1

25 Benefits of Iterative Development?

● Early visible progress
● Managed complexity the team is

not overwhelmed by analysis
paralysis or very long and
complex steps

● The learning within an iteration
can be methodically used to
improve the development process
itself, Iteration by iteration.

C303.1 BTL1

26 Define Development Case?

The choice of UP artifacts for a project
may be written up in a short document
called the Development Case. It can
show the sets of possible interactions
between the system and the people who
use it.It can also show interactions
between computer systems.

C303.1 BTL1

27 What is object oriented system
development methodology?

Object oriented system development
methodology is a way to develop
software by building self-contained

C303.1 BTL1

18

http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/OpenUP
http://en.wikipedia.org/wiki/Agile_Unified_Process

modules or objects that can be easily
replaced,modified and reused.

28 How associations are used in UML?

● Associations are used in UML to
represent the relationships
between the classes of the
system.

● The System is operational only
because of the presence of these
associations. The associations are
used to represent many types of
relationships like binary
relationships, ternary
relationships, aggregation,
composition, descriptive
association by using association
classes.

● No design is complete without
associations.

C303.1 BTL1

31 What are the primary goals in the
design of UML? [​ NOV/DEC 2016]

The primary goals in the design of the UML
were:

● Provide users with a
ready-to-use, expressive visual
modeling language so they can
develop and exchange
meaningful models.

● Provide extensibility and
specialization mechanisms to
extend the core concepts.

● Be independent of particular
programming languages and
development processes.

● Provide a formal basis for
understanding the modeling
language.

● Encourage the growth of the OO
tools market.

● Support higher-level
development concepts such as
collaborations, frameworks,
patterns and components.

C303.1 BTL1

19

● Integrate best practices.

PART-B

S.NO QUESTIONS CO BLOOO
M’S

LEVEL
1 List various UML diagrams and

explain it.[​ ​MAY/JUNE 2014,
NOV/DEC 2015,​APR/MAY 2017​]

C303.1 BTL1

2 What do you mean by unified process
in OOAD? Explain the phases with
suitable diagrams? ​[APR/MAY
2011,NOV/DEC 2011,MAY/JUNE
2012, NOV/DEC 2012,MAY/JUNE
2013, NOV/DEC 2013, NOV/DEC
2015, MAY/JUNE 2016,NOV/DEC
2016​,​ APR/MAY 2017,​ NOV/DEC
2017]

C303.1 BTL1

3 What is UML Activity Diagram?
Using an example explain the features
of basic UML activity diagram
notation​. [NOV/DEC 2013,
MAY/JUNE 2016, NOV/DEC 2016​]

C303.1 BTL1

4 ​List the UML notation for class
diagram with example& Explain the
concepts of link, association and
inheritance?​ [MAY/JUNE 2012,
MAY/JUNE 2013].

C303.1 BTL1

5 Explain about Interaction Diagram
Notation (OR) Apply Interative
modeling for a payroll system in UML
[APR/MAY 2011, NOV/DEC 2011,
NOV/DEC 2013, NOV/DEC 2016,
APR/MAY 2018​]

C303.1 BTL2

6 Explain about Usecase Model for a
case study of your choice [​NOV/DEC
2015]

C303.1 BTL2

7 Explain a Problem statement for
Library Management system .Draw the
UML usecase ,Activity,Class,Sequence
,State chart,Package,Component and
Deployment diagram [​MAY/JUNE
2016]

C303.1 BTL2

8 Draw and discuss an analysis model for
banking system [​APR/MAY 2018]

C303.1 BTL2

20

9 Explain the software development life

cycle of object oriented approach
[​APR/MAY 2018]

C303.1 BTL2

UNIT-II

DESIGN PATTERNS

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling
– High Cohesion – Controller - Design Patterns – creational - factory method - structural –
Bridge – Adapter - behavioral – Strategy – observer

PART- A

21

S.
N
O

QUESTIONS CO BL
OO
M’S
LE
VE
L

1 e patterns (or) when to use patterns​[NOV/DEC 2011,MAY/JUNE 2012,
MAY/JUNE 2013, MAY/JUN 2014, NOV/DEC 2015, NOV/DEC 2016]
● The “patterns” provide a representation of nine basic principles
that form a foundation for

signing object-oriented systems.
● A patternis a named problem/solution pair that can be applied in
new context, with advice on

w to apply it in novel situations and discussion of its trade-offs.

The following sections present the first five GRASP patterns:

● Information Expert
● Creator
● High Cohesion
● Low Coupling
● Controller

C303.
2

BT
L1

2. is GRASP? How to Apply the GRASP Patterns? [​MAY/JUNE 2013]

G​eneral R​esponsibility A​ssignment ​S​oftware P​attern​: ​They describe the
fundamental principles of object design and responsibility assignment,
expressed as patterns. The following sections present the first five GRASP
patterns:
Information Expert, Creator.,High Cohesion ,Low Coupling , Controller.
Who is creator?

Creator

Creation of objects is one of the most common activities in an object
oriented system. Which class is responsible for creating objects is a
fundamental property of the relationship between objects of particular
classes.

e: ​Creator

em​: Who should be responsible for creating a new instance of some class ?

on

■ Assign class B the responsibility to create an instance of class A if one or

more of the following is true :

C303.
2

BT
L1

22

■ B aggregates A objects .

■ B contains A objects.

■ B records instances of A objects.

■ B closely uses A objects.

■ B has the initializing data that will be passed to A when it is

created

■ B is a creator of A objects.

3. List out some scenarios that illustrate varying degrees of functional
cohesion.

-Very low cohesion
 -low cohesion
-High cohesion
-Moderate cohesion

C303.
2

BT
L1

4. Define Modular Design ​[MAY/JUNE 2016, APR/MAY 201​7​]

Modular design, or "modularity in design", is a design approach that
subdivides a system into smaller parts called modules or skids, that can be
independently created and then used in different systems.

C303.
2

BT
L1

5. What are the advantages of Factory objects?

• Separate the responsibility of complex creation into cohesive helper
objects.
• Hide potentially complex creation logic.
• Allow introduction of performance-enhancing memory management
strategies, such as object caching or recycling.

C303.
2

BT
L1

6. What is meant by Abstract Class Abstract Factory?

A common variation on Abstract Factory is to create an abstract class
factory that is accessed using the Singleton pattern, reads from a system
property to decide which of its subclass factories to create, and then
returns the appropriate subclass instance. This is used, for example, in the
Java libraries with the ​java.awt.Toolkit ​class, which is an abstract class
abstract factory for creating families of GUI widgets for different
operating system and GUI subsystems.

C303.
2

BT
L1

7. What is meant by Fine-Grained Classes?

Consider the creation of the ​Credit Card, Drivers License, ​and ​Check
software objects. Our first impulse might be to record the data they hold
simply in their related payment classes, and eliminate such fine-grained
classes. However, it is usually a more profitable strategy to use them; they
often end up providing useful behavior and being reusable. For example,
the ​Credit Card ​is a natural Expert on telling you its credit company type
(Visa, MasterCard, and so on).
This behavior will turn out to be necessary for our application.

C303.
2

BT
L1

23

8. How to Choosing the Initial Domain Object?

Choose as an initial domain object a class at or near the root of the

containment or aggregation hierarchy of domain objects. This may be a
facade controller, such as ​Register, ​or some other object considered to
contain all or most other objects, such as a ​Store.

C303.
2

BT
L1

9. How to Connecting the UI Layer to the Domain Layer?

• An initializing routine (for example, a Java ​main ​method) creates both a
UI and a domain
 object, and passes the domain object to the UI.
• A UI object retrieves the domain object from a well-known source, such
as a factory object that
 is responsible for creating domain objects.

C303.
2

BT
L1

10. What is Interface and Domain Layer
Responsibilities​.[MAY/JUN2016]

The UI layer should not have any domain logic responsibilities. It should
only be responsible for user interface tasks, such as updating widgets. The
UI layer should forward requests for all domain-oriented tasks on to the
domain layer, which is responsible for handling them.

C303.
2

BT
L1

11 Elaorate GRASP methodical approach to learning basic object
design?

General Responsibility Assignment Software
Patterns (or Principles), abbreviated GRASP, consists of guidelines
for assigning responsibility to classes and objects in ​object-oriented
design​. GRASP patterns are a learning aid to help one understand
essential object design, and apply design reasoning in a methodical,
rational, explainable way.

C303.
2

BT
L5

12 Define GRASP patterns?

.​GRASP patterns: Creator, Information Expert, Low Coupling,
Controller, High Cohesion, Indirection, Polymorphism, Protected
Variations ,Pure Fabrication.

C303.
2

BT
L1

13 Define GRASP responsibilities?

Responsibilities is “a contract or obligation of a classifier”
(UML definition). Responsibilities can include behaviour, data

C303.
2

BT
L1

24

http://en.wikipedia.org/wiki/Object-oriented_design
http://en.wikipedia.org/wiki/Object-oriented_design

storage, object creation and more. They often fall into two
categories:
Doing​ responsibilities of an object include:

– Doing something itself , such as creating an object or doing
a calculation

– Initiating action in other objects
– Controlling and coordinating activities in other objects

Knowing
• Knowing responsibilities of object include :

– Knowing about private encapsulated data
– Knowing about related objects
– Knowing about things it can derive or calculate

14 Define cohesion?

Cohesion – the degree to which the information and responsibilities

of a class are related to each other. Cohesion refers to the degree to
which the elements of a ​module​ belong together. Thus, it is a
measure of how strongly related each piece of functionality
expressed by the source code of a software module is.

C303.
2

BT
L1

15 Define coupling? (​Nov/Dec 2013)

Coupling of classes is a measure of how strongly a class is
connected to another class. ​Coupling is the degree to which one
class knows about another class. Let us consider two classes
class ​A​ and class ​B​. If class ​A​ knows class​B​ through its interface
only i.e it interacts with class ​B​ through its API then class ​A​ and
class ​B​ are said to be loosely coupled.

C303.
2

BT
L1

16 Define low coupling? ​[May/June 2014]

● Assign a responsibility so that coupling remains low. This is
pretty vague, but it means that low number of classes to
which a class is coupled.

Creator is a more specific case of Low Coupling, related to
instantiation. Low Coupling is an evaluative pattern, which dictates
how to assign ​responsibilities to support: lower dependency
between the classes, change in one class having lower impact on
other classes, higher reuse potential

C303.
2

BT
L1

17 Define high cohesion?

● High Cohesion is an evaluative pattern that attempts to keep
objects appropriately focused, manageable and
understandable.

● High cohesion is generally used in support of Low Coupling.

C303.
2

BT
L1

25

http://en.wikipedia.org/wiki/Module_(programming)

● High cohesion means that the responsibilities of a given

element are strongly related and highly focused. Breaking
programs into classes and subsystems is an example of
activities that increase the cohesive properties of a system.

● Alternatively, low cohesion is a situation in which a given
element has too many unrelated responsibilities. Elements
with low cohesion often suffer from being hard to
comprehend, hard to reuse, hard to maintain and averse to
change.

18 What is creator and its responsibilities?

Creation of objects is one of the most common activities in an

object-oriented system. Which class is responsible for creating
objects is a fundamental property of the relationship between objects
of particular classes.Assign the responsibility for receiving and
handling a system event message to a class that is either:

● Representative of the entire subsystem (e.g. a Façade
Controller).

● Representative of the entire use case scenario.

C303.
2

BT
L1

19 What is facade controller?

The GRASP mentioned that a Controller that represents an entire
subsystem might be called a Façade Controller. ​A facade is an object
that provides a simplified interface to a larger body of code, such as
a ​class library​.

C303.
2

BT
L1

20 What is polymorphism?

C303.
2

BT
L1

26

http://en.wikipedia.org/wiki/Class_library

In ​object-oriented programming​, polymorphism is the

characteristic of being able to assign a different meaning or usage to
something in different contexts - specifically, to allow an entity such
as a ​variable​, a ​BTL1​function​, or an ​object​ to have more than one
form. There are several different kinds of polymorphism. When
related behaviours vary by type (class), assign the responsibility
polymorphically to the specialization classes. This is basically the
purpose of polymorphism, so it is natural for software developers to
understand. This is not much of a pattern, and yet another best
practice.

21 What about pure fabrication?

To support high cohesion and low coupling, where no appropriate
class is present, invent one even if the class does not represent a
problem domain concept .This is a compromise that often has to be
made to preserve cohesion and low coupling. ​This kind of class is
called "Service" in ​Domain-driven design​.

C303.
2

BT
L1

22 Define indirection?

To avoid direct coupling between objects, assign an
intermediate object as a mediator.Recall that coupling between two
classes of different subsystems can introduce maintenance problems.
Another possibility is that two classes would be otherwise reusable
(in other contexts) except that one has to know of the other.

C303.
2

BT
L1

23 What is protected variations?

Assign responsibility to create a stable interface around an
unstable or predictably variable subsystem or component. If a
component changes frequently, the users of the component will also
have to be modified.This is especially time consuming if the
component has many users.

C303.
2

BT
L1

24 What is Responsibility-Driven Design?

Responsibility-driven design is a design technique in
object-oriented programming​. A popular way of thinking about the
design of software objects and also larger scale components are in
terms of responsibilities, roles and collaborations.
Responsibility-driven design is inspired by the client/server model.
It focuses on the contract by asking:
What actions is this object responsible for?
What information does this object share?

C303.
2

BT
L1

27

http://searchsoa.techtarget.com/definition/object-oriented-programming
http://whatis.techtarget.com/definition/variable
http://whatis.techtarget.com/definition/function
http://searchsoa.techtarget.com/definition/object
http://en.wikipedia.org/wiki/Domain-driven_design
http://en.wikipedia.org/wiki/Object-oriented_programming

This is part of a larger approach called responsibility driven design
or RDD.

25 What are the advantages of Factory objects?

• Separate the responsibility of complex creation into cohesive
helper objects.
• Hide potentially complex creation logic.
• Allow introduction of performance-enhancing memory
management strategies, such as object caching or recycling.

C303.
2

BT
L1

26 Define an example for Information Expert pattern or principle?

Information expert is a principle used to determine where to delegate
responsibilities. Information expert will lead to placing the responsibility
on the class with the most information required to fulfill it.

Name: ​Information Expert

Problem:​- What is a general principle of assigning responsibilities to
objects?

Solution​:- Assign a responsibility to the information expert- the class that
has the information necessary to fulfill the responsibility.​Example​:
-Association sale:

C303.
2

BT
L1

27 Determine the use of Design patterns? (Nov/Dec 2013) ​[Nov/Dec
2014]

● Understandability​: Classes are easier to understand in
isolation.

● Maintainability: Classes aren’t affected by changes in other
components.

● Reusability​: easier to grab hold of classes.

C303.
2

BT
L5

28 List the differences between design patterns and frameworks.
• Design patterns are more abstract than frameworks.
• Design patterns are smaller architectural elements than

frameworks.
• Design patterns are less specialized than frameworks.

C303.
2

BT
L1

29 Distinguish between coupling and cohesion [​MAY/JUNE 15,
NOV/DEC 2016,​ ​APR/MAY 201​7​]

Coupling is a measure of how strongly
one element is connected to has
knowledge of or relies on other elements

Cohesion is a measure o
related and focused the
of an elelment.

C303.
2

BT
L4

28

These elements include classes,
subsysytems, and so on.

These elements inc
subsystems and so on.

A class with high coupling relies on
many other classes

A class with low cohes
unrelated things or does t

30 Mention the list of behavourial pattern used during design phase

of software development [​APR/MAY 201​8]
 Chain of Responsibility Pattern
 Command Pattern
 Interpreter Pattern
 Iterator Pattern
 Mediator Pattern

C303.
2

BT
L4

31 List out the types of coupling [​APR/MAY 201​8]
● Content coupling
● Common coupling
● Stamp Coupling
● Control Coupling
● Data Coupling

C303.
2

BT
L4

PART-B

S.NO QUESTIONS CO BLOOMS
LEVEL

1 Explain the design principles in object
modeling.Explain about GRASP
Patterns. ​[APR/MAY 2011,
NOV/DEC 2011, NOV/DEC 2013,
MAY /JUN 2014,​MAY/JUNE 2016]
NOV/DEC 2016,APR/MAY 2017,
APR/MAY 2018​]

C303.2 BTL2

2 Explain on adapter, singleton,
strategy, factory & observer
patterns.

[APR/MAY 2011, MAY/JUNE
2013, NOV/DEC 2013,
MAY/JUN 2014]

C303.2 BTL2

3 Determine ​the concepts of Creator,
Low coupling, Controller and High
cohesion​,​Information Expert
[MAY/JUNE 2012, MAY/JUNE
2013, NOV/DEC 2015, NOV/DEC
2016,​ NOV/DEC 2017​]

C303.2 BTL5

4 List out ​Designing concepts on
the Use-Case Realizations with

C303.2 BTL1

29

GoF Design Patterns​.[NOV/DEC
2011,​ ​MAY/JUNE 2016]​]

5 Discuss In detail about Structural
Patterns​?

C303.2 BTL6

6 Discuss in dateail about
Behavioral Patterns​?[NOV/DEC
2015]

C303.2 BTL6

7 State role and pattern while
developing system design​?
[​ NOV/DEC 2015]

C303.2 BTL1

8 Differentiate bridge and adaptor​?[
NOV/DEC 2015]

C303.2 BTL1

9 Explain in detail about the Factory
pattern. Mention the Limitations
and applications of Factory Pattern
[​NOV/DEC 2015, NOV/DEC 2017]

C303.2 BTL2

10 Write short notes on adaptor
patternand observer pattern
Compare different categories of
design pattern[​APR/MAY 2018]

C303.2 BTL2

UNIT III

Case study – the Next Gen POS system, Inception -Use case Modeling - Relating Usecases
include, extend and generalization - Elaboration - Domain Models - Finding conceptual

30

classesand description classes – Associations – Attributes – Domain model refinement – Finding
conceptual class Hierarchies - Aggregation and Composition.

PART- A

S.

N

O

QUESTIONS CO BLO

OM’S

LEVE

L

1 is the need for modeling? ​[MAY/JUNE 2014]
urpose of modeling is to discover,understand and share the understanding.
Create models in parallel. For example,start sketching in one whiteboard,
Dynamic View UML Interaction diagram,and in another whiteboard,the static
view,the UML Class Diagram.

s done during requirement analysis phase. Along with models, other documents
such as glossary, business rules and standards also be created.

e UML diagrams optionally. Use case diagrams shows the actors and related
functionalities.

C303.3 BTL1

2 What Artifacts May Start in Inception?

Some sample artifacts are Vision and Business Case, Use-Case Model,
Supplementary Specification, Glossary, Risk List & Risk Management Plan,
Prototypes and proof-of-concepts etc.

C303.3 BTL1

3 Define Requirements and mention its types.

Requirements are capabilities and conditions to which the system and more
broadly, the project must conform.
1. Functional 2. Reliability 3. Performance 4. Supportability

C303.3 BTL1

4 What is Elaboration?​[MAY/JUNE 2012, MAY/JUNE 2013, MAY/JUN
2014]

Elaboration is the initial series of iterations during which, on a norma
project

1. The core, risky software architecture is programmed an
tested.

2. The majority of requirements are programmed and stabilized
3. The major risks are mitigated or retired.

C303.3 BTL1

31

It is called ​Executable architecture​ or ​Architectural baseline.
➢ Elaboration often consists two-four iterations; each iteration i

recommended to be two-six weeks, unless the team size is massive.

5 What is Aggregation and composition? [APR/MAY 2011, MAY/JUNE

2012, MAY/JUNE 2013, NOV/DEC 2013, MAY/JUN 2014]

Aggregation​ is a vague kind of association in the UML that loosely suggests
whole-part relationships (as do many ordinary associations). It has no
meaningful distinct semantics in the UML versus a plain association, but the
term is defined in the UML.

Composition​, also known as composite aggregation, is a strong kind of
whole-part aggregation and is useful to show in some models. A composition
relationship implies that 1) an instance of the part (such as a Square) belongs
to only one composite instance (such as one Board) at a time, 2) the part must
always belong to a composite (no free-floating Fingers), and 3) the composite
is responsible for the creation and deletion of its parts either by itself
creating/deleting the parts, or by collaborating with other objects.

C303.3 BTL1

6 What is a Domain Model? [​NOV /DEC 2013, APR/MAY 2011]

A domain model is a visual representation of conceptual classes or
real-situation objects in a domain. The term "Domain Model" means a
representation of real-situation conceptual classes, not of software objects.
The term does not mean a set of diagrams describing software classes, the
domain layer of a software architecture, or software objects with
responsibilities

C303.3 BTL1

7 What are the tasks performed in elaboration?​[MAY/JUNE
15,NOV/DEC 2015,​ ​APR/MAY 2018]

● The core, risky software architecture is programmed and tested
● The majority of requirements are discovered and stabilized
● The major risks are mitigated or retired

C303.3 BTL1

8 What are the key ideas and best practices that will manifest in
elaboration?
● do short time boxed risk-driven iterations
● start programming early
● adaptively design, implement, and test the core and risky parts of the
architecture
● test early, often, realistically
● adapt based on feedback from tests, users, developers

C303.3 BTL1

32

● write most of the use cases and other requirements in detail, through a
series of workshops,
● once per elaboration iteration

9 What Artifacts May Start in Elaboration?
Domain Model This is a visualization of the domain conce

static information model of the domain ent
Design Model This is the set of diagrams that describes

This includes software class diagrams,
diagrams, package diagrams, and so forth.

Software Architecture
Document

A learning aid that summarizes the key arc
their resolution in the design. It is a
outstanding design ideas and their motivati

Data Model This includes the database schemas,
strategies between object and non-object re

Use-Case Storyboards, UI
Prototypes

Descriptions of the user interface, pa
usability models, and so forth.

C303.3 BTL1

10 What are Conceptual Classes? [MAY/JUNE 2016]

The domain model illustrates conceptual classes or vocabulary in the domain.
Informally, a conceptual class is an idea, thing, or object. More formally, a
conceptual class may be considered in terms of its symbol, intension, and
extension.
Symbol​ words or images representing a conceptual class.
Intension​ the definition of a conceptual class.
Extension​ the set of examples to which the conceptual class applies

C303.3 BTL1

11 How to Create a Domain Model?[MAY/JUNE 15, NOV/DEC 2015,
NOV/DEC2016]

Steps to create Domain Model are:

Find the conceptual classes (see a following guideline).
Draw them as classes in a UML class diagram.
Add associations and attributes.

C303.3 BTL1

12 How to Find Conceptual Classes?

Three strategies to find conceptual classes are.

1. Reuse or modify existing models
2. Use a category list

C303.3 BTL1

33

3. Identify noun phrases

13 List some Conceptual Class Category.

Conceptual Class Category Examples
business transactions Sale, Payment Reservati
transaction line items Sales Line Item
product or service related to a transaction or
transaction line item

Item Flight, Seat, Meal

where is the transaction recorded? Register, Ledger Flight M

roles of people or organizations related to the
transaction; actors in the use case

Cashier, Customer, S
Player Passenger, Airlin

place of transaction; place of service Store Airport, Plane, Se

C303.3 BTL1

14 Define Association.

An ​association is a relationship between classes (more precisely, instances of
those classes) that indicates some meaningful and interesting connection.

C303.3 BTL1

15 Why Should We Avoid Adding Many Associations?

We need to avoid adding too many associations to a domain model. Digging
back into our discrete mathematics studies, you may recall that in a graph with
n nodes, there can be associations to other nodes a potentially very large
number. A domain model with 20 classes could have 190 associations’ lines!
Many lines on the diagram will obscure it with "visual noise."

C303.3 BTL1

16 How to Name an Association in UML?

Name an association based on a ​Class Name-Verb Phrase-Class Name
format where the verb phrase creates a sequence that is readable and
meaningful.

C303.3 BTL1

34

17 What is an Aggregation? ​[Nov/Dec 2013,MAY/JUNE 2014]

gation is a vague kind of association in the UML that loosely suggests whole
part relationships.

Aggregation is a variant of the "has a" or association relationship;
aggregation is more specific than association. It is an association that
represents a part-whole or part-of relationship. An aggregation may not
involve more than two classes.

C303.3 BTL1

18 What about attributes in Code?

The recommendation that attributes in the domain model be mainly
datatypes does not imply that C# or Java attributes must only be of
simple, primitive datatypes. The domain model is a conceptual
perspective, not a software one. In the design model, attributes may be
of any type.

C303.3 BTL1

35

http://en.wikipedia.org/wiki/Aggregation_(object-oriented_programming)

19 Define business Modeling

When developing a single application, this includes domain object
modeling. When engaged in large scale business analysis or business
process reengineering, this include dynamic modeling of the business
process across the entire enterprise.

C303.3 BTL1

20 Define inception step.

Inception is the initial short step to establish a common vision and basic

scope for the project. It will include analysis of perhaps 10% of the use
cases, analysis of the critical non-functional requirement, creation of a
business case, and preparation of the development environment so that
programming can start in the following elaboration phase.

C303.3 BTL1

21 What is generalization relationship?

It is a relationship in which one model element (the child) is based on

another model element Generalization relationships are used in class,
component, deployment, and use-case diagrams to indicate that the child
receives all of the attributes, operations, and relationships that are
defined in the parent.

C303.3 BTL1

22 What is exclude relationship?

In UML modeling, you can use an extend relationship to specify that

one use case (extension) extends the behavior of another use case (base).

C303.3 BTL1

36

23 What is composition? (Nov/Dec 2013) (May/June 2014)

osition ,also known as composite aggregation, is a strong kind of
whole-part aggregation and is useful to show in some models.
Composition is a special type aggregation where the 'has-a' relationship
is more strong. For example an university has departments which cannot
exist on their own with the containing 'university' entity

C303.3 BTL1

24 guish Aggregation and containment.

Aggregation is the relationship between the whole and a part. We can
add/subtract some properties in the part (slave) side. It won't affect the
whole part.
Best example is Car, which contains the wheels and some extra parts.
Even though the parts are not there we can call it as car.
But, in the case of containment the whole part is affected when the part
within that got affected. The human body is an apt example for this
relationship. When the whole body dies the parts (heart etc) are died.

C303.3 BTL4

25 the relationships used in class diagram (Nov/Dec 2014,NOV/Dec
2015,May/June 2014)

C303.3 BTL1

37

Objects (of certain class), with attributes,operations.
Links between Objects,
Aggregations between Objects.
Compsition
Generalization

26 What is qualified association?[MAY/JUN2016]

A qualified association has a qualifier that is used to select an object
from a larger set of related objects based upon the qualifier key. It
reduces the multiplicity at the target end of the association, usually
down from many to one because it implies the selection of usually one
instance from a larger set.
EX: ​If a ProductCatalog contains many ProductDescriptions and each
one can be selected by an itemID.

C303.3 BTL1

27 What are the 3 relationships that can be shown in UML diagram?
Define them

1​. ​Association​: how are objects associated? This information will guide
us in designing classes.
2​. ​Super-Sub structure​: How are objects organized into super classes
and sub classes? This information provides us the direction of
inheritance.
3. Aggregation and a part of structure: What is the composition of
complex classes? This information guides us in defining mechanisms
that properly manage object within object.

C303.3 BTL1

38

28 What are the advantages of inception?

1. Estimation or plans are expected to be reliable.
2. After inception, design architecture can be made easily because

all the use cases are written in detail.
3. The life-cycle objectives of the project are stated, so that the

needs of every stakeholder are considered.
4. Scope and boundary conditions, acceptance criteria and some

requirements are established.

C303.3 BTL1

29 What are the three strategies to find conceptual classes?

There are three strategies.
1. Reuse or modify existing models.
2. Use a category list.
3. Identify noun phrases.

C303.3 BTL1

30 When to model with ‘Description Classes’?

A description class contains information that describes something else.
For example, a product description that records the price,picture, and
text description of an item.

C303.3 BTL1

31 When are Description Classes useful?

Add a Description Class When:
1. There needs to be a description about an item or service, independent
of the current existence of any examples of those items or services.
2. Deleting instances of things they describe results in a loss of
information that needs to be maintained.
3. It reduces redundant or duplicated information.

C303.3 BTL1

32 When to define new data type classes?[MAY/JUN 2016]

Encapsulation is a development technique which includes
creating new data types (classes) by combining both information (structure)
and behaviors, and
restricting access to implementation details.

C303.3 BTL1

33 Why call a Domain Model a Visual Dictionary​? [​NOV/DEC 2016]

Because it visualizes and relates words or concepts in the domain. It shows
an abstraction of the conceptual classes. The information it illustrates (using a

C303.

3

BTL1

39

UML notation) could alternatively have been expressed in plain text. But it is
easy to understand the terms and especially their relationships in a visual
language

34. What is the relationship on conceptual superclass to subclass [APR/MAY
2017]

C303.3 BTL1

35 What is the purpose include and exclude relationship in usecase diagram
[APR/MAY 2017]

C303.3 BTL1

36 List out the components of POS system C303.3 BTL1

PART- B

S.NO QUESTIONS CO BLOOM’S LEVEL
1 Explain with an example, how

use case modeling is used to
describe functional
requirements.

Identify the actors, scenario
and use case for the example?
[APR/MAY2011,
MAY/JUNE 2012,
MAY/JUNE 2013,
NOV/DEC 2013,
MAY/JUNE 2014,
NOV/DEC 2016, ​APR/MAY
2018​]

C303.3 BTL2

2 Define Inception. Explain
about artifacts of Inception​?

C303.3 BTL1

3 Explain about Use-Case Model
and its Writing Requirements
in Context?

C303.3 BTL2

4 Discuss the strategies used to
identify conceptual classes.
Describe the steps to create a
domain model used for
representing conceptual classes.
[​APR/MAY 2011, MAY/JUNE
2012, MAY/JUNE 2013,
NOV/DEC 2013, MAY/JUN
2014, NOV/DEC 2016,

C303.3 BTL6

40

APR/MAY 2017,​APR/MAY
2018]

5 Illustrate the concept of Domain
model with examples
[​MAY/JUNE 2016]

C303.3 BTL2

6 Expalin in Deatil about Domain
Model Refinement

C303.3 BTL1

7 Write about Elaboration and
discuss the difference between
Elaboration and Inception with
suitable diagram for university
domain [NOV/DEC 2015,
APR/MAY 2017​]

C303.3

8 Construct design for Library
Information system which
comprises following notations
1.Aggregation
2.Composition
3.Associations[​NOV/DEC 2015
,​NOV/DEC 2016, APR/MAY
2017, NOV/DEC 2017,
APR/MAY 2018​]

C303.3

9 What are the guidelines for
finding used to partition th classes
in the domain model organized
into packages .Explain with the
suitable examples [​MAY/JUNE
2016]

C303.3

10 Explain with example on concrete
uscase and an abstract use
case​[NOV/DEC 2017]

C303.3

11 Explain with an example
generalization and specialization
and write a note on abstract class
and abstract
operation​[NOV/DEC 2017]

C303.3

12 What is multiciplicity of an
association.Expalin with an
example of different types of
multiplicities ​[NOV/DEC
2017]

C303.3

41

Unit-IV

APPLYING DESIGN PATTERNS

System sequence diagrams - Relationship between sequence diagrams and use cases Logical
architecture and UML package diagram – Logical architecture refinement - UML class diagrams
– UML interaction diagrams - Applying GoF design patterns.

PART- A

S.
N
O

QUESTIONS CO BLOO
M’S

LEVE
L

1 e package and draw the UML notation for package?​[​MAY/JUNE 2012,
MAY/JUNE 2013, NOV/DEC 2013, MAY/JUN 2014]

A UML package diagram provides a way to group elements. It can group
anything: classes, other packages, use cases. UML package diagrams
are often used to illustrate the logical architecture of a system -the
layers, the subsystems, packages.

The package name is placed on the tab if the package shows the inner
members or on the main folder if not. Dependency or coupling is shown
by the UML – dependency line – a dashed line with arrow pointing

C303.
4

BTL1

42

towards depended on package. Fully qualified names are represented in
UML for example as java :: util:: date

UML notation for package

2 . What is the use of system sequence diagram? ​[APR/MAY 2011,

NOV/DEC 2011,
MAY/JUNE 2014​]

tem Sequence Diagram is an artifact that illustrates input and output events
related to the system under discussion. A system sequence diagram (SSD) is
a picture that shows, for a particular scenario of a use case, the events that
external actors generate, their order, and inter-system events.

stems are treated as a black box; the emphasis of the diagram is events that
cross the system boundary from actors to systems.

tem sequence diagram is a picture that shows for one particular scenario of a
usecase, the events that external actors generate, their order, and inter system
events. All systems are treated as a black box.

C303.
4

BTL1

3 he relationships used in class diagram. [​APR/MAY 2011, ​NOV/DEC
2013, MAY/JUNE 2014​]​ [MAY/JUNE 2015​]
1. Association
2. Aggregation
3. Composition
4. Dependency

C303.
4

BTL1

4 What is meant by System Sequence Diagrams?

A system sequence diagram (SSD) is a picture that shows, for a particular
scenario of a use case, the events that external actors generate their order,
and inter-system events. All systems are treated as a black box; the emphasis
of the diagram is events that cross the system boundary from actors to
systems

C303.
4

BTL1

5 What is meant by System Behavior? [MAY/JUNE 2015,NOV/DEC
2015​]

System behavior ​is a description ​of what ​a system does, without explaining
how it does it. One

Part of that description is a system sequence diagram. Other parts include the
Use cases, and system contracts .

C303.
4

BTL1

43

6 What is meant by Inter-System SSDs?

SSDs can also be used to illustrate collaborations between systems, such as
between the Next Gen POS and the external credit payment authorizer.
However, this is deferred until a later iteration in the case study, since this
iteration does not include remote systems collaboration.

C303.
4

BTL1

7 Define System Events and the System Boundary.[​ NOV/DEC 2016]

To identify system events, it is necessary to be clear on the choice of system
boundary, as discussed in the prior chapter on use cases. For the purposes of
software development, the system boundary is usually chosen to be the
software system itself; in this context, a system event is an external event
that directly stimulates the software.

C303.
4

BTL1

8 How to Naming System Events and Operations? .[​ NOV/DEC 2016]

System events (and their associated system operations) should be expressed
at the level of intent rather than in terms of the physical input medium or
interface widget level. It also improves clarity to start the name of a system
event with a verb.

Thus "​enter item" is better ​than "scan​" (that is, laser scan) because it
captures the intent of the operation while remaining abstract and
noncommittal with respect to design choices about what interface is used to
capture the system event.

C303.
4

BTL1

9 What is meant by link?

A link ​is a connection path between two objects; it indicates some form of
navigation And visibility between the objects is possible . More formally, a
link is an instance of an association. For example, there is a link or path of
navigation from a ​Register ​to a ​Sale, ​along which messages may flow, such
as the ​make 2 Payment ​message.

C303.
4

BTL1

1
0

.​ ​What is meant by Messages?

Each message between objects is represented with a message expression and
small arrow indicating the direction of the message. Many messages may
flow along this link. A sequence number is added to show the sequential
order of messages in the current thread of control.

C303.
4

BTL1

1
1

e SSD. Mention its use?

A system sequence diagram (SSD) is a picture that shows, for a
particular scenario of use case, the events that external actors generate
their order and inter system events. All systems are treated as a black
box. The emphasis of the diagram is the events that cross the system
boundary from actors to systems.

C303.
4

BTL1

44

Example for a System sequence diagram
1
2

Define System events?

The system sequence diagrams shows system Events or I/O messages
relative to the system. Input system events imply the system has standalone
system operations to handle the events, just as an Object Oriented message
(a kind of event or signal) is handled by an Object oriented method (a kind
of operation).

C303.
4

BTL1

1
3

List out the frame operators in sequence diagram.

The common frame operators:

● Alt : alternate fragment for mutual exclusion
● Loop : loop fragment while guard is true
● Opt : Optional fragment that executes if guard is true
● Par: parallel fragments that execute in parallel.
● Region: critical region within which only one thread can run.

C303.
4

BTL1

1
4

Define the strength and weakness of sequence and collaboration
diagram.

[APR/MAY 2017]

Type Strengths Weaknesses
Sequence Clearly shows

sequence or time
ordering of

Forced to extend to the right wh
objects.

Consumes horizontal space

C303.
4

BTL1

45

messages

Large set of detailed
notation option

 Space economical
flexibility to add new
objects in two
dimensions

More difficult to see sequence of m

Fewer notation options

1
5

How to create instance in collaboration diagram. [APR/MAY 2018]

A message ‘create’ can be used to create an instance in a collaboration
diagram. If another name is used, the message may be annotated with a
UML stereotype, like <<create>>. The create message may include
parameters indicating the passing of initial messages.

C303.
4

BTL1

1
6

What do you mean by synchronous and asynchronous call?

An asynchronous message call does not wait for a response. They are used in
multi threaded environments such as .Net and Java so that the new thread
executions can be created and initiated. When a task is being executed
asynchronously, there is no need to wait for it to finish, before starting with
another task. In Synchronous message calls, the task has to be completed
before starting another task.

Example for Asynchronous and synchronous call

C303.
4

BTL1

1
7

Define classifier.[MAY/JUNE 2016]

A UML classifier is a “model element that describes behavioural and
structure features”. Classifiers can also be specialized. They are a
generalization of many of the elements of the UML, including classes,

C303.
4

BTL1

46

interfaces, use cases and actors. In class diagram, the two most common
classifiers are regular classes and interfaces.

1
8

How to show methods in class diagram?

A UML method is the implementation of an operation. If constraints are
defined, the method must satisfy them. A method may be illustrated in class
diagrams with a UML note symbol stereotype with <<method>>.

C303.
4

BTL1

1
9

Define Active class.

An active object runs on and controls its own thread of execution. Active
classes are just Classes which represents an independent flow of control.
Active class share the same properties as all the other classes. When an
active object is created, the associated flow of control is started. When the
object is destroyed the associated flow of control is terminated.

C303.
4

BTL1

2
0

Justify why class diagram is called static object modelling.

The UML class diagram does not have any dynamic elements and all the
representations are static. The classes and the methods in the classes do not
change with respect to any external criteria. The characteristics and the
methods of a class are standard and constant and cannot be changed.
Therefore, the class diagram is called as static object modelling

C303.
4

BTL5

2
1

List the relationships used in class diagram.

The various relationships used in class diagrams are:

● Association with multiplicities.
● Interface implementation
● Inheritance
● Dependency
● Composition over Aggregation
● Qualified Association
● Qualified association
● Association Class

C303.
4

BTL1

2
2

Define singleton class with an example. C303.
4

BTL1

47

When exactly one instance of a class is allowed, it is called a “singleton”
class. In UML diagram, such a class can be marked with a “I” in the upper
right corner of the name component.

2
3

What is Logical Architecture?

The logical architecture is the large scale organization of the software classes
into packages, namespaces, subsystems and layers. It’s called the logical
architecture because there’s no decision about how these elements are
deployed across different operating system processes or across physical
computers in a network. An architectural pattern expresses a fundamental
structural organization schema for software systems. It provides a set of
predefined subsystems, specifies their responsibilities, and includes rules
and guidelines for organizing the relationships between them.

C303.
4

BTL1

2
4

What are the types in layered architecture? List the layers in OO
system.

● Strict layered architecture
● Relaxed layered architecture
● Layers in OO architecture:
● User Interface
● Application Logic and Domain Objects
● Technical Services

C303.
4

BTL1

2
5

List the benefits of using layers?

● Relaxed complexity is encapsulated and decomposable.
● Lower layers contain reusable functions
● Some layers (primarily the domain and technical services) can be

distributed.
● Development by team is aided because of the logical segmentation
● Some layers can be replaced with new implementations.

C303.
4

BTL1

2
6

What is the Relationship between domain layer and domain model?

The domain layer is part of the software and the domain model is part of
the conceptual perspective analysis. By creating a domain layer with
inspiration from the domain model, a lower representation gap between
the real world domain and the software design is achieved.

C303.
4

BTL1

2
7

Define tiers, layers and partition?

Tier in architecture is a logical layer, not a physical node. The layers of
architecture are said to represent the vertical slices, while partitions
represent a horizontal division of relatively parallel subsystems of a
layer. ​Ex: The technical services layer may be divided into
partitions such as security and reporting.

C303.
4

BTL1

2
8

Define model view separation principle? C303.
4

BTL1

48

The model view separation principle states that model objects should not
have direct knowledge of view objects, at least as view objects. Ex: a
register or sale object should not directly send a message to a GUI
window object process Sale Frame, asking it to display something.

2
9

Difference between Logical architecture and layers [MAY/JUN 2017]

The ​logical architecture​is the large - scale organization of the software
classes into packages (or namespaces), subsystems, and layers. It's called the
logical ​architecture because there's no decision about how these elements are
deployed across different operating system processes or across physical
computers in a network (these latter decisions are part of the ​deployment
architecture​).

A layer is a very coarse - grained grouping of classes, packages, or
subsystems that has cohesive responsibility for a major aspect of the system.
Also, layers are organized such that "higher" layers (such as the UI layer)
call upon services of "lower" layers, but not normally vice versa.

C303.
4

BTL1

3
0

When to use package diagram and collaboration diagram[APR/MAY
2018]

A ​package in the Unified Modeling Language is used "to group elements, and to
provide a namespace for the grouped elements". A ​package may contain other
packages​, thus providing for a hierarchical organization of ​packages​. Pretty much
all ​UML​ elements can be grouped into ​packages​.

A collaboration diagram, also called a ​communication diagram or interaction
diagram, is an illustration of the relationships and interactions among software
objects in the ​Unified Modeling Language​ (UML).

C303.
4

BTL1

3
1

How to create an instance[APR/MAY 2018]

Object instances can only be created by using a class definition. Even though an
object instance is created, it has not been committed to the database.

C303.
4

BTL1

PART-B

S.NO QUESTIONS CO BLOOM’S
LEVEL

1 Illustrate with an example, the relationship
between UML Sequence diagram and use
cases?​[APR/MAY 2011, MAY/JUNE 2013,
NOV/DEC 2013,MAY/JUN 2014, NOV/DEC
2016,​ APR/MAY 2018​]

C303.4 BTL2

49

2 Explain the logical architecture and UML

package diagram​. [MAY/JUN 2014,
NOV/DEC 2016]

C303.4 BTL2

3 What are concepts involved in logical architecture
refinement​?

C303.4 BTL1

4 Explain the UML notation for class diagram
with example& Explain the concepts of link,
association and inheritance​? [MAY/JUNE
2012, MAY/JUNE 2013 ​, ​MAY/JUNE 2016]

C303.4 BTL2

5 Explain about Interaction Diagram Notation for
inventory Management system? (OR)​.
[APR/MAY 2011, NOV/DEC 2011,
NOV/DEC 2013, APR/MAY 2011,
MAY/JUNE 2013, NOV/DEC 2013,
MAY/JUN 2014, NOV/DEC 2015]

C303.4 BTL2

6 How to add new SSD’s and contract to the
design diagrams​ NOV/DEC 2015]

C303.4 BTL1

7 What are the concepts involved in domain
Refinement​ NOV/DEC 2015]

C303.4 BTL2

8 What is Model-view-separation principle
[​MAY/JUNE 2016,​ APR/MAY 2017​]

C303.4 BTL2

9 Explain the UML class,Sequence and
Interaction diagram for Library Management
System ​APR/MAY 2017​]

C303.4 BTL2

10 Model a class diagram for a Banking system
.State the functional requirements you
consider[​NOV/DEC 2017​]

C303.4 BTL2

11 Explain detail about various static and dynamic
with UML important diagrams with suitable
example​ [APR/MAY 2018]

C303.4 BTL2

UNIT V

CODING AND TESTING

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration
Testing – GUI Testing – OO System Testing.

PART- A

S.N
O

QUESTIONS CO BL
OO

50

M’
S

LE
VE
L

1 What are Steps for Mapping Designs to Code? [MAY/JUNE
2015,MAY/JUNE 2015,MAY/JUNE 2016, MAY/JUNE 2017]

Implementation in an object-oriented programming language requires writing
source code for:
 • Class and interface definitions
 • Method definitions

C303
.5

BT
L1

2 are Contracts useful? [​APR/MAY 2011, MAY/JUNE 2014]
● Operation contract describes the behavior in terms of state changes to the
objects in the domain model when a system operation gets executed. The domain
model is a visual representation of the conceptual classes or the real world objects.
● It is used to represent the system behavior.
● It uses pre and post condition form to describe the changes in the objects.
● The use cases are the main repository of requirements for the project. They
may provide most or all of the detail necessary to know what to do in the design, in
which case, contracts are not helpful. However, there are situations where the
details and complexity of required state changes are awkward to capture in use
cases.

C303
.5

BT
L1

3 What are the issues in OO testing?​ [MAY/JUNE 2015,NOV/DEC 2015​]

● Testing in an OO context must address the basics of testing a base class and
the code that uses the base class. Factors that affect this testing are inheritance and
dynamic binding.
● Therefore, some systems are harder to test (e.g., systems with inheritance
of implementations harder than inheritance of interfaces) and OO constructs such
as inheritance and dynamic binding may serve to hide faults.

C303
.5

BT
L1

4 What is OO integration Testing?​ [MAY/JUNE 2016,​ MAY/JUNE 2017​]

Integration testing is the phase in which the individual Units are combined to form
larger and larger aspects of the program, they are tested to determine If the units
interact together correctly, for example to check that a Unit is returning the result
of a calculation in the correct format.

Integration testing requires that the Unit testing phase has been completed
successfully. Integration testing will take up much of the whole testing phase and
one of its biggest problems is determining exactly how long to spend since this
phase could potentially, if you wanted to exhaustively test the program, take a very
long time.

C303
.5

BT
L1

5 What is GUI testing?
GUI testing is the process of ensuring proper functionality of the graphical user
interface (​GUI​) for a given application and making sure it conforms to its written
specifications.

C303
.5

BT
L1

51

http://searchwindevelopment.techtarget.com/definition/GUI

GUI testing evaluates design elements such as layout, colors,​fonts​, font sizes,
labels, text boxes, text formatting, captions, buttons, lists, icons, links and content.
GUI testing processes can be either manual or automatic, and are often performed
by third -party companies, rather than developers or end users.

6 List out the Pros and Cons of Top-down Integration Testing:

Pro

• Test cases can be defined in terms of the functionality of the system
(functional requirements)

• No drivers needed

Cons

• Writing stubs is difficult: Stubs must allow all possible conditions to be
tested.

• Large number of stubs may be required, especially if the lowest level of the
system contains many methods.

• Some interfaces are not tested separately.

C303
.5

BT
L1

7 What is Sandwich Testing Strategy:

• Combines top-down strategy with bottom-up strategy
• The system is viewed as having three layers

• A target layer in the middle
• A layer above the target
• A layer below the target

• Testing converges at the target layer.

C303
.5

BT
L1

8 What are the Pros and Cons of Sandwich Testing:

• Top and Bottom Layer Tests can be done in parallel
• Problem: Does not test the individual subsystems and their interfaces

thoroughly before integration
• Solution: Modified sandwich testing strategy

C303
.5

BT
L1

9 What are the Steps in Integration Testing:

• 1. Based on the integration strategy, ​select a component ​to be tested. Unit
test all the classes in the component.

• 2. Put selected component together; do any preliminary fix-up ​necessary to
make the integration test operational (drivers, stubs)

• 3. Test functional requirements​: ​Define test cases that exercise all uses
cases with the selected component

C303
.5

BT
L1

52

http://whatis.techtarget.com/definition/font

• 4. Test subsystem decomposition​: ​Define test cases that exercise all

dependencies
• 5. Test non-functional requirements: Execute ​performance tests
• 6. ​Keep records ​of the test cases and testing activities.
• 7. Repeat steps 1 to 7 until the full system is tested.
• The primary goal of integration testing is to identify failures ​with the

(current) component ​configuration​.
10 What are the Approaches of GUI Testing?

• Manual Based Testing
• Record and Replay
• Model Based Testing

C303
.5

BT
L1

11 What is Functional Testing?

Goal: Test functionality of system

• Test cases are designed from the requirements analysis document (better:
user manual) and centered around requirements and key functions (use
cases)

• The system is treated as black box
• Unit test cases can be reused, but new test cases have to be developed as

well.

C303
.5

BT
L1

12

 13

What are the types of Performance Testing?

Compatibility test,Volume testing,Configuration testing,Stress
Testing,Compatibility test

Volume testing,Configuration testing,,Stress Testing,Timing testing,Security
testing

Human factors testing,,Quality testing,Recovery testing,Environmental test

What is Acceptance Testing?

• Goal: Demonstrate system is ready for operational use
• Choice of tests is made by client
• Many tests can be taken from integration testing
• Acceptance test is performed by the client, not by the developer.

• Alpha test:
• Client uses the software at the developer’s environment.
• Software used in a controlled setting, with the developer always

ready to fix bugs.
• Beta test:

• Conducted at client’s environment (developer is not present)

C303
.5

BT
L1

53

• Software gets a realistic workout in target environment

14 what are difference between alpha test and beta test?

• Alpha test:
• Client uses the software at the developer’s environment.
• Software used in a controlled setting, with the developer always

ready to fix bugs.
• Beta test:

• Conducted at client’s environment (developer is not present)
• Software gets a realistic workout in target environment

C303
.5

BT
L1

15 What is Design Class Diagrams:

● DCDs contain class or interface names, classes, method and simple
attributes.

● These are sufficient for basic class definitions.
● Elaborate from associations to add reference attributes

C303
.5

BT
L1

16 What is Reference Attributes:

An attribute that refers to another complex objects.
● Reference Attributes are suggested by associations and navigability in a

class diagram.
● Example: A product specification reference on a Sales Line Item. So here

we can use product spec as a complex reference attribute to sales line item
class.

C303
.5

BT
L1

17 What is Role Names: C303
.5

BT
L1

54

● Each end of an association is a role. Reference Attributes are often

suggested by role names. (use role names as the names of reference
attributes).

18 Define testing.

Testing is the process of using suitable test cases to evaluate and ensure the quality
of a product by removing or sorting out the errors and discrepancies. It is also used
to ensure that the product has not regressed (such as, breaking a feature that
previously worked).Testing involves various types and levels based on the type of
object/product under test. Testing can be described as a process used for revealing
defects in software, and for establishing that the software has attained a specified
degree of quality with respect to selected attributes.

C303
.5

BT
L1

19 What is test driven development?

Unit testing code is written before the code to be tested, and the developer writes
unit testing code for all production code. Ie, the basic method is to write a test
code, then write a little production code, make it pass the test, then write some
more test code and so forth.

C303
.5

BT
L1

20 What is refactoring? [​ NOV/DEC 2016]

Refactoring is a structured, disciplined method to rewrite or restructure existing
code without changing its external behaviour, applying small transformation steps
combined with re-executing tests at each step. Refactoring is another extreme
programming (XP) step applicable to all iterative methods.

C303
.5

BT
L1

21 What is the need for testing a code?

The programmers and the testers have to execute the program before it gets to the
customer with the specific intent of removing all errors, so that the customer will
not experience the frustration associated with a poor-quality product. In order to
find the highest possible number of errors, tests must be

C303
.5

BT
L1

55

22 What is random class testing?

In random class testing, the classes or the methods of a class can be tested using
random test cases in a random sequence. The test process need not follow a
procedure or a finite set of test cases for the methods of a class.

C303
.5

BT
L1

23 What is a test harness?

A test harness is an environment into which a software component can be placed an
tested using test cases. If a class under test does not interact with any other classes
then the test harness consist of a main program and the class under test. If the clas
interacts with other classes then the test harness consists of the main program, th
class under test and dummy class to replace the other classes.

C303
.5

BT
L1

24 Compare system testing and integration testing.​ [MAY/JUNE 2016]

In integration testing, the product is divided into smaller subsystems and tested
separately. They may be combined with other subsystems and tested.

In system testing the test data and the classes are combined as one and tested as a
whole to find out how the entire system works in the test or launch environment.

C303
.5

BT
L5

25 What are test cases? When we say test case is effective?

The usual approach to detecting defects in a piece of software is for the tester to
select a set of input data and then execute the software with the input data under a
particular set of conditions. The tester bundles this information into an item called
test case.

● A greater probability of detecting defects
● A more efficient use of organizational resources
● A higher probability for test reuse
● Closer adherence to testing and project schedules and budgets
● The possibility for delivery of a higher-quality software product

C303
.5

BT
L1

26 What is validation and verification?

Validation is the process of evaluating a software system or component during, or
at the end of the development cycle in order to determine whether it satisfies
specified requirements.

Validation is usually associated with traditional execution based testing, that is
exercising the code with test cases.

C303
.5

27 How is class testing different from conventional testing?

Conventional testing focuses on input-process-output, whereas class testing focuses
on each method, then designing sequences of methods to exercise states of a class.
In conventional testing methods the test cases are applied and the output is focused
on ie, enter the input and wait for the valid and correct output. If there is a false
output then it signifies the occurrence of an error.In class testing the methods of

C303
.5

56

the classes under test is subjected to various test cases in a suitable test
environment.

28 Explain about thread based, cluster based, and use based testing in
Integration testing.

Thread-based testing – testing of all classes which are required to respond to one
system input or event

Use-based testing – in this the independent classes are tested first and the
dependent classes are tested later.

Cluster testing - groups of collaborating classes are tested for interaction errors

C303
.5

29 Why do conventional top down and bottom up integration testing methods
have less meaning in an object oriented context?

Basic object oriented software does not have a hierarchical control structure, hence
top down approach and bottom up approach of testing is of less use in testing.
Therefore, thread based, use based and cluster based testing methods are
incorporated for performing integration testing.

C303
.5

30 What is the test case design for object oriented software?

White-box testing methods can be applied to testing the code used to implement
class operations. In this the code and the methods used in the algorithms can be
tested. Black-box testing methods are appropriate for testing OO systems. In black
box testing only the interface and the structure of the code can be tested.

C30
3.5

BT
L1

31 When does testing of a product/scenario end?

Practically, testing is a process that never ends. This can be expressed in three
ways.

● The burden of ensuring quality to a product simply shifts from the
developer to the tester and then to the customer.

● Testing is done when you run out of time or money.
● Use a statistical model:

Assume that errors decay logarithmically with testing time
Measure the number of errors in a unit period
Fit these measurements to a logarithmic curve .

C303
.5

BT
L1

32 What is Regression Testing? .[​ NOV/DEC 2016]

Regression testing is a type of software ​testing which verifies that software, which
was previously developed and ​tested​, still performs correctly after it was changed
or interfaced with other software. Changes may include software enhancements,
patches, configuration changes, etc

C303
.5

BT
L1

33 What is Refactoring and Testing[APR/MAY 2018] C303
.5

BT
L1

57

Refactoring is a structured, disciplined method to rewrite or restructure existing
code without changing its external behaviour, applying small transformation steps
combined with re-executing tests at each step. Refactoring is another extreme
programming (XP) step applicable to all iterative methods.

Testing is the process of using suitable test cases to evaluate and ensure the quality
of a product by removing or sorting out the errors and discrepancies. It is also used
to ensure that the product has not regressed (such as, breaking a feature that
previously worked).Testing involves various types and levels based on the type of
object/product under test. Testing can be described as a process used for revealing
defects in software, and for establishing that the software has attained a specified
degree of quality with respect to selected attributes

34 How to use creating methods from interaction diagram [APR/MAY 2018]

In interaction diagram shows the messages that are sent in response to a method
invocation. The sequence of these messages translates to a series of statements in the
method definition.

C303
.5

`

PART- B

S.NO QUESTIONS CO BLOOM’S
LEVEL

1 Explain in detail the design,artifacts to
implementation code in an object
oriented language [​MAY/JUNE 2016]

C303.5

1 Explain the operation of Mapping
Designs to Code​[​APR/MAY 2011,
NOV/DEC 2013​ ,NOV/DEC
2105,NOV/DEC2016]

C303.5 BTL2

2 List out the issues in object oriented
Testing(OO Testing) [​APR/MAY
2017, APR/MAY 2018]

C303.5 BTL1

3 Explain about Class Testing? C303.5 BTL2
4 What is OO Testing?Explain in detail

about the concepts of OO testing in
OOAD [​MAY/JUNE 2016​]

C303.5 BTL2

5 Explain on GUI testing?​ [NOV/DEC
2016, APR/MAY 2017, APR/MAY
2018]

C303.5 BTL2

6 Discuss in detail about OO Integration
testing and System testing?[​NOV/DEC

C303.5 BTL1

58

2016, APR/MAY 2017, NOV/DEC
2017, APR/MAY 2018]

7 Explain in detail about the different
types of testing strategies in OOAD
[​MAY/JUNE 2016, APR/MAY 2018​ ​]

C303.5 BTL2

8 How is class testing different from
converntional testing .Explain with an
example[​NOV/DEC 2017]

C303.5 BTL2

59

