

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS8494 SOFTWARE ENGINEERING Question Bank III YEAR A & B / BATCH : 2017 -21

Vision of Institution

To build Jeppiaar Engineering College as an Institution of Academic Excellence in Technical education and Management education and to become a World Class University.

Mission of Institution

M1	To excel in teaching and learning, research and innovation by promoting the principles of scientific analysis and creative thinking
M2	To participate in the production, development and dissemination of knowledge and interact with national and international communities
M3	To equip students with values, ethics and life skills needed to enrich their lives and enable them to meaningfully contribute to the progress of society
M4	To prepare students for higher studies and lifelong learning , enrich them with the practical and entrepreneurial skills necessary to excel as future professionals and contribute to Nation's economy

Program Outcomes (POs)

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

	development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Vision of Department

To emerge as a globally prominent department, developing ethical computer professionals, innovators and entrepreneurs with academic excellence through quality education and research.

Mission of Department

M1	To create computer professionals with an ability to identify and formulate the engineering problems and also to provide innovative solutions through effective teaching learning process.
M2	To strengthen the core-competence in computer science and engineering and to create an ability to interact effectively with industries.
M3	To produce engineers with good professional skills, ethical values and life skills for the betterment of the society.
M4	To encourage students towards continuous and higher level learning on technological advancements and provide a platform for employment and self-employment .

Program Educational Objectives (PEOs)

PEO1	To address the real time complex engineering problems using innovative approach with strong core computing skills.
PEO2	To apply core-analytical knowledge and appropriate techniques and provide solutions to real time challenges of national and global society
PEO3	Apply ethical knowledge for professional excellence and leadership for the betterment of the society.
PEO4	Develop life-long learning skills needed for better employment and entrepreneurship

Programme Specific Outcome (PSOs)

PSO1 – An ability to understand the core concepts of computer science and engineering and to enrich problem solving skills to analyze, design and implement software and hardware based systems of varying complexity.

PSO2 - To interpret real-time problems with analytical skills and to arrive at cost effective and optimal solution using advanced tools and techniques.

PSO3 - An understanding of social awareness and professional ethics with practical proficiency in the broad area of programming concepts by lifelong learning to inculcate employment and entrepreneurship skills.

BLOOM TAXANOMY LEVELS K6: Creating., K2: Evaluating., K3: Analyzing., K4: Applying., K5: Understanding., K6: Remembering

SYLLABUS

CS 8494 - SOFTWARE ENGINEERING

UNIT I- SOFTWARE PROCESS AND PROJECT MANAGEMENT 9

Introduction to Software Engineering, Software Process, Perspective and Specialized Process Models Introduction to Agility-Agile process-Extreme programming-XP Process.

UNIT II-REQUIREMENTS ANALYSIS AND SPECIFICATION 9

Software Requirements:Functional and Non-Functional, User requirements, System requirements, Software Requirements Document –Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary

9

9

UNIT III-SOFTWARE DESIGN

Design process –Design Concepts-Design Model–Design Heuristic –Architectural Design – Architectural styles, Architectural Design, Architectural Mapping using Data Flow-User nterface Design: Interface analysis, Interface Design –Component levelDesign: Designing Class based components, traditional Components

UNIT IV - TESTING AND IMPLEMENTATION

Software testing fundamentals-Internal and external views of Testing-white box testing-basis pathtesting-control structure testing-black box testing-Regression Testing –Unit Testing –

5

IntegrationTesting –Validation Testing –System Testing And Debugging –Software ImplementationTechniques: Coding practices-ING

9

UNIT V -PROJECT MANAGEMENT

Estimation –FP Based, LOC Based, Make/Buy Decision, COCOMO II -Planning –Project Plan, Planning Process, RFP Risk Management –Identification, Projection,RMMM -Scheduling and Tracking –Relationship between people and effort, Task Set & Network, Scheduling, EVA – Processand Project Metrics

TEXT BOOKS

- Roger S. Pressman, "Software Engineering A practitioner's Approach", Sixth Edition, McGraw-Hill International Edition, 2005
- Ian Sommerville, "Software engineering", Seventh Edition, Pearson Education Asia, 2007.

REFERENCES:

- 1. Rajib Mall, —Fundamentals of Software EngineeringII, Third Edition, PHI Learning PrivateLimited, 2009.
- PankajJalote, —Software Engineering, A Precise Approach∥, Wiley India, 2010.
- 3. Kelkar S.A., —Software Engineering∥, Prentice Hall of India Pvt Ltd, 2007.
- 4. Stephen R.Schach, —Software Engineering∥, Tata McGraw-Hill Publishing Company Limited, 2007.

Course Outcomes (COs)

C215.1	Identify the key activities in managing a software project and
	Compare different process models
C215.2	Concepts of requirements engineering and Analysis Modeling.
C215.3	Apply systematic procedure for software design and
	deployment
C215.4	Compare and contrast the various testing and maintenance.
C215.5	Manage project schedule, estimate project cost and effort
	required.

INDEX PAGE

UNIT	REFERENCE BOOK	PAGE NUMBER
	Roger S. Pressman, "Software Engineering – A practitioner's	1- 212
Ι	Approach", Sixth Edition, McGraw-Hill International Edition, 2010	
	Roger S. Pressman, "Software Engineering – A practitioner's	220-294
II	Approach", Sixth Edition, McGraw-Hill International Edition, 2010	
		311- 357
III	Roger S. Pressman, "Software Engineering – A practitioner's	
	Approach", Sixth Edition, McGraw-Hill International Edition, 2010	

IV	Ian Sommerville, —Software EngineeringII, 9th Edition, Pearson Education Asia, 2011	360- 427
V	Ian Sommerville, —Software EngineeringI, 9th Edition, Pearson Education Asia, 2011	663- 771

UNIT – 1

<u>PART –A</u>

S.NO	QUESTIONS	CO	BLOO
			M'S
			LEVEL
1	Write down the generic process framework that is applicable to any software	C215.1	BTL6
	project / relationship between work product, task, activity and system		
	<u>NOV/DEC-10,NOV/DEC2016, NOV/DEC 2017</u>		
	Common process frame work		
	- Process frame work activities		
	- Umbrella activities		
	- Frame work activities		
	- Task sets		
2	List the goals of software engineering? <u>APR/MAY-11</u>	C215.1	BTL6
	Satisfy user requirements, High reliability, Low maintenance cost, Delivery on		
	time, Low production cost, High performance, Ease of reuse.		
3	What is the difference between verification and validation? NOV/DEC-10,	C215.1	BTL5
	APR/MAY-11, NOV/DEC-11, MAY/JUN-13		
	• Verification refers to the set of activities that ensure that software correctly		
	implements a specific function. Verification: "Are we building the product		
	right?"		

	• Validation refers to a different set of activities that ensure that the software		
	that has been built is traceable to customer requirements. Validation: "Are		
	we building the right product?"		
4	For the scenario described below, which life cycle model would you choose?	C215.1	BTL6
	Give the reason why you would choose this model. <u>NOV/DEC-11</u> ,		
	You are interacting with the MIS department of a very large oil company with		
	multiple departments. They have a complex regency system. Migrating the data		
	from this legacy system is not an easy task and would take a considerable time.		
	The oil company is very particular about processes, acceptance criteria and legal		
	contracts.		
	Spiral model Proactive problem prevention. Each iteration has a risk		
	analysis, sector that evaluates. Alternatives for proactive problem		
	avoidance.		
5	Give two reasons why system engineers must understand the environment of a	C215.1	BTL6
	system? <u>APR/MAY-12</u>		
	1. The reason for the existence of a system is to make some changes in		
	its environment.		
	2 The functioning of a system can be very difficult to predict		
6	What are the two types of software products? APP/MAV 12	C215_1	BTI 5
U	1 Generic products: these are stand alone systems that are produced by a	C215.1	DILS
	development		
	Organization and sold in the open market to any customer who wants to buy it		
	2 Customized products: these are systems that are commissioned by a specific		
	2. Customized products, these are systems that are commissioned by a specific		
	and developed specially by some contractor to meet a special need		
-	and developed specially by some contractor to meet a special need.	C215_1	рті (
	what is the advantage of adhering to life cycle models for software?	C215.1	DILO
	It halps to produce good quality software products without time and such as the		
	The nerve to produce good quality software products without time and cost over		
	runs.it encourages the development of software in a systematic & disciplined		

	manner.		
8	Is it always possible to realize win-win spiral model for software? Justify.	C215.1	BTL6
	NOV/DEC-12		
	• Must identify stake holder and their win condition		
	• Developing buy-in to the model is important than the model itself		
	• Eliminating the clashes between customers is important.		
9	What is software process? List its activities. <u>MAY/JUN-13</u>	C215.1	BTL6
	Software process is defined as the structured set of activities that are		
	required to develop the software system.		
	Activities – Specification, design & implementation, validation & evolution.		
10	What are the various categories of software?	C215.1	BTL5
	• System software		
	Application software		
	Engineering/Scientific software		
	• Embedded software		
	Web Applications		
	Artificial Intelligence software		
11	What are the umbrella activities of a software process? <u>APR/MAY 2015</u>	C215.1	BTL6
	• Software project tracking and control.		
	• Risk management.		
	Software Quality Assurance.		
	Formal Technical Reviews.		
	Software Configuration Management.		
	• Work product preparation and production.		
	Reusability management.		
	• Measurement		
12	What are the merits of incremental model?	C215.1	BTL6
	i. The incremental model can be adopted when tere are less number of		
	people involved in the project.		

	ii. Technical risks can be managed with each increment.		
	iii. For a very small time span, at least core product can be delivered to the		
	customer.		
13	List the task regions in the Spiral model.	C215.1	BTL5
	• Customer communication – In this region it is suggested to establish		
	customer communication.		
	• Planning – All planning activities are carried out in order to define resources		
	timeline and otherproject related activities.		
	• Risk analysis – The tasks required to calculate technical and management		
	risks.		
	• Engineering – In this the task region, tasks required to build one or more		
	representations of applications are carried out.		
	• Construct and release – All the necessary tasks required to		
	construct,test,install the applications are conducted. ³ / ₄ Customer evaluation		
	- Customer" s feedback is obtained and based on the customer evaluation		
	required tasks are performed and implemented at installation stage.		
14	Characteristics of software contrast to characteristics of hardware?	C215.1	BTL5
	<u>APR/MAY 2016</u>		
	\circ Software is easier to change than hardware. The cost of change is much		
	higher for hardware than for software.		
	• Software products evolve through multiple releases by adding new features		
	and re-writing existing logic to support the new features. Hardware products		
	consist of physical components that cannot be "refactored" after		
	manufacturing, and cannot add new capabilities that require hardware		
	changes.		
	• Specialized hardware components can have much longer lead times for		
	acquisition than is true for software.		
	• Hardware design is driven by architectural decisions. More of the		
	architectural work must be done up front compared to software products.		
	• The cost of development for software products is relatively flat over time.		

	However, the cost of hardware development rises rapidly towards the end of		
	the development cycle.		
	• Testing software commonly requires developing thousands of test cases.		
	Hardware testing involves far fewer tests.		
	Hardware must be designed and tested to work over a range of time and		
	environmental conditions, which is not the case for software.		
15	List the process maturity levels in SEIs CMM. <u>NOV/DEC2015</u>	C215.1	BTL6
	Level 1:Initial– Few processes are defined and individual efforts are taken.		
	Level 2:Repeatable- To track cost schedule and functionality basic project		
	management processes are established.		
	Level 3:Defined- The process is standardized, documented and followed.		
	Level 4:Managed– Both the software process and product are quantitatively		
	understood and controlled using detailed measures.		
16	What does Verification represent?	C215.1	BTL6
	Verification represents the set of activities that are carried out to confirm		
	that the software correctly implements the specific functionality.		
17	What does Validation represent?	C215.1	BTL5
	Validation represents the set of activities that ensure that the software that		
	has been built is satisfying the customer requirements.		
18	What are the steps followed in testing? <u>MAY/JUNE 2016</u>	C215.1	BTL6
	i. Unit testing – The individual components are tested in this type of testing.		
	ii. Module testing - Related collection of independent components are		
	tested.		
	iii. Sub-system testing – This is a kind of integration testing. Various		
	modules are		
	integrated into a subsystem and the whole subsystem is tested.		
	iv. System testing – The whole system is tested in this system.		
	v. Acceptance testing – This type of testing involves testing of the system		
1			
	with customer data. If the system behaves as per customer need then it is		

19	State the advantages and disadvantages in LOC based cost estimation?	C215.1	BTL6
	<u>APR/MAY 2015</u>		
	Advantages of LOC		
	L It is straight forward (simple)		
	□ Easily can be automated (plenty of tools are available)		
	Disadvantages of LOC		
	□ Its Language dependent		
	Penalizes the well designed short programs		
	Cannot easily accommodate nonprocedural languages		
	\Box Need a level of detail that may not be available at the early stages of		
	development.		
20	What is requirement engineering?	C215.1	BTL6
	Requirement engineering is the process of establishing the services that the		
	customer requires from the system and the constraints under which it operates and		
	is developed.		
21	What are the various types of traceability in software engineering?	C215.1	BTL6
	i Source traceshility. These are basically the links from requirement to		
	to the balders who propose these requirements		
	stakenoiders who propose these requirements.		
	ii. Requirements traceability – These are links between dependant requirements.		
	iii. Design traceability – These are links from requirements to design.		
22	If you have to develop a word processing software product, what process	C215.1	BTL5
	models will you choose? Justify your answer. <u>NOV/DEC 2016</u>		
	We will choose the incremental model for word processing software. It focuses on		

	the aspects of the word processing software that are visible to the customer / end		
	user. The feedback is used to refine the prototype.		
23	What led to the transition from product to process oriented development in	C215.1	BTL6
	software engineering? <u>APR/MAY 2016</u>		
	Droduct techniques to designing software. Large numbers of software projects do		
	Product techniques to designing software - Large numbers of software projects do		
	not meet their expectations in terms of functionality, cost, or delivery schedule.		
	Process - Composed of line practitioners who have varied skills, the group is at		
	the center of the collaborative effort of everyone in the organization who is		
	involved with software engineering process improvement.		
	Process-oriented view on cooperating software components based on the concepts		
	and terminology of a language/action perspective on cooperative work provides a		
	more suitable foundation for the analysis, design and implementation of software		
	components in business applications.		
24	What are the advantages and disadvantages of iterative software development	C215.1	BTL6
	model <u>NOV/DEC 2015</u>		
	Advantages		
	• In iterative model we can only create a high-level design of the application		
	before we actually begin to build the product and define the design solution		
	for the entire product.		
	• Building and improving the product step by step.		
	• can get the reliable user feedback		
	• Less time is spent on documenting and more time is given for designing.		
	Disadvantages		
	• Each phase of an iteration is rigid with no overlaps		
	• Costly system architecture or design issues may arise because not all		
	requirements are gathered up front for the entire lifecycle		

25	What are the issues in measuring the software size using LOC as metric	C215.1	BTL5
	NOV/DEC 2015, NOV/DEC 2017		
	Lack of Accountability.		
	Lack of Cohesion with Functionality.		
	Adverse Impact on Estimation.		
	• Difference in Languages.		
	Advent of GUI Tools		
	Lack of Counting Standards.		
•		<u> </u>	
26	What is System Engineering? April/may 2018	C215.1	BTL6
	System Engineering means designing, implementing, deploying and operating		
	systems which include hardware, software and people.		
27	What is the use of CMM? NOV/DEC2015	C215.1	BTL6
	Capability Maturity Model is used in assessing how well an organization's		
	processes allow to complete and manage new software projects.		
28	What is meant by Software engineering paradigm?	C215.1	BTL6
	The development strategy that encompasses the process, methods and tools and		
	generic phases is often referred to as a process model or software engineering		
	paradigm.		
29	Define agility and agile team. <u>April /May 2015</u>	C215.1	BTL5
	■ Agility-Effective (rapid and adaptive) response to change (team members,		
	new technology, requirements)		
	■ Effective communication in structure and attitudes among all team		
	members, technological and business people, software engineers and		
	managers。		
	 managers₀ ■ Drawing the customer into the team. Eliminate "us and them" attitude. 		
	 managers。 Drawing the customer into the team. Eliminate "us and them" attitude. Planning in an uncertain world has its limits and plan must be flexible. 		
	 managers。 Drawing the customer into the team. Eliminate "us and them" attitude. Planning in an uncertain world has its limits and plan must be flexible. Organizing a team so that it is in control of the work performed 		
	 managers。 Drawing the customer into the team. Eliminate "us and them" attitude. Planning in an uncertain world has its limits and plan must be flexible. Organizing a team so that it is in control of the work performed The development guidelines stress delivery over analysis and design 		

	communication between developers and customers		
	Eliminate all but the most essential work products and keep them lean.		
	Emphasize an incremental delivery strategy as opposed to intermediate products		
	that gets working software to the customer as rapidly as feasible		
30	Write any two characteristics of software as a product. <u>April /May 2015</u>	C215.1	BTL6
	1. Software is developed or engineered, it is not manufactured in the classical sense		
	2. Software doesn't "wear out."		
	3. Although the industry is moving toward component-based assembly, most		
	software continues to be custom built.		
31	Write the IEEE definition of software engineering . NOV/DEC 2017	C215.1	BTL6
	According to IEEE's definition software engineering can be defined as		
	the application of a systematic, disciplined, quantifiable approach to the		
	development, operation, and maintenance of software, and the study of these		
	approaches; that is, the application of engineering to software .		
32	List two deficiencies in waterfall model . Which process model do you suggest	C215.1	BTL6
	to overcome each deficiency. APRIL/MAY 2017		
	•Once an application is in the testing stage, it is very difficult to go back and		
	change something that was not well-thought out in the concept stage.		
	• No working software is produced until late during the life cycle.		
33	What is Agile?	C215.1	BTL6
	The word 'agile' means –		
	• Able to move your body quickly and easily.		
	Able (a divide environment of a location		
	• Able to think quickly and clearly.		
	In business, 'agile' is used for describing ways of planning and doing work		
	wherein it is understood that making changes as needed is an important part of the		
	job. Business'agililty' means that a company is always in a position to take account of the market changes.		
	In software development, the term 'agile' is adapted to mean 'the		
	ability to respond to changes – changes from Requirements, Technology and People.'		

34	What is Agile Manifesto?	C215.1	BTL5
	The Agile Manifesto states that –		
	We are uncovering better ways of developing software by doing it and helping others do it. Through this work, we have come to value –		
	 Individuals and interactions over processes and tools. 		
	Working software over comprehensive documentation.		
	Customer collaboration over contract negotiation.		
	Responding to change over following a plan.		
	That is, while there is value in the items on the right, we value the items on the left more.		
35	What are the Characteristics of Agility?	C215.1	BTL6
	following are the characteristics of Agility -		
	 Agility in Agile Software Development focuses on the culture of the whole team with multi-discipline, cross-functional teams that are empowered and selforganizing. 		
	It fosters shared responsibility and accountability.		
	Facilitates effective communication and continuous collaboration.		
	The whole-team approach avoids delays and wait times.		
	• Frequent and continuous deliveries ensure quick feedback that in in turn enable the team align to the requirements.		
	 Collaboration facilitates combining different perspectives timely in implementation, defect fixes and accommodating changes. 		
36	What are the principles of a facile matheda?	C215.1	BTL6
	Customer involvement Customers should be closely involved throughout the development process. Their role is provide and prioritize new system requirements and to evaluate the iterations of the		

Γ		system.		
		Incremental delivery The software is developed in increments with the customer specifying the requirements to be included in each increment.		
		People not process The skills of the development team should be recognized and exploited. Team members should be left to develop their own ways of working without prescriptive processes.		
		Embrace change Expect the system requirements to change and so design the system to accommodate these changes.		
		Maintain simplicity Focus on simplicity in both the software being developed and in the development process. Wherever possible, actively work to eliminate complexity from the system.		
	37	What are the Problems with agile methods?	C215.1	BTL6
		 It can be difficult to keep the interest of customers who are involved in the process. Team members may be unsuited to the intense involvement that characterizes agile methods. Prioritizing changes can be difficult where there are multiple stakeholders. Maintaining simplicity requires extra work. Contracts may be a problem as with other approaches to iterative development. 		
l				
	38	What is Extreme Programming?	C215.1	BTL5
-	38	What is Extreme Programming? XP is a lightweight, efficient, low-risk, flexible, predictable, scientific, and fun way to develop a software.	C215.1	BTL5
	38	 What is Extreme Programming? XP is a lightweight, efficient, low-risk, flexible, predictable, scientific, and fun way to develop a software. eXtreme Programming (XP) was conceived and developed to address the specific needs of software development by small teams in the face of vague and changing requirements. 	C215.1	BTL5
	38	 What is Extreme Programming? XP is a lightweight, efficient, low-risk, flexible, predictable, scientific, and fun way to develop a software. eXtreme Programming (XP) was conceived and developed to address the specific needs of software development by small teams in the face of vague and changing requirements. Extreme Programming is one of the Agile software development methodologies. It provides values and principles to guide the team behavior. The team is expected to self-organize. Extreme Programming provides specific core practices where – 	C215.1	BTL5
	38	 What is Extreme Programming? XP is a lightweight, efficient, low-risk, flexible, predictable, scientific, and fun way to develop a software. eXtreme Programming (XP) was conceived and developed to address the specific needs of software development by small teams in the face of vague and changing requirements. Extreme Programming is one of the Agile software development methodologies. It provides values and principles to guide the team behavior. The team is expected to self-organize. Extreme Programming provides specific core practices where – Each practice is simple and self-complete. 	C215.1	BTL5
	38	 What is Extreme Programming? XP is a lightweight, efficient, low-risk, flexible, predictable, scientific, and fun way to develop a software. eXtreme Programming (XP) was conceived and developed to address the specific needs of software development by small teams in the face of vague and changing requirements. Extreme Programming is one of the Agile software development methodologies. It provides values and principles to guide the team behavior. The team is expected to self-organize. Extreme Programming provides specific core practices where – Each practice is simple and self-complete. Combination of practices produces more complex and emergent behavior. 	C215.1	BTL5

39	HOW Embrace Change happens in Extreme programming?	C215.1	BTL6
	A key assumption of Extreme Programming is that the cost of		
	changing a program can be held mostly constant over time.		
	This can be achieved with –		
	Emphasis on continuous feedback from the customer		
	Short iterations		
	Design and redesign		
	Coding and testing frequently		
	Eliminating defects early, thus reducing costs		
	Keeping the customer involved throughout the development		
	Delivering working product to the customer		
40		C215.1	BTL5
	How Extreme Programming involves –		
	Writing unit tests before measureming and keeping all of the tests muning at all		
	• Writing unit tests before programming and keeping an of the tests running at an times. The unit tests are automated and eliminates defects early, thus reducing		
	the costs.		
	• Starting with a simple design just enough to code the features at hand and redesigning when required.		
	• Programming in pairs (called pair programming), with two programmers at one		
	screen, taking turns to use the keyboard. While one of them is at the keyboard, the other constantly reviews and provides inputs		
	 Integrating and testing the whole system several times a day 		
	- Integrating and testing the whole system several times a day.		
41	Why is it called "Extreme?	C215.1	BTL6
	Extreme Programming takes the effective principles and practices		
	to extreme levels.		

		1	
	 Code reviews are effective as the code is reviewed all the time. 		
	 Testing is effective as there is continuous regression and testing. 		
	 Design is effective as everybody needs to do refactoring daily. 		
	 Integration testing is important as integrate and test several times a day. 		
	 Short iterations are effective as the planning game for release planning and iteration planning. 		
42		C215.1	RTI 5
42	What are the Extreme Programming Advantages?	C215.1	DILS
	Extreme Programming solves the following problems often faced in the software development projects –		
	• Slipped schedules – and achievable development cycles ensure timely deliveries.		
	 Cancelled projects – Focus on continuous customer involvement ensures transparency with the customer and immediate resolution of any issues. 		
	• Costs incurred in changes – Extensive and ongoing testing makes sure the changes do not break the existing functionality. A running working system always ensures sufficient time for accommodating changes such that the current operations are not affected.		
	 Production and post-delivery defects: Emphasis is on – the unit tests to detect and fix the defects early. 		
43	What is Scrum ?	C215.1	BTL6
	The Scrum approach is a general agile method but its focus is on managing iterative development rather than specific agile practices. There are three phases in Scrum:		
	 The initial phase is an outline planning phase where you establish the general objectives for the project and design the software architecture. This is followed by a series of sprint cycles, where each cycle develops an 		

	 increment of the system. 3. The project closure phase wraps up the project, completes required documentation such as system help frames and user manuals and assesses the lessons learned from the project. 		
44	What are the Advantages of scrum ?	C215.1	BTL6
	 The product is broken down into a set of manageable and understandable chunks. Unstable requirements do not hold up progress. The whole team have visibility of everything and consequently team communication is improved. Customers see on-time delivery of increments and gain feedback on how the product works. Trust between customers and developers is established and a positive culture is created in which everyone expects the project to succeed. 		
45.	Mention the Two perspectives on scaling of agile methods? 1. Scaling up 2. Scaling out	C215.1	BTL6
46.	What is Scaling up Using agile methods for developing large software systems that cannot be developed by a small team. For large systems development, it is not possible to focus only on the code of the system; you need to do more up- front design and system documentation. Cross-team communication mechanisms have to be designed and used, which should involve regular phone and video conferences between team members and frequent, short electronic meetings where teams update each other on progress. Continuous integration, where the whole system is built every time any developer checks in a change, is practically impossible; however, it is essential to maintain frequent system builds and regular releases of the system.	C215.1	BTL5
47.	What isScaling out. How agile methods can be introduced across a large organization with many years of software development experience. Project managers who do not have experience of agile methods may be reluctant to accept the risk of a new approach. Large organizations often have quality procedures and standards that all projects are expected to follow and, because of their bureaucratic nature, these are likely to be incompatible with agile methods. Agile methods seem to work best when team members have a relatively high skill level. However, within large organizations, there are likely to be a wide range of skills and abilities.	C215.1	BTL6

PART –B

S.NO	QUESTIONS	СО	BLOOM'S LEVEL
1	Explain the following: (i) waterfall model (ii) Spiral model	C215.1	BTL6
	(iii)RAD model (iv) Prototyping model. <u>NOV/DEC-12</u> ,		

	NOV/DEC-15,		
	Press-Pg-no – 79,86,81,83		
2	Discuss in detail the project structure and programming team	C215.1	BTL5
	structure		
	of a software organization. <u>NOV/DEC-10</u>		
	Press-Pg-no – 68		
3	Discuss the various life cycle models in software development?	C215.1	BTL6
	APR/MAY-16		
	Press-Pg-no-77		
4	What is the difference between information engineering &	C215.1	BTL6
	product engineering? Also explain the product engineering		
	hierarchy in detail. <u>MAY/JUN-13</u>		
	Press-Pg-no- 161		
5	Write note on business process engineering and product	C215.1	BTL5
	engineering? <u>MAY/JUN-13 , APRIL/MAY-15</u>		
	Press-Pg-no- 161		
6	Explain in detail about spiral model with a neat sketch and	C215.1	BTL6
	describe why this model comes under both evolutionary and		
	RAD models. <u>APRIL/MAY-15, NOV/DEC 2017</u>		
	Press-Pg-no- 186		
7	Which process model is best suited for risk management?	C215.1	BTL6
	Discuss in detail with an example. Give its advantages and		
	disadvantages? <u>NOV/DEC 2016,APRIL/MAY 2018</u>		
	Press-Pg-no – 93		
8	(a) List the principles of agile software development.	C215.1	BTL5
	<u>NOV/DEC 2016</u>		
	Press-Pg-no – 67		
	(b) Consider 7 functions with their estimated lines of code.		
	Average productivity based on historical data is 620 LOC/pm		
	and labour rate is Rs. 8000 per mnth. Find the total estimates		
	project cost and effort? F1 – 2340 , F2 – 5380, F3 – 6800 , F4 –		

	3350, F5 -4950, F6 -2140, F7 – 8400		
	Refer class notes.		
9	(i) What is the impact of reusability in software development	C215.1	BTL6
	process?		
	(ii) Explain the component based software development model		
	with a neat sketch. NOVDEC 2017		
	Refer class notes		
10	(i)How function point analysis methodology is applied in	C215.1	BTL5
	estimation of software size ?Explain. Why FPA methodology is		
	better than LOC methodology ?		
	(ii)An application has the following:10 low external inputs, 12		
	high external outputs, 20 low internal logical files, 15 high		
	external interface files, 12 average external inquiries and a		
	value adjustment factor of 1.10 . What is the unadjusted and		
	adjusted function point count ? APRIL/MAY 2017		
	Refer class notes		
11	What is a process model ? Describe the process model that you	C215.1	BTL6
	would choose to manufacture a car. Explain giving suitable		
	reasons. APRIL/MAY 2017		
	Refer class notes		
12	Explain how breakdown structure is used in software	C215.1	BTL5
	engineering .Discuss how software project scheduling helps in		
	timely release of a product. APRIL/MAY 2018		
	Refer class notes		
13	Give detail explanation about agile process?	C215.1	BTL6
	Refer class notes		
14	Describe in detail about Extreme programming ?	C215.1	BTL5
	Refer class notes		
15	Explain about Extreme Programming using nutshell.?	C215.1	BTL6
	Refer class notes		

UNIT-2

PART –A

S.NO	QUESTIONS	CO	BLOOM'S LEVEL
1	What is Software Prototyping? NOV/DEC-10, APR/MAY-11,	C215.2	BTL6
	MAY/JUNE-13		
	It is a rapid software development for validating the		
	requirements. It is to help customers & developers to understand the		
	system requirements.		
2	Define functional and non- Functional requirements.	C215.2	BTL6
	<u>NOV/DEC-10</u>		
	Functional requirements describe all the functionality or		
	system services. It should be clear how system should react to		
	particular inputs and how particular systems behave in particular		
	situation. Non functional requirements define the system properties		
	and constraints. It is divided in to product, organizational &		
	external requirements.		
3	What is meant by functional requirement? <u>APR/MAY-11</u>	C215.2	BTL6
	Functional requirements describe all the functionality or system		
	services. It should be clear how system should react to particular		
	inputs and how particular systems behave in particular situation.		
4	Name the metrics for specifying Non-functional requirements?	C215.2	BTL3
	NOV/DEC-11		
	Speed, size, ease of use, reliability, robustness, portability		
5	Draw the DFD for the following (i) External entity (ii) Data	C215.2	BTL2
	items <u>NOV/DEC-11</u>		
	External entity		
	Data items		

6	What do requirements processes involve? <u>APR/MAY-12</u>	C215.2	BTL5
	It involves feasibility study, discovery, analysis		
	&validation of system requirements.		
7	Define non-functional requirements. <u>APR/MAY-12</u>	C215.2	BTL6
	Non functional requirements define the system properties and		
	constraints. It is divided in to product, organizational &		
	external requirements		
8	Distinguish between the term inception, elicitation, &	C215.2	BTL6
	elaboration with reference to requirements? <u>NOV/DEC-12</u>		
	Inception – set of questions are asked to establish basic		
	understanding of problem.		
	Elicitation - collaborative requirements gathering &		
	quality function deployment		
	Elaboration – It focuses on developing a refined		
	technical model of software function, features &		
	constraints.		
9	An SRS is traceable ?comment <u>NOV/DEC-12,MAY/JUNE 2016</u>	C215.2	BTL2
	An SRS is correct if, and only if, every requirement		
	stated therein is one that the software shall meet.		
	Traceability makes this procedure easier and less prone		
	to error.		
10	What is data dictionary? MAY/JUN-13 , APR/MAY 2016 ,	C215.2	BTL6
	NOV/DEC 2016, APRIL/MAY 2017		
	It is organized collection of all the data elements of the system		
	with precise and rigorous definition so that user & system		
	analyst will have a common understanding of inputs, outputs,		
	components of stores and intermediate calculations.		
11	What are the benefits of prototyping?	C215.2	BTL6
	i. Prototype serves as a basis for deriving system		
	specification. ii. Design quality can be improved.		
	iii. System can be maintained easily.		

	iv. Development efforts may get reduced.		
	v. System usability can be improved.		
12	What are the prototyping approaches in software	C215.2	BTL6
	process? <u>MAY/JUNE 2016,APRIL/MAY 2018</u>		
	i. Evolutionary prototyping - In this approach of system		
	development, the initial prototype is prepared and it is then refined		
	through number of stages to final stage.		
	ii. Throw-away prototyping - Using this approach a rough		
	practical implementation of the system is produced. The		
	requirement problems can be identified from this implementation. It		
	is then discarded.System is then developed using some different		
	engineering paradigm.		
13	List the characteristics of good SRS? <u>APR/MAY 2016</u>	C215.2	BTL6
	• Correct		
	• Unambiguous		
	• Complete		
	• Consistent		
	• Ranked for importance and/or stability		
	Verifiable		
	Modifiable		
	• Traceable		
		<i></i>	
14	Classify the following as functional / non-functional	C215.2	BTL6
	requirements for a banking system? <u>NOV / DEC 2016</u>		
	(a) Verifying bank balance – functional requirements		
	(b) Withdrawing money from bank – functionalrequirements		
	(c) Completion of transaction in less than 1 sec – non-functional		
	requirements		
	(d) Extending system by providing more tellers for customers -		

	non-functional requirements		
15	What is the linkage between Dataflow and ER	C215.2	BTL6
	diagram? <u>APR/MAY 2016</u>		
	An ER diagram is the Entity Relationship Diagram, showing the		
	relationship between different entities in a process.		
	A Data Flow diagram is a symbolic structure showing how the flow		
	of data is used in different process		
16	List the steps in user interface design? Golden rules of UI	C215.2	BTL6
	design <u>APR/MAY 2015, NOV/DEC2015</u>		
	Place the User in Control		
	Reduce the User's Memory Load		
	Make the Interface Consistent		
17	How are requirements validated? <u>APR/MAY 2015</u>	C215.2	BTL6
	Requirements validation: Have we got the requirements right?		
	In the validation phase, the work products produced as a		
	consequence of requirements engineering are examined for		
	consistency, omissions, and ambiguity. The basic objective is to		
	ensure that the SRS reflects the actual requirements accurately and		
	clearly.		
18	What is a state transition diagram?	C215.2	BTL2
	State transition diagram is basically a collection of states		
	and events. The events cause the system to change its state. It also		
	represents what actions are to be taken based on the transition.		
19	What is DFD?	C215.2	BTL3
	Data Flow Diagram depicts the information flow and the		
	transforms that are applied on the data as it moves from input to		
	output.		
20	What is waterfall model?	C215.2	BTL3
	The Waterfall Model was first Process Model to be introduced. It is		
	also referred to as a linear-sequential life cycle model.		

	It is very simple to understand and use.		
	In a waterfall model, each phase must be completed fully before the		
	next phase can begin. This type of model is basically used for the		
	for the project which is small and there are no uncertain		
	requirements.		
	In this model the testing starts only after the development is		
	complete.		
	In waterfall model phases do not overlap.		
21	What is ERD?	C215.2	BTL6
	Entity Relationship Diagram is the graphical representation		
	of the object relationship pair. It is mainly used in database		
	applications.		
22	What is data modeling?	C215.2	BTL2
	Data modeling is the basic step in the analysis modeling. In		
	data modeling the data objects are examined independently of		
	processing. The data model represents how data are related with		
	one another.		
23	What is requirement engineering?	C215.2	BTL6
	Requirement engineering is the process of establishing the		
	services that the customer requires from the system and the		
	constraints under which it operates and is developed.		
24	What are the various Rapid prototyping techniques? April	C215.2	BTL6
	<u>/May 2015</u>		
	i. Dynamic high level language development.		
	ii. Database programming.		
	iii. Component and application assembly.		
25	What is data modeling?	C215.2	BTL6
	Data modeling is the basic step in the analysis modeling. In		
	data modeling the data objects are examined independently of		
	processing. The data model represents how data are related with		
	one another.		

26	What are the various types of traceability in software	C215.2	BTL6
	engineering? April/may 2018		
	i. Source traceability – These are basically the links from		
	requirement to stakeholders		
	ii. Requirements traceability – These are links between		
	dependant requirements.		
	iii. Design traceability – These are links from requirements		
	to design.		
27	What is cardinality in data modeling?	C215.2	BTL5
	Cardinality in data modeling, cardinality specifies how		
	the number of occurrences of one object is related to the number of		
	occurrences of another object.		
28	What are the objectives of Analysis modeling?	C215.2	BTL6
	i. To describe what the customer requires.		
	ii. To establish a basis for the creation of software design.		
	iii. To devise a set of valid requirements after which the		
	software can be built.		
29	How the limitations of waterfall model overcome? April /May	C215.2	BTL6
	<u>2015</u>		
	This type of model is basically used for the for the project which is		
	small and there are no uncertain requirements.Where no		
	overlapping of phases.		
	At the end of each phase, a review takes place to determine if the		
	project is on the right path and whether or not to continue or discard		
	the project.		
30	What is feasibility study? NOV/DEC2015 , <u>APR/MAY 2016</u>	C215.2	BTL6
	software feasibility has four solid dimensions:		
	Technology— Is a project technically feasible? Is it within the state		
	of the art? Can defects be reduced to a level matching the		
	application's needs?		
	Finance—Is it financially feasible? Can development be completed		

	at a cost the software organization, its client, or the market can		
	afford?		
	Time—Will the project's time-to-market beat the competition?		
	Resources-Does the organization have the resources needed to		
	succeed?		
	Before starting any project the feasibility study team ought to carry		
	initial architecture and design of the high-risk requirements to the		
	point at which it can answer these questions. In some cases, when		
	the team gets negative answers, a reduction in requirements may be		
	negotiated.		
31	Define Quality function decelopment(QFD). NOV/DEC 2017	C215.2	BTL6
	Quality Function Deployment (QFD) is a structured		
	approach to defining customer needs or requirements and		
	translating them into specific plans to produce products to meet		
	those needs. The "voice of the customer" is the term to describe		
	these stated and unstated customer needs or requirements.		
32	Differentiate between normal and exciting requirements ?	C215.2	BTL6
	APRIL/MAY 2017		
	Normal requirementsThe objective and goal are stated for the system through the		
	meetings with the customer.		
	• For the customer satisfaction these requirements should be		
	there.		
	Exciting requirementsThese features are beyond the expectation of the customer.		
	• The developer adds some additional features or unexpected		
	feature into the software to make the customer more		
	satisfied.		
	For example, the mobile phone with standard features, but		

	the developer adds few additional functionalities like voice		
	searching, multi-touch screen etc. then the customer more		
	exited about that feature.		
33	How do you design a software project for reuse? (Nov/Dec 2007)	C215.2	BTL6
	 A clear and well-defined product vision is an essential foundation to an software project. An evolutionary implementation strategy would be a more 		
	pragmatic strategy for the company.		
	• There exist a need for continuous management support and leadership to ensure success.		
34	What are the standards for documentation? Briefly explain (Nov/Dec 2007) IEEE Std 1028-2008 This standard defines five types of software reviews and procedures for their execution. Review types include management reviews, technical reviews, inspections, walk-throughs and audits. IEEE Std 1012-2004 This standard describes software verification and validation processes that are used to determine if software products of an activity meets the requirements of the activity and to determine if software satisfies the user's needs for the intended usage. The scope includes analysis, evaluation, review, inspection,	C215.2	BTL6
	and testing of both products and processes.		
35	What are context free questions? How it differs from meta questions? (Nov/Dec 2009) Context free questions are questions that can be used regardless of the project under consideration. They are general questions about the nature of the project and the environment in which the final product will be used.Meta questions are very complex and detailed questions about the project model	C215.2	BTL6

		C215.2	BTL6
36	 Define behaviouralmodelling(Nov/Dec 2012) All behavioural models really do is describe the control structure of a system. This can be things like: Sequence of operations Object states and Object interactions Furthermore, this modelling layer can also be called Dynamic Modelling. The activity of creating a behavioural model is commonly known as behavioural model is commonly have one behavioural modelling. As well as this, a system should also only have one behavioural modelling. 		
37	 what are the types of prototypes Evolutionary prototyping – the initial prototype is prepared and it is then refined through number of stages to final stage. Throw-away prototyping – a rough practical implementation of the system is produced. The requirement problems can be identified from 	C215.2	BTL6
	this implementation		
38	 Define behaviouralmodelling(Nov/Dec 2012) All behavioural models really do is describe the control structure of a system. This can be things like: Sequence of operations Object states and Object interactions Furthermore, this modelling layer can also be called Dynamic Modelling. The activity of creating a behavioural model is commonly known as behavioural model is commonly have one behavioural modelling. As well as this, a system should also only have one behavioural modelling. 	C215.2	BTL6
39	What is the major distinction between user requirement and system requirement? (April/May 2008) User requirements may be a set of statements or use case scenarios presented by the client in layman's terms of which the client can easily	C215.2	BTL6

	elaborate and are usually free of technical jargon. System requirements are built from the clients input being what they have specified in the user requirements		
40	Which style of prototyping is most appropriate when the requirement are not well-understood? (April/May 2008) User Interface prototyping is most appropriate.This prototyping is used to prespecify the look and feel of user interface in an effective way.	C215.2	BTL6
41	 Specify at least four questionnaire which supports to select the prototyping approach. (Nov/Dec 2009) Prototype serves as a basis for deriving system specification. Design quality can be improved. System can be maintained easily. Development efforts may get reduced. System usability can be improved. 	C215.2	BTL6
42	What is the purpose of domain analysis. (April/May 2010)	C215.2	BTL3
	Domain analysis, or product line analysis, is the process of analysing related software systems in a domain to find their common and variable parts. It is a model of wider business context for the system		
43	 what are the types of prototypes Evolutionary prototyping – the initial prototype is prepared and it is then refined through number of stages to final stage. Throw-away prototyping – a rough practical implementation of the system is produced. The requirement problems can be identified from this implementation 	C215.2	BTL6
44	 list two advantage of employing prototyping in software process? Prototype serves as a basis for deriving system specification. Design quality can be improved. System can be maintained easily. Development efforts may get reduced. System usability can be improved. 	C215.2	BTL6

45	State the different criteria applied to evaluate an effective	C215.2	BTL6
	modular system.		
	• A system is considered modular if it consists of discreet		
	components so that		
	each component can be implemented separately, and a		
	component has minimal impact on other components.		
	 Modularity is a clearly a desirable property in a system. 		
	Modularity helps in system debugging, isolating the system problem to a		
	component is easier if		
	the system is modular.		
46	What is meant by structural analysis?	C215.2	BTL2
	The structural analysis is mapping of problem domain to flows and		
	transformations. The system can be modeled by using Entity		
	Relationship diagram, Data flow diagram and Control flow		
	diagrams.		
47	What is the outcome of feasibility study?	C215.2	BTL3
	The outcome of feasibility study is the results obtained from the		
	following questions: x Which system contributes to organizational		
	objectives? x Whether the system can be engineered? Is it within		
	the budget? x Whether the system can be integrated with other		
	existing system?		
48	What are nonfunctional requirements?	C215.2	BTL6
	Nonfunctional requirements are constraints on the services or		
	functions offered by the system such as timing constraints,		
	constraints on the development process, standards, etc		
49	What are the advantages of evolutionary prototyping?	C215.2	BTL5
	i. Fast delivery of the working system. ii. User is involved while		
	developing the system. iii. More useful system can be delivered. iv.		
	Specification, design and implementation work in co-ordinate		
	manner.		
50	What are the various Rapid prototyping techniques?	C215.2	BTL6
	i. Dynamic high level language development. ii. Database		

programming. iii. Component and application assembly.	

<u>PART –B</u>

S.NO	QUESTIONS	CO	BLOOM'S LEVEL
1	Discuss any four process models with suitable application.	C215.2	BTL6
	NOV/DEC-10, APR/MAY-11, NOV/DEC-12, MAY/JUN-13		
	Somm-Pg-no- 164		
2	Explain the execution of seven distinct functions accomplished	C215.2	BTL6
	inrequirement engineering process / Explain briefly the		
	requirement engineering process with neat sketch and		
	describe each process with an example. <u>APRIL/MAY-15</u>		
	NOV/DEC-15, NOV/DEC 2017, APRIL/MAY 2017		
	Press-Pg-no- 176		
3	What is data dictionary? Explain. How to select the	C215.2	BTL6
	appropriate prototyping approach? <u>APR/MAY-11</u> ,		
	APR/MAY-12, NOV/DEC2015		
	Refer class notes.		
4	How does the analysis modeling help to capture unambiguous	C215.2	BTL5
	& consistent requirements? Discuss several methods for		
	requirements validation? <u>NOV/DEC-11</u>		
	Press-Pg-no- 211		
5	Explain prototyping in the software process. <u>APRIL/MAY-15</u>	C215.2	BTL6
	<u>MAY/JUNE 2016</u>		
	Press-pg no –229		
6	Explain the functional & behavioral model for software	C215.2	BTL5
	requirements process? <u>NOV/DEC-12</u> , <u>MAY/JUN-</u>		
----	---	--------	------
	<u>13,NOV/DEC 2013</u>		
	Press-Pg-no- 226		
7	Explain metrics for specifying non-functional requirements?	C215.2	BTL6
	IEEE standarad software requirement document? MAY/JUN-		
	<u>13</u>		
	Somm-Pg-no- 141,158		
8	What is requirements elicitation? Explain various activities	C215.2	BTL6
	performed in it with watch system that facilitates to set time		
	and alarm as an example? NOV/DEC 2016, APRIL/MAY		
	2017, APRIL/MAY 2018		
	Press-Pg-no – 168		
9	What is the purpose of data flow diagrams? What are the	C215.2	BTL5
	notations used for the same. Explain by constructing a context		
	flow diagram level -0 DFD and level-1 DFD for a library		
	management system? <u>NOV/DEC 2016</u>		
	Press-Pg-no – 284		
10	Consider the process of ordering a pizza over the phone. Draw	C215.2	BTL6
	the use case diagram and also sketch the activity diagram		
	representing each step of the process, from the moment you		
	pick up the phone to the point where you start eating the		
	pizza. Include activities that others need to perform. Add		
	exception handling to the activity diagram you developed.		
	Consider at least two exceptions.(Ex : Delivery person wrote		
	down wrong address, deliver person brings wrong pizza).		
	NOV/DEC 2017		
	Refer class notes.		
11	Explain the feasibility studies. What are the outcomes? Does it	C215.2	BTL5
	have implicit or explicit effects on software requirement		
	collection. APRIL/MAY 2017		
12	What is SRS?Explain in detail about various component of an	C215.2	BTL6

	SRS.		
13	What is requirement engineering? State its process and explain requirement elicitation problem. (April/May 2008) Refer class notes	C215.2	BTL6
14	what is prototyping .explain its types types.(Nov/Dec 2009) Refer notes	C215.2	BTL6
15	An Independent Truck Company Wants To Track And Record Its Drivers Driving Habits. For This Purpose The Company Has Rented 800 Phone Numbers And Has Printed The Numbers On The Front, Back And Side Of All Trucks Owned By The Company.Next To The 800 Numbers A Message Is Written"Plese Report Any Driver Of Truck Problem By Calling This Number"(Nov/Dec 2012) Refer class notes.	C215.2	BTL5

<u>UNIT – 3</u>

PART –A

S.NO	QUESTIONS	СО	BLOOM'S LEVEL
1	What are the primary interaction styles and state their	C215.3	BTL5
	advantages? <u>NOV/DEC-10</u>		
	1.Direct manipulation - Easiest to grasp with immediate		
	feedback, Difficult to program		
	2. Menu selection - User effort and errors minimized, large		
	numbers and combinations of choices a problem		
	3. Form fill-in - Ease of use, simple data entry, Tedious, takes		
	a lot of screen space		
	4. Command language - Easy to program and process,		
	Difficult to master for casual users		
	5. Natural language - Great for casual users, Tedious for		
	expert users.		
2	List the architectural models that can be developed.	C215.3	BTL5
	NOV/DEC-10		
	Data-centered architectures, Data flow architectures,		
	Call and return architectures		
	Object-oriented architectures, Layered architectures.		
3	What is meant by real time system design? <u>APR/MAY-11</u>	C215.3	BTL3
	A real-time system is a software system where the correct		
	functioning of the system		
	depends on the results produced by the system and the time		
	at which these results are		
	produced.		
4	List four design principles of a good design? <u>APR/MAY-</u>	C215.3	BTL5
	<u>11APRIL/MAY 2018</u>		

	• Process should not suffer from tunnel vision.		
	\circ It should be traceable to the analysis model		
	• It should not reinvent the wheel		
	• It should exhibit uniformity & integration.		
5	List out design methods. <u>APR/MAY-12</u>	C215.3	BTL5
	Architectural design, data design, modular design.		
6	Define data acquisition <u>APR/MAY-12,MAY/JUN-13</u>	C215.3	BTL4
	Collect data from sensors for subsequent processing and		
	analysis.		
7	How do you apply modularization criteria for a monolithic	C215.3	BTL5
	software <u>NOV/DEC-12</u>		
	Modularity is achieved to various extents by different		
	modularization approaches. Code based modularity allows		
	developers to reuse and repair parts of the application, but		
	development tools are required to perform these maintenance		
	functions .Object based modularity provides the application as		
	a collection of separate executable files which may be		
	independently maintained and replaced without redeploying the		
	entire application.		
8	What is the design quality attributes 'FURPS' meant?	C215.3	BTL5
	NOV/DEC-12, NOV/DEC2015, NOV/DEC2017		
	FURPS is an acronym representing a model for classifying		
	software quality attributes (functional and non-		
	functional requirements)		
	Functionality, Usability, Reliability, Performance and		
	Supportability model.		
9	Define data abstraction? MAY/JUN-13	C215.3	BTL5
	Data abstraction is a named collection of data that describes		
	the data object.		
	Eg:- Door attribute – door type, swing direction, weight		

10	What are the elements of design model?	C215.3	BTL5
	i. Data design		
	ii. Architectural design		
	iii. Interface design		
	iv. Component-level design		
11	What is the benefit of modular design?	C215.3	BTL5
	Changes made during testing and maintenance becomes		
	manageable and they do not affect other modules.		
12	Name the commonly used architectural styles.	C215.3	BTL5
	i. Data centered architecture. ii. Data flow architecture.		
	iii. Call and return architecture. iv. Object-oriented		
	architecture. v. Layered architecture.		
13	What is a cohesive module?	C215.3	BTL6
	A cohesive module performs only "one task" in software		
	procedure with little interaction with other modules. In other		
	words cohesive module performs only one thing.		
14	What are the different types of Cohesion?	C215.3	BTL5
	i. Coincidentally cohesive -The modules in which the set		
	I\of tasks are related with each other loosely then such modules		
	are called coincidentally cohesive.		
	ii. Logically cohesive – A module that performs the tasks		
	that are logically related with each other is called logically		
	cohesive.		
	iii. Temporal cohesion – The module in which the tasks		
	need to be executed in some specific time span is called temporal		
	cohesive.		
	iv. Procedural cohesion – When processing elements of a		
	module are related with procedural cohesive.		
	v. Communicational cohesion - When the processing		
	elements of a module share the data then such module is called		
	communicational cohesive.		

15	What is Coupling?What are the various types of coupling	C215.3	BTL6
	APRIL/MAY-15,		
	Coupling is the measure of interconnection among modules in a		
	program structure. It depends on the interface complexity between		
	modules.		
	i. Data coupling – The data coupling is possible by		
	parameter passing or data interaction.		
	ii. Control coupling - The modules share related control		
	data in control coupling.		
	iii. Common coupling – The common data or a global data		
	is shared among modules. iv. Content coupling - Content coupling		
	occurs when one module makes use of data or control information		
	maintained in another module.		
16	What are the common activities in design process?	C215.3	BTL5
	i. System structuring – The system is subdivided into		
	principle subsystems components and communications between		
	these subsystems are identified.		
	ii. Control modeling – A model of control relationships		
	between different parts of the system is established.		
	iii. Modular decomposition – The identified subsystems are		
	decomposed into modules		
17	What are the benefits of horizontal partitioning?	C215.3	BTL5
	i. Software that is easy to test.		
	ii. Software that is easier to maintain.		
	iii. Propagation of fewer sideeffects. iv. Software that is		
	easier to extend.		
18	What is vertical partitioning? What are the advantages?	C215.3	BTL6
	Vertical partitioning often called factoring suggests that the		
	control and work should be distributed top-down in program		
	structure.		
	i. These are easy to maintain changes.		

	ii. They reduce the change impact and error propagation		
19	If a module has logical cohesion, what kind of coupling is this	C215.3	BTL5
	module likely to have? <u>APR/MAY 2016</u>		
	If a module has logical cohesion, then content coupling can		
	be done. In content coupling one module can make use of data or		
	control information maintained in another		
20	Write the best practices for "coding"? <u>APR/MAY 2015</u> ,	C215.3	BTL5
	NOV/DEC2015		
	Best coding practices are a set of informal rules that the software		
	development community has learned over time which can help		
	improve the quality of software "The first 90% of the code		
	accounts for the first 90% of the development time. The remaining		
	accounts for the first 90% of the development time. The remaining 10% of the code accounts for the other 90% of the development		
	time." The size of a project or program has a significant effect on		
	arror rates programmer productivity and the amount of		
	monogement needed		
	management needed.	C215.2	
21	what architectural styles are preferred for the following	C215.3	BILO
	system? why? <u>NOV/DEC2016</u>		
	(a) Networking – Data centered Architecture		
	(b) Web based systems – Call and return architecture		
	(c) Banking system - Data centered Architecture.		
22	What is DFD?	C215.3	BTL5
	Data Flow Diagram depicts the information flow and the		
	transforms that are applied on the data as it moves from input to		
	output.		
23	Name the commonly used architectural styles.	C215.3	BTL5
	i. Data centered architecture. ii. Data flow architecture.		
	iii. Call and return architecture. iv. Object-oriented architecture. v.		
	Layered architecture.		

24	What is ERD?	C215.3	BTL6
	Entity Relationship Diagram is the graphical representation		
	of the object relationship pair. It is mainly used in database		
	applications.		
25	What UI design patters are used for the following? <u>NOV/DEC</u>	C215.3	BTL5
	2016, APRIL/MAY 2017, APRIL/MAY 2018		
	(a) Page layout – interface design		
	(b) Tables - Design		
	(c) Navigation through menus and web pages – design		
	(d) Shopping cart – interface design, task analysis		
26	What are the various elements of data design?	C215.3	BTL5
	i. Data object – The data objects are identified and		
	relationship among various data objects can be represented using		
	ERD or data dictionaries.		
	ii. Databases - Using software design model, the data		
	models are translated into data structures and data bases at the		
	application level.		
	iii. Data warehouses - At the business level useful		
	information is identified from various databases and the data		
	warehouses are created.		
27	List the guidelines for data design.	C215.3	BTL6
	i. Apply systematic analysis on data.		
	ii. Identify data structures and related operations.		
	iii. Establish data dictionary.		
	iv. Use information hiding in the design of data structure.		
	v. Apply a library of useful data structures and operations.		
28	What is a Real time system?	C215.3	BTL5
	Real time system is a software system in which the correct		
	functionalities of the system are dependent upon results produced		
	by the system and the time at which these results are produced		
29	How do you describe software interface? <u>April /May 2015</u>	C215.3	BTL5

	Software interface - the languages and codes that the applications		
	use to communicate with each other and also with the hardware.		
	Three types of interface may have to be defined		
	Procedural interfaces;		
	• Data structures that are exchanged;		
	Data representations.		
	The interface describes the behavior of a software component that		
	is obtained by considering only the interactions of that interface		
	and by hiding all other interactions.		
30	Explain the qualitative criteria for measuring independence?	C215.3	BTL3
	NOV/DEC-11		
	1.Cohesion: Cohesion is a qualitative indication of the degree to		
	which a module focuses on just one thing.		
	2. Coupling: Coupling is the measure of interconnection among		
	modules in a program structure. It depends on the interface		
	complexity between modules		
31	What is the purpose of a petrinet ? APRIL/MAY 2017	C215.3	BTL5
31	Complexity between modulesWhat is the purpose of a petrinet ? APRIL/MAY 2017A Petri net, also known as a place/transition (PT) net, is one of	C215.3	BTL5
31	Complexity between modulesWhat is the purpose of a petrinet ? APRIL/MAY 2017A Petri net, also known as a place/transition (PT) net, is one ofseveral mathematicalmodeling languages for the description of	C215.3	BTL5
31	Complexity between modulesWhat is the purpose of a petrinet ? APRIL/MAY 2017A Petri net, also known as a place/transition (PT) net, is one ofseveral mathematicalmodeling languages for the description ofdistributed systems. It is a class of discrete event dynamic system.	C215.3	BTL5
31	 Complexity between modules What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that 	C215.3	BTL5
31	 Complexity between modules What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution 	C215.3	BTL5
31	 Complexity between modules What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution What is vertical partitioning? 	C215.3 C215.3	BTL5 BTL2
31	 Complexity between modules What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution What is vertical partitioning? Vertical partitioning often called factoring suggests that the 	C215.3 C215.3	BTL5 BTL2
31	 Complexity between modules What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution What is vertical partitioning? Vertical partitioning often called factoring suggests that the control and work should be distributed top-down in program 	C215.3 C215.3	BTL5 BTL2
31	 Complexity between modules What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution What is vertical partitioning? Vertical partitioning often called factoring suggests that the control and work should be distributed top-down in program structure. 	C215.3 C215.3	BTL5 BTL2
31 32 33	 Complexity between modules What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution What is vertical partitioning? Vertical partitioning often called factoring suggests that the control and work should be distributed top-down in program structure. What are the benefits of horizontal partitioning? 	C215.3 C215.3 C215.3	BTL5 BTL2 BTL5
31 32 33	 What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution What is vertical partitioning? Vertical partitioning often called factoring suggests that the control and work should be distributed top-down in program structure. What are the benefits of horizontal partitioning? i. Software that is easy to test. ii. Software that is easier to 	C215.3 C215.3 C215.3	BTL5 BTL2 BTL5
31 32 33	 Complexity between modules What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution What is vertical partitioning? Vertical partitioning often called factoring suggests that the control and work should be distributed top-down in program structure. What are the benefits of horizontal partitioning? i. Software that is easy to test. ii. Software that is easier to maintain. iii. Propagation of fewer side effects. iv. Software that is 	C215.3 C215.3 C215.3	BTL5 BTL2 BTL5
31 32 33	 Complexity between modules What is the purpose of a petrinet ? APRIL/MAY 2017 A Petri net, also known as a place/transition (PT) net, is one of several mathematicalmodeling languages for the description of distributed systems. It is a class of discrete event dynamic system. Petri nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution What is vertical partitioning? Vertical partitioning often called factoring suggests that the control and work should be distributed top-down in program structure. What are the benefits of horizontal partitioning? i. Software that is easy to test. ii. Software that is easier to maintain. iii. Propagation of fewer side effects. iv. Software that is easier to extend. 	C215.3 C215.3 C215.3	BTL5 BTL2 BTL5

	Systems that collect data from sensors for subsequent processing		
	and analysis are termed as data acquisition systems. Data		
	collection processes and processing processes may have different		
	periods and deadlines.		
35	What is interface design?	C215.3	BTL5
	The interface design describes how the software communicates		
	within itself, with systems that interoperate with it, and with		
	humans who use it.		
36	What are the elements of design model?	C215.3	BTL5
	Data design		
	ii. Architectural design		
	iii. Interface design		
	iv. Component-level		
	design		
37	What is coupling?	C215.3	BTL5
	Coupling is the measure of interconnection among modules in a		
	program structure. It depends on the interface complexity between		
	modules.		
38	Define design process.	C215.3	BTL6
	Design process is a sequence of steps carried through which the		
	requirements are translated into a system or software model.		
39	What is Transform mapping?	C215.3	BTL5
	The transform mapping is a set of design steps applied on the DFD		
	in order to map the transformed flow characteristics into specific		
	architectural style.		
40	What is component level design?	C215.3	BTL5
	The component level design transforms structural elements of the		
	software architecture into a procedural description of software		
	components.		
41	What are the objectives of Analysis modeling?	C215.3	BTL5
	i. To describe what the customer requires. ii. To establish a basis		

	for the creation of software design. iii. To devise a set of valid		
	requirements after which the software can be built.		
42	What are the various types of coupling?	C215.3	BTL6
	i Data coupling – The		
	data coupling is possible by parameter passing or data		
	interaction.		
	ii. Control coupling –		
	The modules share related control data in control coupling.		
	iii. Common coupling –		
	The common data or a global data is shared among modules.		
	iv. Content coupling –		
	Content coupling occurs when one module makes use of data or		
	control information maintained in another module.		
43	What does modality in data modeling indicates?	C215.3	BTL5
	Modality indicates whether or not a particular data object must		
	participate in the relationship.		
44	What does Level0 DFD represent?	C215.3	BTL5
	Level 0 DFD is called as "fundamental system model" or "context		
	model". In the context model the entire software system is		
	represented by a single bubble with input and output indicated by		
	incoming and outgoing arrows.		
45	What are the elements of design model?	C215.3	BTL5
	i. Data design ii. Architectural design iii. Interface design iv.		
	Component-level design		
46	What is data modeling?	C215.3	BTL5
	Data modeling is the basic step in the analysis modeling. In data		
	modeling the data objects are examined independently of		
	processing. The data model represents how data are related with		
	one another		
	one unother.		
47	What is a data object?	C215.3	BTL6

	characteristic, quality, or descriptor of the object		
48	What are attributes?	C215.3	BTL5
	Attributes are the one, which defines the properties of data object.		
49	What is cardinality in data modeling?	C215.3	BTL5
	Cardinality in data modeling, cardinality specifies how the		
	number of occurrences of one object is related to the number of		
	occurrences of another object.		
50	What is ERD?	C215.3	BTL5
	Entity Relationship Diagram is the graphical representation of the		
	object relationship pair. It is mainly used in database applications		

<u>PART –B</u>

S.NO	QUESTIONS	CO	BLOOM'S LEVEL
1	Explain the core activities involved in User Interface design	C215.3	BTL6
	process with		
	necessary block diagramsMAY/JUNE 2016 ,NOV/DEC2015,		
	<u>NOV/DEC 2017</u>		
	Somm – Pg-no- 398.		
2	Explain the various modular decomposition and control styles	C215.3	BTL5
	commonly		
	used in any organizational model. <u>MAY/JUNE 2016</u>		
	Somm – Pg-no- 274		
3	Discuss the process of translating the analysis model in to a	C215.3	BTL6
	software design, List the golden rules of user interface		
	design <u>NOV/DEC2015</u>		
	Press-Pg-no- 259 , 357		

4	Explain the basic concepts of software design <u>APR/MAY-11</u> ,	C215.3	BTL5
	<u>NOV/DEC 2017</u>		
	Press-Pg-no- 265		
5	Explain clearly the concept of coupling & cohesion? For each	C215.3	BTL5
	type of coupling give an example of two components coupled		
	in that way? <u>APRIL/MAY 2015, APRIL/MAY 2017,</u>		
	APRIL/MAY 2018		
	Press-Pg-no- 335		
6	Write short notes on Architectural & component design.	C215.3	BTL5
	MAY/JUN-15,NOV/DEC2015		
	Somm – Pg-no- 371		
7	Bring out the necessity of Real-time system design process	C215.3	BTL6
	with appropriate example? <u>APR/MAY-12, MAY/JUNE-13,</u>		
	APRIL/MAY-15		
	Somm–Pg-no- 361 Somm–Pg-no- 357		
8	What is structured design? Illustrate the structured design	C215.3	BTL5
	process from DFD to structured chart with a case		
	study. <u>NOV/DEC 2016,</u>		
	Refer class notes		
9	(a) Describe golden rules for interface design <u>NOV/DEC 2016</u>	C215.3	BTL5
	Press-Pg-no- 259 , 357		
	(b) Explain component level design with suitable example		
	Refer class notes		
10	What is software architecture ? Describe in detail different	C215.3	BTL5
	types of software architectural styles with illustrations.		
	APRIL/MAY 2017, APRIL/MAY 2018		
	Refer class notes		
11	What is the purpose of DFD ?What are the compoenets of	C215.3	BTL5
	DFD? Construct DFD for the following system		
	An online shopping system for xyz provides many services and		
	benefits to its members and staffs. <u>APRIL/MAY 2018</u>		

	Refer class notes		
12	Describe in detail about architectural styles?	C215.3	BTL5
	Refer class notes		
13	Describe the concept of cohesion and coupling. State the	C215.3	BTL6
	difference b/w cohesion and coupling with a suitable example. (April/May Apr/May 2008)		
14	explain transform mapping with suitable example and design	C215.3	BTL5
	steps involved in it.(Nov/Dec 2012)		
	Refer class notes		
15	Explain the design principlesin detail	C215.3	BTL5
	Refer class notes		

<u>UNIT – 4</u>

•

<u>PART –A</u>

S.NO	QUESTIONS	CO	BLOOM'S
			LEVEL
1	What are the characteristics of good tester? <u>NOV/DEC-</u>	C215.4	BTL5
	<u>10,MAY/JUN-13</u>		
	All tests should be traceable to customer requirements.		
	Tests should be planned long before testing begins.		
	The Pareto principle applies to software testing.		
2	Define software testing?	C215.4	BTL6
	Software testing is a critical element of software quality assurance and		
	represents the ultimate review of specification, design, and coding.		
3	What are the objectives of testing?	C215.4	BTL6
	i. Testing is a process of executing a program with the intend of finding		
	an error. ii. A good test case is one that has high probability of finding		

	an undiscovered error. iii. A successful test is one that uncovers as an-		
	yet undiscovered error.		
4	What is integration testing?and What are the approaches of	C215.4	BTL5
	integration testing? <u>APR/MAY-11</u>		
	In this testing the individual software modules are combined and tested		
	as a group. It occurs after unit testing & before system testing.		
	1. The non-incremental testing.		
	2. Incremental testing.		
5	What is regression testing? <u>APR/MAY-15</u> , <u>NOV/DEC-</u>	C215.4	BTL5
	<u>11,NOV/DEC</u> 2013,		
	It tends to verify the software application after a change has been made.		
	It seeks to uncover software errors by partially retesting a modified		
	program.		
6	Distinguish between stress and load testing	C215.4	BTL5
	Stress testing is subjecting a system to an unreasonable load		
	while denying it the resources (e.g., RAM, disc, mips, interrupts,		
	etc.) needed to process that load.		
	Load testing is subjecting a system to a statistically		
	representative (usually) load. The two main reasons for using		
	such loads is in support of software reliability testing and in		
	performance testing. The term "load testing" by itself is too		
	vague and imprecise to warrant use.		
7	Define black box testing? <u>APR/MAY-12,MAY/JUN-13</u>	C215.4	BTL3
	A black-box tests are used to demonstrate that software functions		
	are operational, that input is properly accepted and output is		
	correctly produced, and that the integrity of external		
	information.		
8	What is boundary condition testing? <u>APR/MAY-12</u>	C215.4	BTL5
	It is tested using boundary value analysis. (check BVA – 16 mark		
	question)		

9	How is software testing results related to the reliability of software?	C215.4	BTL5
	NOV/DEC-12		
	Applying fault avoidance, fault tolerance and fault detection for		
	the project helps to achieve reliability of software.		
10	What is big-bang approach? <u>NOV/DEC-12</u>	C215.4	BTL5
	Big bang approach talks about testing as the last phase of		
	development. All the defects are found in the last phase and cost		
	of rework can be huge.		
11	Why does software fail after it has passed from acceptance	C215.4	BTL2
	testing? <u>APR/MAY 2016</u>		
	Each acceptance test represents some expected result from the system.		
	Customers are responsible for verifying the correctness of the		
	acceptance tests and reviewing test scores to decide which failed tests		
	are of highest priority. Acceptance tests are also used as regression tests		
	prior to a production release. A user story is not considered complete		
	until it has passed its acceptance tests. This means that new acceptance		
	tests must be created for each iteration or the development team will		
	report zero progress.		
12	What are the objectives of testing?	C215.4	BTL5
	i. Testing is a process of executing a program with the intend of		
	finding an error.		
	ii. A good test case is one that has high probability of finding an		
	undiscovered error.		
	iii. A successful test is one that uncovers as an-yet undiscovered		
	error.		
13	What are the testing principles the software engineer must apply	C215.4	BTL2
	while performing the software testing? MAY/JUNE 2016,		
	APRIL/MAY 2018		
	i. All tests should be traceable to customer requirements.		
	ii. Tests should be planned long before testing begins.		

16	What are the various testing strategies for conventional software?	C215.4	BTL5
	statements? <u>NOV/DEC2016</u>		
17	What methods are used for breaking very long expression and	C215.4	BTL5
	input conditions.		
	derived. Equivalence class represents a set of valid or invalid states for		
	input domain into classes of data. From this data test cases can be		
	Equivalence partitioning is a black box technique that divides the		
16	What is equivalence partitioning?	C215.4	BTL2
	v. Effective evaluation		
	iv. Data collection		
	iii. Test execution		
	ii. Test case design		
	i. Test planning		
15	What are the various testing activities?	C215.4	BTL5
	the system specification.		
	create a system or sub- system is done. These tests are based on		
	ii System Testing The group of components are integrated to		
	derived from developer"s experience		
14	i Component testing Individual components are tested. Tests are	C213.4	DILƏ
14	What are the two levels of testing?	C215 4	BTI 5
	vi. To be most effective, an independent third party should		
	v. Exhaustive testing is not possible.		
	progress toward testing "in the large".		
	all program modules. iv. Testing should begin "in the small" and		
	errors uncovered during testing will likely be traceable to 20% of		
	of all		
	iii. The pareto principle can be applied to software testing-80%		

18	How can refactoring be made more effective? <u>APR/MAY 2016</u>	C215.4	BTL5
	Defectoring immenses configurational attributes of the configuration		
	Relactoring improves nonlunctional attributes of the software.		
	Advantages include improved code readability and reduced complexity;		
	these can improve source-codemaintainability and create a more		
	expressive internal architecture or object model to improve extensibility		
19	How will you test a simple loop <u>NOV/DEC 2015</u>	C215.4	BTL2
	• A simple loop is tested in the following way:		
	• Skip the entire loop.		
	• Make 1 pass through the loop.		
	• Make 2 passes through the loop.		
	• Make x passes through the loop where x <y, is="" maximum<="" n="" th="" the=""><th></th><th></th></y,>		
	number of passes through the loop.		
	• Make "y", "y-1", "y+1" passes through the loop where "y" is the		
	maximum number of allowable passes through the loop.		
20	What are the conditions exists after performing validation testing?	C215.4	BTL5
	After performing the validation testing there exists two		
	conditions.		
	• The function or performance characteristics are according to the		
	specifications and are accepted.		
	• The requirement specifications are derived and the deficiency list		
	is created. The deficiencies then can be resolved by establishing		
	the proper communication with the customer.		
21	Distinguish between alpha and beta testing. MAY/JUNE 2016	C215.4	BTL6
	• Alpha and beta testing are the types of acceptance testing.		
	• Alpha test: The alpha testing is attesting in which the version of		
	complete software is tested by the customer under the		
	supervision of developer. This testing is performed at		
	developer's site.		

	• Beta test: The beta testing is a testing in which the version of the		
	software is tested by the customer without the developer being		
	present. This testing is performed at customer's site.		
22	What are the various types of system testing?	C215.4	BTL5
	1. Recovery testing – is intended to check the system" s ability to		
	recover from failures.		
	2. Security testing – verifies that system protection mechanism		
	prevent improper		
	penetration or data alteration.		
	3. Stress testing – Determines breakpoint of a system to establish		
	maximum service level.		
	4. Performance testing – evaluates the run time performance of		
	the software, especially real-time software.		
23	Define debugging and What are the common approaches in	C215.4	BTL6
	debugging?		
	Debugging is defined as the process of removal of defect. It		
	occurs as a consequence of successful testing		
	Brute force method: The memory dumps and run-time tracks are		
	examined and program with		
	write statements is loaded to obtain clues to error causes.		
	Back tracking method: The source code is examined by looking		
	backwards from symptom to		
	potential causes of errors.		
	Cause elimination method: This method uses binary partitioning to		
	reduce the number of locations where errors can exists.		
24	Distinguish between verification and validation. NOV/DEC2016.	C215.4	BTL5
	NOV/DEC 2017, APRIL/MAY 2018		
	Verification Validation		
	Evaluates the intermediary products Evaluates the final product to		

	7		
	to check whether it meets the check whether it meets the specific requirements of the business needs. particular phase		
	Checks whether the product is builtIt determines whether theas per the specified requirement andsoftware is fit for use anddesign specification.satisfy the business need.		
	Checks "Are we building the productChecks "Are we building theright"?right product"?		
	This is done without executing the softwareIs done with executing the software		
	Involves all the static testing Includes all the dynamic techniques testing techniques.		
	Examplesincludesreviews,Example includes all types ofinspection and walkthroughtesting like smoke, regression,functional, systems and UAT		
25	What is meant by structural testing?	C215.4	BTL5
	In structural testing derivation of test cases is		
	according to program structure. Hence knowledge of the program		
	is used to identify additional test cases.		
26	What is the need for regression testing? <u>APR/MAY 2015</u>	C215.4	BTL5
	The purpose of regression testing is to confirm that a recent program or		
	code change has not adversely affected existing features. Regression		
	testing is nothing but full or partial selection of already executed test		
	cases which are re-executed to ensure existing functionalities work fine.		
27	Write about drivers and stubs. NOV/DEC 2017	C215.4	BTL6
	Drivers and stub software need to be developed to test		
	incompatible software.		

	The "driver" is a program that accepts the test data and prints the		
	relevant results.		
	The "stub" is a subprogram that uses the module interfaces and performs		
	the minimal data manipulation if required.		
28	What is cyclomatic complexity?	C215.4	BTL5
	Cyclomatic complexity is software metric that gives the		
	quantitative		
	Measure of logical complexity of the program.		
29	How to compute the cyclomatic complexity?	C215.4	BTL5
	The cyclomatic complexity can be computed by any one of the		
	following ways. 1. The numbers of regions of the flow graph		
	correspond to the cyclomatic complexity.		
	2. Cyclomatic complexity (G), for the flow graph G, is defined		
	as: V(G)=E-N+2, E number of flow graph edges, N number of flow		
	graph nodes		
	3. $V(G) = P+1$ Where P is the number of predicate nodes		
	contained in the flow graph.		
30	List out the applications of GUI? <u>April /May 2015</u>	C215.4	BTL5
	GUI-Graphical User Interface- is a type of interface that		
	allows users to interact with electronic devices through		
	graphical icons and visual indicators such as secondary notation, as		
	opposed to text-based interfaces, typed command labels or text		
	navigation		
	In addition to computers, GUIs can be found in hand-held devices such		
	as MP3 players, portable media players, gaming devices and smaller		
	household, smartphones office and industry equipment.		
	Eg:Ticket booking, Inventory tool, Billing Machine, Windows OS		
31	What is flow graph notation and how it is important. <u>April /May</u>	C215.4	BTL5
	2015		

	computer science is a representation, Using graph notation, of all paths		
	that might be traversed through aprogram during its execution.		
32	What is smoke testing ? APRIL /MAY 2017	C215.4	BTL5
	Smoke Testing, also known as "Build Verification Testing", is a type of		
	software testing that comprises of a non-exhaustive set of tests that aim		
	at ensuring that the most important functions work. The results of this		
	testing is used to decide if a build is stable enough to proceed with		
	further testing .		
33	List testing strategies that address verification. Which types of	C215.4	BTL5
	testing address validation ? APRIL/MAY 2017		
	Verification involves all the static testing techniques. Examples includes		
	reviews, inspection and walkthrough		
	Validation includes all the dynamic testing techniques. Example		
	includes all types of testing like smoke, regression, functional, systems		
	and UAT		
33		C215.4	BTL6
	what are the types of static testing tools?		
	There are three types of static testing tools.		
	> Code based testing tools : These tools take source code as input and		
	generate test cases.		
	> Specialized testing tools : Using this language the detailed test		
	specification can be written for each test case.		
	Requirement-based testing tools . These tools help in designing the		
	as per user requirements		
	as per user requirements.		
34		C215.4	BTL5
54	What is done in test design step?	0210.1	

	development are designed in this stage.		
35	Distinguish between verification and validation?	C215.4	BTL5
	Verification refers to the set of activities that ensure that software		
	correctly implements a specific function. Validation refers to a different		
	set of activities that ensure that the software that has been built is		
	traceable to the customer requirements.		
36	Write about drivers and stubs?	C215.4	BTL5
	Drivers and stub software need to be developed to test incompatible		
	software. The "driver" is a program that accepts the test data and prints		
	the relevant results. The "stub" is a subprogram that uses the module		
	interfaces and performs the minimal data manipulation if required.		
37	Define debugging.	C215.4	BTL5
	Debugging is defined as the process of removal of defect. It occurs as a		
	consequence of successful testing.		
38	Define the terms:	C215.4	BTL3
	a) Graph Matrices.		
	b) Connection Matrices.		
	Graph Matrices:		
	• To develop software tool the data structure used is graph Matrix.		
	Square Matrix		
	• Size equals number of nodes on the Flow graph		
	Connection Matrices:		
	• It Link Weight = 1 = > Connection Exists		
	• It Link Weight=1=>Connection Does not Exists.		

39		C215.4	BTL5
•••	What errors are commonly found during Unit Testing?		
	Errors commonly found during Unit Testing are:		
	Misunderstood or incorrect arithmetic precedence		
	Mixed Mode Operations		
	Incorrect Initializations		
	Provision Acourson		
	Frecision Accuracy		
	 Incorrect Symbolic representation of expression 		
	• Incorrect Symbolic representation of expression.		
40		C215.4	BTL5
	What problems may be encountered when Top-Down Integration is		
	chosen?		
	Following problems may be encountered when Top Down Integration is		
	chosen:		
	• Develop stubs that perform limited functions that simulate the actual		
	module.		
	Integrate the software from the bottom of the biorershy unword		
	Integrate the software from the bottom of the merarchy upward		
41	What are the Stops in Bottom Un Integration?	C215.4	BTL5
	what are the steps in bottom-op integration:		
	Steps in Bottom-Up Integration are:		
	• Low level components are combined into clusters perform specific		
	software sub-function		
	software sub function.		
	• Driver is written to coordinate test asso input and output		
	• Driver is written to coordinate test case input and output.		
	• Cluster is tested		

42	What is Flow Granh Notation?	C215.4	BTL6
	What is Flow Oraph Notation.		
	Flow Graph Notation means Simple notation for representing Control		
	Flow. It is drawn only when Logical Structure of component is		
	complex.		
43	What is acceptance testing	C215.4	BTL5
	Acceptance testing : This type of testing involves testing of the system		
	with customer data if the system behaves as per customer need		
	then it is accepted.		
44	What are the new our testing strategies for convertional softeness?	C215.4	BTL6
	what are the various testing strategies for conventional software?		
	The various testing strategies are:		
	(i) Unit testing (ii) Integration testing		
	(iii) Validation testing (iv) System testing.		
45		C215.4	BTL5
	List some of the testing done during SDLC.		
	White box testing, black box testing, integration testing, system testing,		
	installation testing. Regression testing, Acceptance testing.		
46	What is functionality testing?	C215.4	BTL5
	To be a black have deading and ball any mainer due basis from discussions of the		
	It is a black dox testing which exercises the basic functionality of the		
	product from an external; perspective.		

47	What are the stans corried out in installation testing?	C215.4	BTL5
	what are the steps carried out in instantion testing?		
	Ans. The steps carried out in installation testing are:		
	• Packaging • Documenting		
	• Installing • Verifying		
48	What are the objective of Formal Technical Reviews.	C215.4	BTL6
	Ans. The Objective of Formal Technical Reviews are:		
	• Uncover errors in function, logic and implementation for		
	representation of software.		
	• Software represented according to predefined standard.		
	• Verify software under review meets requirements		
	• Achieve software developed in Uniform Manner.		
	• Make projects more manageable.		
49	Explain Integrated testing team model?	C215.4	BTL5
	Ans. There in one project manage who manages both the development		
	and the testing functions		
50		C215.4	BTL6
00	What are the common approaches in debugging?	021011	
	Ans. The common approaches tin debugging are		
	• Brute force method: The memory dumps and run- time tracks		
	are examined and program with write statements in loaded to		
	obtain clues to error causes.		
	• Back tracking method: The source code is examined by looking		

backwards from symptom to potential causes or errors.		
• Causes eliminations method: This method uses binary partitioning to reduce the number of location where errors can exists.		

<u>PART –B</u>

S.NO	QUESTIONS	CO	BLOOM'S LEVEL
1	What is black box & white-box testing? Explain how basis	C215.4	BTL5
	path testing helps to derive test cases to test every statement of		
	a program. <u>NOV/DEC-12, APRIL/MAY 2015, NOV/DEC</u>		
	2017, APRIL/MAY 2017		
	Press-Pg-no- 424		
2	Define: Regression testing. Distinguish: top-down and	C215.4	BTL5
	bottom-up integration. How is testing different from		
	debugging? Justify <u>NOV/DEC-10, APRIL/MAY 2018</u>		
	Press-Pg-no- 394 , 411		
3	Write a note on equivalence partitioning & boundary value	C215.4	BTL6
	analysis of black box testing <u>APR/MAY-16 , NOV/DEC-15</u>		
	Press-Pg-no- 434		
4	What is unit testing? Why is it important? Explain the unit	C215.4	BTL5
	test consideration and test procedure. <u>APR/MAY-</u>		
	11,MAY/JUN-13 NOV/DEC2015		
	Press-Pg-no- 394		
5	Explain Integration & debugging activities? <u>MAY/JUN-15</u>	C215.4	BTL6
	Press-Pg-no-411		
6	Explain software testing types? <u>APR/MAY-16, NOV/DEC 2015</u>	C215.4	BTL5
	Press-Pg-no- 384		

7	Write elaborately on unit testing and regression testing. How	C215.4	BTL5
	do you develop test suites. <u>APRIL/MAY-15, APRIL/MAY 2018</u>		
	Press-Pg-no- 376		
8	i.What is cyclomatic complexity? How to compute cyclomatic	C215.4	BTL6
	complexity <u>APRIL/MAY-15, NOV/DEC 2017</u>		
	Press-Pg-no- 421		
9	Explain integration testing in detail. <u>MAY/JUN-13</u> ,	C215.4	BTL5
	APRIL/MAY 2017, APRIL/MAY 2018		
	Press-Pg-no- 397		
10	What is black box testing? Explain the different types of black	C215.4	BTL6
	box testing strategies with example? <u>NOV/DEC 2016</u>		
	Press-Pg-no- 424		
11	1. (a) Consider the pseudo code for simple subtraction	C215.4	BTL5
	given below: <u>NOV/DEC 2016, APRIL/MAY 2018</u>		
	(1) program 'simple subtraction'		
	(2) input (x,y)		
	(3) output (x)		
	(4) output (y)		
	(5) if x> y then DO		
	(6) $x-y = z$		
	(7) else y $-x = z$		
	(8) endif		
	(9) output (z)		
	(10) output "end program"		
	Perform basis path testing and generate test cases.		
	(b) What is refactoring? When is it needed? Explain		
	with ex?		
	Refer class notes.		
12	Explain in detail about system testing	C215.4	BTL5

	Pressman Pg no. 352- 358		
13	Explain about the software testing strategies	C215.4	BTL5
	Pressman Pg no. 304- 312		
14	Discuss in detail about test strategies for conventional software(May/June 2011) Refer class notes	C215.4	BTL5
15	Explain in detail about basic path testing.(May/Jun 2014)	C215.4	BTL6
	Pressman Pg no. 356- 362		

UNIT – 5

<u>PART –A</u>

S.NO	QUESTIONS	CO	BLOOM'S
			LEVEL
1	What are the processes of risk management? NOV/DEC-10, NOV/DEC-	C215.5	BTL6
	<u>12, NOV/DEC 2013,NOV/DEC2015</u>		
	Risk identification		
	Risk projection (estimation)		
	Risk mitigation, monitoring, and management		
2	State the need for software configuration review. <u>NOV/DEC-11</u>	C215.5	BTL6
	The intent of the review is to ensure that all elements of the		
	software configuration		
	have been properly developed, cataloged & have necessary detail		
	to bolster the		
	supportpfase of the software lifecycle.		
3	List any five CASE tools classified by function in the taxonomy of CASE	C215.5	BTL6
	tools <u>NOV/DEC-11</u>		
	1. project planning tools		
	2. metrics & management tools		

	3. prototyping tools		
	4. Re- engineering tools		
	5. documentation tools.		
4	Define error, fault and failure. <u>NOV/DEC-10</u>	C215.5	BTL5
	Error – it is a state that can lead to a system behavior that is		
	unexpected by the		
	System user.		
	Fault- it is a characteristic of a software system that can lead to		
	system error.		
	Failure – it is an event that occurs at some point in time when the		
	system does not		
	Deliver a service as per user's expectation.		
5	What is project planning? <u>APR/MAY-12, APR/MAY-15</u>	C215.5	BTL5
	The various types of plan is developed to support main software		
	project plan which is concerned with schedule & budget. Types of		
	project plan		
	Quality plan, Validation plan, Configuration mgmt plan, Maintenance		
	plan, Staff development plan.		
6	List the various types of software errors? <u>APR/MAY-11, NOV/DEC-12</u>	C215.5	BTL6
	Reports detailing bugs in a program are commonly known as bug		
	reports, defect reports, fault reports, problem reports, trouble reports,		
	change requests.		
7	Differentiatebetween size oriented and function oriented metrics?	C215.5	BTL6
	MAY/JUN-13 MAY/JUNE 2016,NOV/DEC 2015		
	Size oriented metrics – it considers the size of the software that has		
	been produced. The software organization maintains simple records in		
	tabular form. Table entries are LOC, effort, defects, and project name.		
	Function oriented metrics – it measures the functionality delivered by		
	software. Function point based on software information domain and		
	complexity.		
8	Define measure.(APRIL/MAY-2008)	C215.5	BTL5

	Measure is defined as a quantitative indication of the extent.		
	amount, dimension, or size of some attribute of a product or process.		
9	How is productivity and cost related to function points? NOV/DEC2016	C215.5	BTL6
	Software Productivity = Function Points / Inputs (persons/mnth)		
	Cost = \$ / Function Points (FP)		
10	What are the types of metrics? <u>MAY/JUNE 2016</u>	C215.5	BTL6
	Direct metrics – It refers to immediately measurable attributes. Example		
	– Lines of code, execution speed.		
	Indirect metrics – It refers to the aspects that are not immediately		
	quantifiable or measurable.		
	Example – functionality of a program.		
11	What are the advantages and disadvantages of size measure?	C215.5	BTL6
	Advantages:		
	• Artifact of software development which is easily		
	counted.		
	• Many existing methods use LOC as a key input.		
	• A large body of literature and data based on LOC		
	already exists		
	Disadvantages:		
	This method is dependent upon the programming language.		
	 This method is well designed but shorter program may 		
	get suffered.		
	 It does not accommodate non procedural languages. 		
	 In early stage of development it is difficult to estimate 		
	LOC.		
12	Write short note on the various estimation techniques.	C215.5	BTL6
	\Box Algorithmic cost modeling – the cost estimation is based on		
	the size of the software.		
	□Expert judgement – The experts from software development		
	and the application domain use their exoerience to predict software		

-			
	costs.		
	\Box Estimation by analogy – The cost of a project is computed by		
	comparing the project to a similar project in the same application		
	domain and then cost can be computed.		
	\Box Parkinson's law – The cost is determined by available		
	resources rather than by objective assessment.		
	\Box Pricing to win – The project costs whatever the customer ready to		
	spend it.		
13	What is COCOMO model?	C215.5	BTL6
	COnstructiveCOstMOdel is a cost model, which gives the estimate of		
	number of man- months it will take to develop the software product.		
14	Give the procedure of the Delphi method.	C215.5	BTL6
	1. The co-ordinator presents a specification and estimation form to		
	each expert.		
	2. Co-ordinator calls a group meeting in which the experts discuss		
	estimation issues with the coordinator and each other.		
	3. Experts fill out forms anonymously.		
	4. Co-ordinator prepares and distributes a summary of the estimates.		
	5. The Co-ordinator then calls a group meeting. In this meeting the		
	experts mainly discuss the points where their estimates vary widely.		
	6. The experts again fill out forms anonymously.		
	7. Again co-ordinator edits and summarizes the forms, repeating steps5		
	and 6 until the co-ordinator is satisfied with the overall prediction synthesized		
	from experts.		
15	What are the metrics computed during error tracking activity?	C215.5	BTL5
	Errors per requirement specification page.		
	Errors per component-design level		
	Errors per component-code level		
	DRE-requirement analysis		
	DRE-architectural analysis		
	DRE-component level design		
1		1	

	DRE-coding.		
16	What is risk management? <u>NOV/DEC2016</u>	C215.5	BTL6
	Risk management is the identification, assessment, and prioritization		
	of risks followed by coordinated and economical application of resources to		
	minimize, monitor, and control the probability and/or impact of unfortunate		
	eventsor to maximize the realization of opportunities. Risk management's		
	objective is to assure uncertainty does not deflect the endeavor from the		
	business goals.		
17	What is software maintenance?	C215.5	BTL6
	Software maintenance is an activity in which program is modified after it has		
	been put into use.		
18	Will exhaustive testing guarantee that the program is 100% correct?	C215.5	BTL6
	<u>APR/MAY 2016</u>		
	No, even exhaustive testing will not guarantee that the		
	program is 100 percent correct. There are too many		
	variables to consider.		
19	What are the types of software maintenance?	C215.5	BTL6
	• Corrective maintenance – Means the maintenance for correcting		
	the software faults.		
	• Adaptive maintenance – Means maintenance for adapting the		
	change in environment.		
	• Perfective maintenance – Means modifying or enhancing the		
	system to meet the new requirements.		
	• Preventive maintenance – Means changes made to improve		
	future maintainability		
20	How the CASE tools are classified?	C215.5	BTL6
	CASE tools can be classified by		
	a. By function or use		
	b. By user type(e.g. manager,tester),or		
	c. By stage in software engineering process (e.g.requirements,test).		

21	Dinguish between direct & indirect measures of metrics.	C215.5	BTL6
	Direct metrics is directly measurable attribute(lines of code execution		
	speed, size of memory.		
	Indirect metrics: these are the aspects that are not immediately		
	measurable.(functionality,reliabblity,maintainability)		
22	List down few process and product metrics. <u>MAY/JUNE 2016</u>	C215.5	BTL6
	1.size metrics-It is used for measuring the size of the software.(local		
	based metric, FP based metric)		
	2.complexity metric- A software module can be described by a control		
	flow graph.(cyclomatic complexity, McCabe complexity)		
	3.quality metric- (Defects, reliability metric, Maintainability)		
23	Define software measure.	C215.5	BTL6
	It is a numeric value for a attribute of a software product or process.		
	Types:		
	1.Direct measure		
	2.indirect measure		
24	List out the different approaches to size of the software.	C215.5	BTL6
	1.LOC-computing the line of code		
	2.FP-computing function point of the program.		
25	An organic software occupies 15000 LOC.how many programmers are	C215.5	BTL6
	needed to complete?(NOV/DEC-12)		
	System=organic		
	Lines of coding=15k LOC		
	$E=a_b(KLOC)b_b$		
	$=2.4(15)^{1.05}$		
	=41 persons per month		
	$D=c_b(e)d_b$		
	$=2.5(41)^{0.38}$		
	=10 months		
	P=41/10		
	P=4 persons.		

	4 persons are needed.		
26	What is error tracking?(APRIL/MAY-14)	C215.5	BTL6
	It is a process of finding out and correcting the errors that may		
	occur during the software development process at various stages such as		
	software design, coding or documenting.		
27	What are the types of static testing tools?	C215.5	BTL6
	There are three types of static testing tools.		
	• Code based testing tools – These tools take source code as input and		
	generate test cases.		
	• Specialized testing tools – Using this language the detailed test		
	specification can be written for each test case.		
	• Requirement-based testing tools – These tools help in designing the test		
	cases as per user		
	requirements.		
28	What are the productivity measures and list its type. APRIL/MAY 2017	C215.5	BTL6
	Productivity is an overall measure of the ability to produce a good or		
	service. More specifically, productivity is the measure of how specified		
	resources are managed to accomplish timely objectives as stated in terms of		
	quantity and quality. Productivity may also be defined as an index that		
	measures output (goods and services) relative to the input (labor, materials,		
	energy, etc., used to produce the output). there are two major ways to increase		
	productivity: increase the numerator (output) or decrease the denominator		
	(input).		
29	Define ZIPF's law.	C215.5	BTL6
	The probability of occurrence of words or other items starts high and		
	tapers off. Thus, a few occur very often while many others occur rarely.		
	Formal Definition: Pn ~ $1/na$, where Pn is the frequency of occurrence of the		
	nth ranked item and a is close to 1.		
30	List out the principles of project scheduling. NOV/DEC2017	C215.5	BTL6
	Software project scheduling is an activity that distributes estimated effort		

54	List two customer related and technology related risks. Ar KIL/WA I 2017	C213.3	DILU
22	documenting and retaining information about a risk.	C215 5	BTI 6
	project risks. In the absence of a database, this becomes a primary means of		
	be submitted to the appropriate person or included in a database with other		
	are also used to modify information as risks are managed. It is a form that can		
	information sheets are used to document new risks as they are identified. They		
	A risk information sheet is a means of capturing information about a risk. Risk		
31	Write a note on Risk information sheet. NOV/DEC 2017	C215.5	BTL6
	- Defined milestones		
	- Defined outcomes		
	- Defined responsibilities		
	- Effort validation		
	- Effort allocation		
	- Time allocation		
	- Interdependency		
	- Compartmentalization		
	Basic principles guide software project scheduling:		
	A schedule evolves over time.		
	each entry in the macroscopic schedule.		
	First, a macroscopic schedule is developed. a detailed schedule is redefined for		
	engineering tasks.		
	across the planed project duration by allocating the effort to specific software		
	customer related risks		
----	---	--------	------
	 Customer relationship management may be fragmented. New methods with which to improve customer service and reduce related costs are not utilized. 		
	•Lack of knowledge on the part of one section of an enterprise regarding interactions with a customer on the part of another can lead to customer frustration and emberrossment		
	 Inability to respond to market demands caused by lack of integration among order-entry systems or, even worse, due to infrastructure. 		
	• Lack of visibility of the order status along the whole supply chain.		
	Technology related risk :		
	• Architecture risk		
	Artificial intelligence risk		
	 Audit risk Availability 		
33	What is EVA ? APRIL/MAY 2018	C215.5	BTL6
	Earned Value Analysis (EVA) is an industry standard method of		
	measuring a project's progress at any given point in time, forecasting its		
	completion date and final cost, and analyzing variances in the schedule		
	and budget as the project proceeds.		
34	Identify The Types Of Maintenance for each of the following <u>APRIL/MAY</u>	C215.5	BTL6
	<u>2018</u>		
	Correcting the Software Faults .		
	Adapting the change in environment		
	There are four types of maintenance , namely, corrective , adaptive, perfective, and preventive		
	Correctivemaintenance dealswith the repair of faults or defects found in day-today system functions		
	In the event of a system failure due to an error, actions are taken to restore the operation of the software system.		

35	What is cost schedule?	C215.5	BTL6
	Cost schedule shows the planned cumulative expenditure cost by the use of		
	resource overtime		
36	What is RMMM?	C215.5	BTL6
	Ans. RMMM stands for Risk Mitigation, Monitoring and Management Plan. It is also called Risk Aversion.		
37	What Is Risk mitigation?	C215.5	BTL6
	Ans. Mitigation is a possible means if minimizing or even avoiding the Impact of risk.		
38	What are the factors that lead to Risk?	C215.5	BTL6
	Ans. The factors that lead to Risk are:		
	• Estimation errors.		
	• Planning assumptions.		
	• Business risks.		
39	What are the test points?	C215.5	BTL6
	Test points allow data to be inspected or modified at various points in the system		
40	What is refactoring?	C215.5	BTL6
	A small change to a database schema which improves its design		
41	Explain the common risk tools and techniques.	C215.5	BTL6
	Ans. There are at least six different ways of identifying the potential risks. These are:		

	Examining organizational history		
	• Preparing checklists		
	Information buying		
	• Framework based risk categorization		
	• Simulation		
	• Decision trees.		
42	What is called support risk?	C215.5	BTL6
	Ans. Support risk is the degree of uncertainty fiat the resultant software will be easy to correct, adapt and enhance		
43	What Is Risk?	C215.5	BTL6
	Ans. Risks are events that are usually beyond the planner's control.		
44	What are the Dimensions of Risk quantification?	C215.5	BTL6
	Ans. Probability and the impact of Risk.		
45	What is meant by Delphi method?	C215.5	BTL6
	The Delphi technique is an estimation technique intended to active a common		
	agreement for estimation efforts.		
46	What is meant by CASE tools?	C215.5	BTL6
	The computer aided software engineering tools automatic the project		

	management activities, manage all the work products. The CASE tools		
	assist to perform various activities such as analysis, design, coding and		
	testing.		
47	What are the three phases of Risk management?	C215.5	BTL6
	Ans. The three phases of risk management are:		
	Risk identification, Risk Quantification, and Risk mitigation.		
48	What are the factors that lead to Risk?	C215.5	BTL6
	what are the factors that lead to fask.		
	Ans. The factors that lead to Risk are:		
	• Estimation errors.		
	Planning assumptions.		
	• Business risks.		
49	What is meant by software project scheduling?	C215.5	BTL6
	Software project scheduling is an activity that distributes estimated effort		
	across the planned project duration by allocating the effort to specified		
	software engineering tasks.		
50	What are the various steps under risk analysis?	C215.5	BTL6
	Ans. The various steps under risk analysis are:		
	Risk Estimation.		
	• Risk identification.		
	• Risk evaluation.		

<u>PART –B</u>

S.NO	QUESTIONS	CO	BLOOM'S LEVEL
1	 (a) Elaborate on the series of tasks of a software configuration management process. (b)Describe function point analysis with a neat example<u>NOV/DEC 2013</u> Press-Pg-no- 771, 685 	C215.5	BTL6
2	Explainmake/buydecision& discussPutnamresourceallocationmodel&derivetime&effortequation?APRIL/MAY2016 $Somm - Pg$ -no- 634, Press-Pg-no- 726 $V = V_{2} + V_{2$	C215.5	BTL6
3	Explain the various CASE tools for project management and how they are useful in achieving the objectives <u>APRIL/MAY-</u> <u>15</u> <i>Press-Pg-no-</i> 645	C215.5	BTL6
4	Brief about calculating Earned value measures <u>APR/MAY-</u> <u>12,APRIL/MAY 2018</u>	C215.5	BTL5

	Press-Pg-no- 722			
5	Define Risk. Explain the ne	eds and activities or risk	C215.5	BTL6
	management? <u>APR/MAY-15</u> , 1	NOV/DEC2015 ,NOV/DEC		
	<u>2017</u>			
	Press-Pg-no- 726			
6	Explain about all COCOMO) models? <u>NOV/DEC 2015,</u>	C215.5	BTL5
	APRIL/MAY2016, APRIL/MAY	2017, APRIL/MAY 2018		
	Press-Pg-no- 691			
7	Write about software mainten	ance, PERT - CPM for	C215.5	BTL6
	scheduling , RMMP <u>NOV/DEC-</u>	<u>12</u>		
	Somm – Pg-no- 514,	Press-Pg-no- 716, 739		
8	Describe steps involved in project	ct scheduling process, project	C215.5	BTL6
	timeline chart and task network.	MAY/JUN-15, APRIL/MAY		
	<u>2018</u>			
	Press-Pg-no- 708			
9	(a) Suppose you have a budge	ted cost of a project as Rs.	C215.5	BTL5
	9,00,000. The project is to be co	mpleted in 9 months. After a		
	month you have completed 10	percent of project at a total		
	expense of Rs. 1,00,000. The pla	nned completion should have		
	been 15 percent. You need to det	ermine whether the project is		
	on-time and on budget? Use Ear	rned value analysis approach		
	and interpret <u>NOV/DEC 2016</u>			
	(b) Consider the following fun	ction point components and		
	their complexity. If the total deg	ree of influence is 52, find the		
	estimated function points.			
	Function type Estimated count	complexity		
	FED	2 7		
	GHD	4		
	10			
	HJI	22 4		
	BU	16 5		

BJ 24 4		
Refer class notes		
Describe in detail COCOMO model for software cost	C215.5	BTL6
estimation. Use it to estimate the effort required to build		
software for a simple ATM that produce 12 screens, 10 reports		
and has 80 software components. Assume average complexity		
and average developer maturity. Use application composition		
model with object points.NOV/DEC 2016, NOV/DEC 2017		
Refer class notes		
Explain the process of function point analysis?explain function	C215.5	BTL6
point analysis with sample cases for componentfor different		
complexity <u>APRIL/MAY 2018</u>		
Refer class notes		
Discuss on the various software cost estimation techniques.	C215.5	BTL6
(April/MayApr/May 2008) Refer class notes		
Explain the process of Delphi method ? advantages and	C215.5	BTL5
disadvantages (Nov/Dec 2013) Refer class notes		
Explain about Risk management (May/Jun 2014)	C215.5	BTL6
Som Pg.no. 324-336		
Give detail explanation about Scheduling and Tracking	C215.5	BTL6
Refer class notes		
	BJ 24 4 Refer class notes Describe in detail COCOMO model for software cost estimation. Use it to estimate the effort required to build software for a simple ATM that produce 12 screens, 10 reports and has 80 software components. Assume average complexity and average developer maturity. Use application composition model with object points.NOV/DEC 2016, NOV/DEC 2017 Refer class notes Explain the process of function point analysis?explain function point analysis with sample cases for componentfor different complexity <u>APRIL/MAY 2018</u> Refer class notes Discuss on the various software cost estimation techniques. (April/MayApr/May 2008) Refer class notes Explain the process of Delphi method ? advantages and disadvantages (Nov/Dec 2013) Refer class notes Explain about Risk management (May/Jun 2014) Som Pg.no. 324-336 Give detail explanation about Scheduling and Tracking Refer class notes	BJ244Refer class notesDescribe in detail COCOMO model for software cost estimation. Use it to estimate the effort required to build software for a simple ATM that produce 12 screens, 10 reports and has 80 software components. Assume average complexity and average developer maturity. Use application composition model with object points.NOV/DEC 2016, NOV/DEC 2017 Refer class notesC215.5Explain the process of function point analysis?explain function point analysis with sample cases for componentfor different complexity <u>APRIL/MAY 2018</u> Refer class notesC215.5Discuss on the various software cost estimation techniques. (April/MayApr/May 2008) Refer class notesC215.5Explain the process of Delphi method ? advantages and disadvantages (Nov/Dec 2013) Refer class notesC215.5Som Pg.no. 324-336C215.5Give detail explanation about Scheduling and Tracking Refer class notesC215.5