

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CS8491 - COMPUTER ARCHITECTURE

SEM:04

YEAR:02

QUESTION BANK

BATCH : 2017 - 21

Vision of Institution

To build Jeppiaar Engineering College as an Institution of Academic Excellence in Technical education and Management education and to become a World Class University.

Mission of Institution

M1	To excel in teaching and learning, research and innovation by promoting the principles of scientific analysis and creative thinking
M2	To participate in the production, development and dissemination of knowledge and interact with national and international communities
M3	To equip students with values, ethics and life skills needed to enrich their lives and enable them to meaningfully contribute to the progress of society
M4	To prepare students for higher studies and lifelong learning, enrich them with the practical and entrepreneurial skills necessary to excel as future professionals and contribute to Nation's economy

PROGRAM OUTCOMES

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Vision of Department

To emerge as a globally prominent department, developing ethical computer professionals, innovators and entrepreneurs with academic excellence through quality education and research.

Mission of Department

M1	To create computer professionals with an ability to identify and formulate the engineering problems and also to provide innovative solutions through effective teaching learning process.
M2	To strengthen the core-competence in computer science and engineering and to create an ability to interact effectively with industries.
M3	To produce engineers with good professional skills, ethical values and life skills for the betterment of the society.
M4	To encourage students towards continuous and higher level learning on technological advancements and provide a platform for employment and self-employment .

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1	To address the real time complex engineering problems using innovative approach with strong core computing skills.
PEO2	To apply core-analytical knowledge and appropriate techniques and provide solutions to real time challenges of national and global society
PEO3	Apply ethical knowledge for professional excellence and leadership for the betterment of the society.
PEO4	Develop life-long learning skills needed for better employment and entrepreneurship

PROGRAM SPECIFIC OUTCOMES (PSOs)

Students will be able to

PSO1	An ability to understand the core concepts of computer science and engineering and to enrich problem solving skills to analyze, design and implement software and hardware based systems of varying complexity.
	To interpret real-time problems with analytical skills and to arrive at cost effective and optimal solution using advanced tools and techniques.
	An understanding of social awareness and professional ethics with practical proficiency in the broad area of programming concepts by lifelong learning to inculcate employment and
PSO3	entrepreneurship skills.

BLOOM TAXANOMY LEVELS(BTL)

BTL1: Remembering BTL2: Understanding BTL3: Applying BTL4: Analyzing BTL5: Evaluating BTL6: Creating

SYLLABUS

CS8491 -COMPUTER ARCHITECTURE OBJECTIVES:

• To learn the basic structure and operations of a computer.

• To learn the arithmetic and logic unit and implementation of fixed-point and floating point arithmetic unit.

• To learn the basics of pipelined execution.

• To understand parallelism and multi-core processors.

• To understand the memory hierarchies, cache memories and virtual memories.

• To learn the different ways of communication with I/O devices.

UNIT I BASIC STRUCTURE OF A COMPUTER SYSTEM

Functional Units – Basic Operational Concepts – Performance – Instructions: Language of the Computer – Operations, Operands – Instruction representation – Logical operations – decision making – MIPS Addressing.

UNIT II ARITHMETIC FOR COMPUTERS

Addition and Subtraction – Multiplication – Division – Floating Point Representation – Floating Point Operations – Subword Parallelism

UNIT III PROCESSOR AND CONTROL UNIT

A Basic MIPS implementation – Building a Datapath – Control Implementation Scheme – Pipelining – Pipelined datapath and control – Handling Data Hazards & Control Hazards – Exceptions.

UNIT IV PARALLELISIM

Parallel processing challenges – Flynn's classification – SISD, MIMD, SIMD, SPMD, and Vector Architectures - Hardware multithreading – Multi-core processors and other Shared Memory Multiprocessors - Introduction to Graphics Processing Units, Clusters, Warehouse Scale Computers and other Message-Passing Multiprocessors.

UNIT V MEMORY & I/O SYSTEMS

Memory Hierarchy - memory technologies – cache memory – measuring and improving cache performance – virtual memory, TLB's – Accessing I/O Devices – Interrupts – Direct Memory Access – Bus structure – Bus operation – Arbitration – Interface circuits

USB.TOTAL : 45 PERIODS OUTCOMES:

- □ Understand the basics structure of computers, operations and instructions.
- □ Design arithmetic and logic unit.
- Understand pipelined execution and design control unit.
- □ Understand parallel processing architectures.
- □ Understand the various memory systems and I/O communication.

TEXT BOOKS:

1. David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.

2. Carl Hamacher, ZvonkoVranesic, SafwatZaky and NaraigManjikian, Computer Organization and Embedded Systems, Sixth Edition, Tata McGraw Hill, 2012.

REFERENCES:

1. William Stallings, Computer Organization and Architecture – Designing for Performance, Eighth Edition, Pearson Education, 2010.

2. John P. Hayes, Computer Architecture and Organization, Third Edition, Tata McGraw Hill, 2012.

3. John L. Hennessey and David A. Patterson, Computer Architecture – A Quantitative Approach^{II}, Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2012.

L T P C 3003

9

9

9

9

Course Outcome(CO)

C204.1	Describe the basic structure and operations of digital computer
C204.2	Design of arithmetic and logical unit.
C204.3	Design and Analysis of pipelined control units.
C204.4	Understand the concepts of parallel processing architecture
C204.5	Learn the organization of different memory systems and I/O processor and its communication.

INDEX

Unit #	Ref. Book	Page Numbers
Unit 1	David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.	Page 7 -19
Unit 2	David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.	Page 20-32
Unit 3	David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014	Page 32 -43
Unit 4	David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.	Page 43 -54
Unit 5	David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.	Page 54 -63

PART-A

Q. No.	Questions	СО	Bloom' s Level
	Write the basic functional units of computer? The basic functional units of a computer are input unit, output unit, memory unit, ALU unit and control unit	C204.1	BTL1
	Write the basic functional units of computer? (APR/MAY 2017,NOV/DEC 2017) The basic functional units of a computer are input unit, output unit, memory unit, ALU unit and control unit.	C204.1	BTL1
	What is a bus? What are the different buses in a CPU? [APR/MAY 2011] A group of lines that serve as a connecting path for several devices is called bus .The different buses in a CPU are 1] Data bus 2] Address bus 3] Control bus.	C204.1	BTL1
	What is meant by stored program concepts? Stored program concept is an idea of storing the program and data in the memory	C204.1	BTL1
	Define multiprogramming? (A.U.APR/MAY 2013) Multiprogramming is a technique in several jobs are in main memory at once and the processor is switched from job as needed to keep several jobs advancing while keeping the peripheral devices in use.	C204.1	BTL1
	What is meant by VLSI technology? VLSI is the abbreviation for Very Large Scale Integration. In this technology millions of transistors are put inside a single chip as tiny components. The VLSI chips do the function of millions of transistors. These are Used to implement parallel algorithms directly in hardware	C204.1	BTL6

Define multiprocessing? Multiprocessing is the ability of an operating system to support more than one process at the same time	C204.1	BTL6
List the eight great ideas invented by computer architecture? APR/MAY-2015 Design for Moore's Law Use abstraction to simplify design Make the common case fast Performance via Parallelism 	C204.1	BTL1
 Performance via Pipelining Performance via Prediction Hierarchy of Memory Dependability via Redundancy 	C204.1	
 Define power wall. Old conventional wisdom Power is free Transistors are expensive New conventional wisdom: "Power wall" Power expensive Transistors"free" (Can put more on chip than can afford to turn on) 	C204.1	BTL1
What are clock and clock cycles? The timing signals that control the processor circuits are called as clocks. The clock defines regular time intervals called clock cycles.	C204.1	BTL1
What is uniprocessor? A uniprocessor system is defined as a computer system that has a single central processing unit that is used to execute computer tasks. As more and more modern software is able to make use of multiprocessing architectures, such as SMP and MPP, the term <i>uniprocessor</i> is therefore used to distinguish the class of computers where all processing tasks share a single CPU.	C204.1	BTL1
What is multicore processor? A multi-core processor is a single computing component with two or more independent actual central processing units (called "cores"), which are the units that read and execute program instructions. The instructions are ordinary CPU instructions such as add, move data, and branch, but the multiple cores can run multiple instructions at the same time, increasing overall speed for programs amenable to parallel computing	C204.1	BTL1

Differentiate super computer and mainframe computer. A computer with high computational speed, very large memory and parallel structured hardware is known as a super computer.EX: CDC 6600. Mainframe computer is the large computer system containing thousands of IC's. It is a room-sized machine placed in special computer centers and not directly accessible to average users. It serves as a central computing facility for an organization such as university, factory or bank.	C204.1	BTL1
Differentiate between minicomputer and microcomputer. Minicomputers are small and low cost computers are characterized by Short word size i.e. CPU word sizes of 8 or 16 bits. They have limited hardware and software facilities. They are physically smaller in size.Microcomputer is a smaller, slower and cheaper computer packing all the electronics of the computer in to a handful of IC's, including CPU and memory and IO chips	C204.1	BTL1
What is instruction register?(NOV/DEC 2016) The instruction register (IR) holds the instruction that is currently being executed. Its output is available to the control circuits which generate the timing signals that control the various processing elements involved in executing the instruction.	C204.1	BTL1
What is program counter? The program counter (PC) keeps track of the execution of a program. It contains the memory address of the next instruction to be fetched and executed.	C204.1	BTL1
What is processor time? The sum of the periods during which the processor is active is called the processor time	C204.1	BTL1
Give the CPU performance equation. CPU execution time for a program =Instruction Count XClock cycles per instructionXClock cycle time.	C204.1	BTL1
What is superscalar execution? In this type of execution, multiple functional units are used to create parallel paths through which different instructions can be executed in parallel. So it is possible to start the execution of several instructions in every clock cycle. This mode of operation is called superscalar execution	C204.1	BTL1

	GB C I I	
What is RISC and CISC? The processors with simple instructions are called as Reduced Instruction Set Computers (RISC). The processors with more complex instructions are called as Complex Instruction Set Computers (CISC).	C204.1	BTL1
List out the methods used to improve system performance. The methods used to improve system performance are Processor clock Basic Performance Equation Pipelining Clock rate Instruction set Compiler	C204.1	BTL1
Define addressing modes and its various types.(nov/dec 2017) The different ways in which the location of a operand is specified in an instruction is referred to as addressing modes. The various types are Immediate Addressing, Register Addressing, Based or Displacement Addressing, PC- Relative Addressing, Pseudodirect Addressing.	C204.1	BTL1
Define register mode addressing. In register mode addressing, the name of the register is used to specify the operand. Eg. Add \$s3, \$s5,\$s6.	C204.1	BTL1
Define Based or Displacement mode addressing. In based or displacement mode addressing, the operand is in a memory location whose address is the sum of a register and a constant in the instruction. Eg. lw \$t0,32(\$s3).	C204.1	BTL1
State Amdahl's Law. Amdahl's law is a formula used to find the maximum improvement improvement possible by improving a particular part of a system. In parallel computing, Amdahl's law is mainly used to predict the theoretical maximum speedup for program processing using multiple processors.	C204.1	BTL1
$Speedup = \frac{Performance for entire task using the enhancement when possible}{Performance for entire task without using the enhancement}$		
Alternatively,		
$Speedup = \frac{\text{Execution time for entire task without using the enhancement}}{\text{Execution time for entire task using the enhancement when possible}}$		

Define Relative mode addressing.(Nov2014)In PC-relative mode addressing, the branch address is the sum of the PC and a constant in the instruction In the relative address mode, the effective address is determined by the index mode by using the program counter in stead of general purpose processor register. This mode is called relative address mode.	C204.1	BTL1
Distinguish pipelining from parallelism APR/MAY 2015 parallelism means we are using more hardware for the executing the desired task. in parallel computing more than one processors are running in parallel. there may be some dedicated hardware running in parallel for doing the specific task. while the pipelining is an implementation technique in which multiple instructions are overlapped ninexecution.parallelism increases the performance but the area also increases. in case of pipelining the performance and througput increases at the cost of pipelining registers area pipelining there are different hazards like data hazards, control hazards etc.	C204.1	BTL1
Distinguish pipelining from parallelism APR/MAY 2015 parallelism means we are using more hardware for the executing the desired task. in parallel computing more than one processors are running in parallel. there may be some dedicated hardware running in parallel for doing the specific task. while the pipelining is an implementation technique in which multiple instructions are overlapped ninexecution.parallelism increases the performance but the area also increases. in case of pipelining the performance and througput increases at the cost of pipelining registers area pipelining there are different hazards like data hazards, control hazards etc.	C204.1	BTL1
How to represent Instruction in a computer system?MAY/JUNE 2016 Computer instructions are the basic components of a machine language program. They are also known as <i>macrooperations</i> , since each one is comprised of a sequences of microoperations. Each instruction initiates a sequence of microoperations that fetch operands from registers or memory, possibly perform arithmetic, logic, or shift operations, and store results in registers or memory. Instructions are encoded as binary <i>instruction codes</i> . Each instruction code contains of a <i>operation code</i> , or <i>opcode</i> , which designates the overall purpose of the instruction (e.g. add, subtract, move, input, etc.). The number of bits allocated for the opcode determined how many different instructions the architecture	C204.1	BTL3

supports. In addition to the opcode, many instructions also contain one or more <i>operands</i> , which indicate where in registers or memory the data required for the operation is located. For example, add instruction requires two operands, and a not instruction requires one.		
Brief about relative addressing mode. <u>NOV/DEC 2014</u> Relative addressing mode - In the relative address mode, the effective address is determined by the index mode by using the program counter in stead of general purpose processor register. This mode is called relative address mode.	C204.1	BTL1
Distinguish between auto increment and auto decrement addressing mode?	C204.1	BTL1
MAY/JUNE 2016		
A special case of indirect register mode. The register whose number is included in the instruction code, contains the address of the operand. Autoincrement Mode = after operand addressing , the contents of the register is incremented. Decrement Mode = before operand addressing, the contents of the register in parentheses, to show that the contents of the register are used as the efficient address, followed by a plus sign to indicate that these contents are to be incremented after the operand is accessed. Thus, using register R4, the autoincrement mode is written as (R4)+. As a companion for the autoincrement mode, another mode is often available in which operands are accessed in the reverse order. <i>Autodecrementmode</i> The contents of a register specified in the instruction are decremented. These contents are then used as the effective address f the operand. We denote the autodecrement mode by putting the specified register in parentheses, preceded by a minus sign to indicate that the contents of register are to be decremented before being used as the effective address. Thus, we write (R4). This mode allows the accessing of operands in the direction of descending addresses. The action performed by the autoincrement and auto decrement and the other to increment or to decrement the register that contains the operand address. Combining the two operations in one instruction reduces the number if instructions needed to perform the task.		
If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds how much faster is A than B?	C204.1	BTL1
We know that A is <i>n</i> times as fast as B if		
$\frac{\text{Performance}_{A}}{\text{Performance}_{A}} = \frac{\text{Execution time}_{B}}{n} = n$		
$Performance_B$ Execution time _A		

$\frac{15}{10} = 1.5$ and A is therefore 1.5 times as fast as B. In the above example, we could also say that computer B is 1.5 times <i>slowe</i> <i>than</i> computer A, since $\frac{\text{Performance}_{A}}{\text{Performance}_{B}} = 1.5$ means that $\frac{\text{Performance}_{A}}{1.5} = \text{Performance}_{B}$	27	
Our favorite program runs in 10 seconds on computer A, which has a 2 GH clock. We are trying to help a computer designer build a computer, B, whice will run this program in 6 seconds. The designer has determined that substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to require 1.2 times as man clock cycles as computer A for this program. What clock rate should we te the designer to target? Let's first find the number of clock cycles required for the program on A:	h a et y	BTL1
$CPU time_{A} = \frac{CPU clock cycles_{A}}{Clock rate_{A}}$		
$10 \text{ seconds} = \frac{\text{CPU clock cycles}_{\text{A}}}{2 \times 10^9 \frac{\text{cycles}}{\text{second}}}$		
CPU clock cycles _A = 10 seconds $\times 2 \times 10^9 \frac{\text{cycles}}{\text{second}} = 20 \times 10^9 \text{ cycles}$ CPU time for B can be found using this equation:	1	
$CPU time_{B} = \frac{1.2 \times CPU \ clock \ cycles_{A}}{Clock \ rate_{B}}$		
$6 \text{ seconds} = \frac{1.2 \times 20 \times 10^9 \text{ cycles}}{\text{Clock rate}_{B}}$		
$Clock \ rate_{B} = \frac{1.2 \times 20 \times 10^{9} \ cycles}{6 \ seconds} = \frac{0.2 \times 20 \times 10^{9} \ cycles}{second} = \frac{4 \times 10^{9} \ cycles}{sec$	4 GHz	
To run the program in 6 seconds, B must have twice the clock rate of A.		

ar so 1. ho W pr	uppose we have two implementations of the same instruction set rchitecture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for ome program, and computer B has a clock cycle time of 500 ps and a CPI of 2 for the same program. Which computer is faster for this program and by ow much? Ve know that each computer executes the same number of instructions for the rogram; let's call this number <i>I</i> . First, find the number of processor clock cycles or each computer:	C204.1	BTL1
	CPU clock cycles _A = $I \times 2.0$		
	CPU clock cycles _B = $I \times 1.2$ Now we can compute the CPU time for each computer:		
	$CPU time_A = CPU clock cycles_A \times Clock cycle time$		
ex	$= I \times 2.0 \times 250 \text{ ps} = 500 \times I \text{ ps}$ Likewise, for B: CPU time _B = $I \times 1.2 \times 500 \text{ ps} = 600 \times I \text{ ps}$ Clearly, computer A is faster. The amount faster is given by the ratio of the secution times:		
pr	$\frac{\text{CPU performance}_{A}}{\text{CPU performance}_{B}} = \frac{\text{Execution time}_{B}}{\text{Execution time}_{A}} = \frac{600 \times I \text{ ps}}{500 \times I \text{ ps}} = 1.2$ We can conclude that computer A is 1.2 times as fast as computer B for this rogram.		
C sp <u>T</u> U	 Perfine CPU execution time and list the types. PPU execution time Also called CPU time. The actual time the CPU spends computing for a pecific task. ypes: Yer CPU time The CPU time spent in a program itself. 	C204.1	BTL1
th	The CPU time spent in the operating system performing tasks on behalf of ne program		
	See See See See See See See See See See	C204.1	BTL1

What is Throughput? Also called bandwidth. Another measure of performance, it of tasks completed per unit time.	is the number	BTL1
Define Clock cycles: All computers are constructed using a clock that determines take place in the hardware. These discrete time intervals are called (or ticks, clock ticks, clock periods, clocks, cycles).		BTL1
Write Basic performance equation in terms of instruction count of instructions executed by the program), CPI, and clock cycle tin		BTL1
CPU time = Instruction count \times CPI \times Clock cycle or, the clock rate is the inverse of clock cycle time:	time	
$CPU time = \frac{Instruction count \times CPI}{Clock rate}$ Compile given Two C Assignment Statements into MIPS	C204.1	BTL1
a = b + c; d = a - e; Answer		DILI
add a, b, c sub d, a, e		
Compile givenC Assignment Statement into MIPS $f = (g + h) - (i + j);$ add t0,g,h # temporary variable t0 contains $g + h$ add t1,i,j # temporary variable t1 contains $i + j$ sub f,t0,t1 # f gets t0 -t1, which is $(g + h) - (i + j)$	C204.1	BTL1
Compile givenC Assignment Statement into MIPS g = h + A[8];	C204.1	BTL1
Answer The first compiled instruction is lw\$t0,8(\$s3) # Temporary reg \$t0 gets A[8] add\$s1,\$s2,\$t0 # g = h + A[8]		

What are the three types of operands in MIPS	C204.1	BTL1
1.word		
2.Memory Operands		
3.Constant or Immediate Operands		
Compile givenC Assignment Statement into MIPS	C204.1	BTL1
A[12] = h + A[8];		
Answer		
\$t0: lw\$t0,32(\$s3) # Temporary reg \$t0 gets A[8]		
add\$t0,\$s2,\$t0		
# Temporary reg \$t0 gets h + A[8] sw\$t0,48(\$s3)		
# Stores $h + A[8]$ back into $A[12]$		
Write MIPS To add 4 to register \$s3.	C204.1	BTL1
addi\$s3,\$s3,4# \$s3 = \$s3 + 4		
Define Instruction format	C204.1	BTL1
A form of representation of an instruction composed of fields of numbers. The numeric version of instructions machine language and a seq		
such instructions machine code.	_	
What are the types of instruction format in MIPS	C204.1	BTL1
	020111	DILI
1. <i>R-type</i> (for register) or <i>R-format</i> .		
2.1-type (for immediate) or 1-format		
3.J-type or Jump		

What are the types of instruction in MIPS.(APR/MAY2018)	C204.1	BTL1
 Arithmetic instruction Data transfer Instruction Logical Instruction Conditional Branch Instruction Unconditional jump Instruction 		
Compile givenC Statement into MIPS if (i == j) f = g + h; else f = g - h; bne $s3,s4,Else\#$ go to Else if i \neq j add $s0,s1,s2\#$ f = g + h (skipped if i \neq j)	C204.1	BTL1
Compile givenC Statement into MIPSwhile (save[i] == k) $i += 1;$ Ans:Loop: sll\$t1,\$s3,2# Temp reg \$t1 = i * 4add \$t1,\$t1,\$s6# \$t1 = address of save[i]lw \$t0,0(\$t1)# Temp reg \$t0 = save[i]bne \$t0,\$s5, Exit# go to Exit if save[i] \neq kaddi \$s3,\$s3,1# i = i + 1jLoop# go to LoopExit:	C204.1	BTL1
State indirect addressing mode give example.(APR/May 2017)Indirect Mode. The effective address of the operand is the contents of a register or main memory location, location whose address appears in the instruction Once it's there, instead of finding an operand, it finds an address where the operand is located.LOAD R1, @R2Load the content of the memory address stored atregister R2 to register R1.	C204.1	BTL1

PART-B

Q. No.	Questions	СО	Bloom' s Level	
--------	-----------	----	-------------------	--

1.	 i)Discuss in detail about Eight great ideas of computer Architecture.(8) <i>Page.No:11-13</i>) ii) Explain in detail about Technologies for Building Processors and Memory (8))(<i>Page.No:24-28</i>) 	C204.1	BTL5
2.	Explain the various components of computer System with neat diagram (16) .(NOV/DEC2014,NOV/DEC2015,APR/MAY 2016,NOV/DEC 2016,APR/MAY2018)) (<i>Page.No:16-17</i>)	C204.1	BTL5
3.	Discuss in detail the various measures of performance of a computer(16) (<i>Page.No:28-40</i>)	C204.1	BTL6
4.	Define Addressing mode and explain the different types of basic addressing modes with an example (APRIL/MAY2015,NOV/DEC2015,APR/MAY 2016,NOV/DEC 2016,APR/MAY2018) (Page.No:116-117)	C204.1	BTL5
5.	i)Discuss the Logical operations and control operations of computer (12) (<i>Page.No:87-89</i>) ii)Write short notes on Power wall(6) (<i>Page.No:40-42</i>)	C204.1	BTL6
6.	Consider three diff erent processors P1, P2, and P3 executing the same instruction set. P1 has 3 GHz clock rate and a CPI of 1.5. P2 has a 2.5 GHz clock rate and a CPI of 1.0. P3 has a 4.0 GHz clock rate and has a CPI of 2.2. (APR/MAY 2018) a. Which processor has the highest performance expressed in instructions per second? b. If the processors each execute a program in 10 seconds, find the number of cycles and the number of instructions. c. We are trying to reduce the execution time by 30% but this leads to an increase of 20% in the CPI. What clock rate should we have to get this time reduction? (Refer Notes)	C204.1	BTL5
7.	Explain various instruction format illustrate the same with an example NOV/DEC2017 (<i>Page.No:80-86</i>)	C204.1	BTL5
8.	Explain direct ,immediate ,relative and indexed addressing modes with example APR/MAY2018 (<i>Page.No:116-117</i>)	C204.1	BTL5
9.	State the CPU performance equation and the factors that affect performance (8) (NOV/DEC2014) (Refer Notes)	C204.1	BTL5

	Discuss about the various techniques to represent instructions in a computer	C204.1	BTL6
10.	system.		
	(APRIL/MAY2015,NOV/DEC 2017) (Page.No:80-86)		
	What is the need for addressing in a computer system OF which the different	C204.1	BTL5
	What is the need for addressing in a computer system?Explain the different	C204.1	BILS
11.	addressing modes with suitable examples.(APRIL/MAY2015) (<i>Page.No:116-117</i>)		
	(<i>Fage.No.110-117</i>)		
12.	Explain types of operations and operands with examples.(NOV/DEC 2017)	C204.1	BTL5
12.	(Page.No:63-70)		
	Consider two diff erent implementations of the same instruction	C204.1	BTL5
	set architecture. The instructions can be divided into four classes according		
	to		
	their CPI (class A, B, C, and D). P1 with a clock rate of 2.5 GHz and CPIs		
	of 1, 2, 3,		
	and 3, and P2 with a clock rate of 3 GHz and CPIs of 2, 2, 2, and 2.		
13.	Given a program with a dynamic instruction count of 1.0E6 instructions		
	divided		
	into classes as follows: 10% class A, 20% class B, 50% class C, and 20%		
	class D,		
	which implementation is faster?		
	a. What is the global CPI for each implementation?		
	b. Find the clock cycles required in both cases. (Refer Notes)		
	To what should the CPI of load/store instructions be	C204.1	BTL5
14.	reduced in order for a single processor to match the performance of four		
	processors using the original CPI values?		
	(Refer Notes)		
	Describe the steps that transform a program written in a high-level	C204.1	BTL4
15.	language such as C into a representation that is directly executed by a		
	computer processor.		
	(Refer Notes)		

stored first. For example, in a little-endian computer, the two bytes required for thehexadecimal number 4F52 would be stored as 524F (52 at address 1000, 4F at 1001).

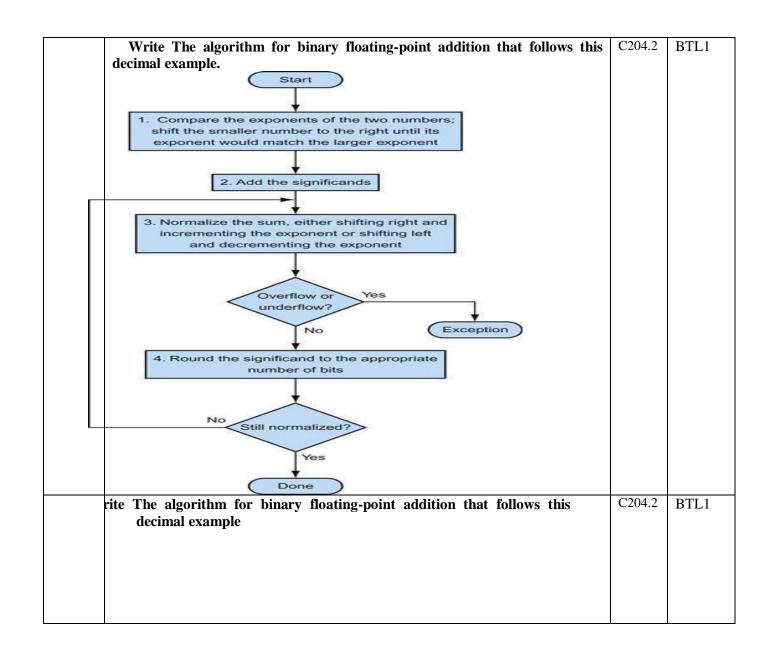
PART	-A

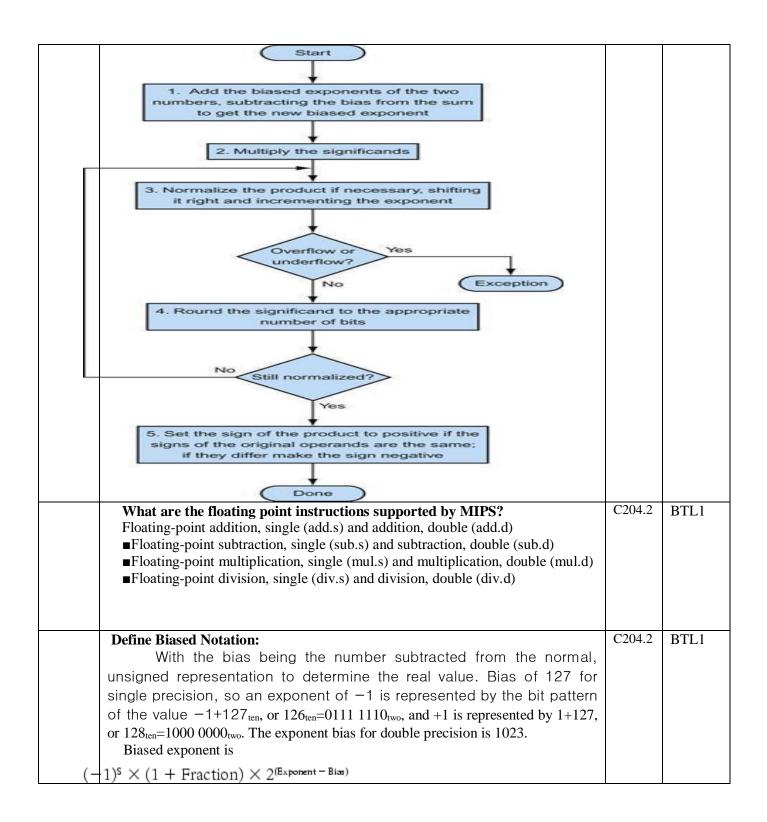
Q. No.	Questions	СО	Bloom's Level
	What is half adder and full adder? A half adder is a logic circuit with two inputs and two outputs, which adds two bits at a time, producing a sum and a carry. A full adder is logic circuit with three inputs and two outputs, which adds three bits at a time giving a sum and a carry.	C204.2	BTL1
	What are the overflow conditions for addition and subtraction.(NOV/DEC 2015) peration Operand A Operand B Result Indicating overflow $A+B \ge 0 \ge 0 < 0$ $A+B < 0 < 0 \ge 0$ $A-B \ge 0 < 0 < 0 A-B < 0 \ge 0 \ge 0$	C204.2	BTL1
	State the rule for floating point addition. the number with the smaller exponent and shift its mantissa right a number of steps equal to the difference in exponents. Set the exponent of the result equal to the larger exponent. Perform the addition on the mantissa and determine the sign of the result. Normalize the resulting value if necessary.	C204.2	BTL1
	What is signed binary? A system in which the leading bit represents the sign and the remaining bits the magnitude of the number is called signed binary. This is also known as sign magnitude.	C204.2	BTL1
	What is a carry look-ahead adder? The input carry needed by a stage is directly computed from carry signals obtained from all the preceding stages i-1,i-2,0, rather than waiting for normal carries to supply slowly from stage to stage. An adder that uses this principle is a called carry look-ahead adder	C204.2	BTL1
	Define Booth Algorithm. s multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. Booth's algorithm can be implemented by repeatedly adding (with ordinary unsigned binary addition) one of two predetermined values A and S to a product P, then performing a rightward arithmetic shift on P.	C204.2	BTL6

	 t are the main features of Booth's algorithm? It handles both positive and negative multipliers uniformly. It achieves some efficiency in the number of addition required when the multiplier has a few large blocks of 1s. 	C204.2	BTL6
s are t if the zero. 4} neith integ	ne Integer Division and give its rule. the set of whole numbers and their opposites. The sign of an integer is positive e number is greater than zero, and the sign is negative if the number is less than . The set of all integers represented by the set {4, -3, -2, -1, 0, 1, 2, 3, Negative integers: {4, -3, -2, -1} Positive integers: {1, 2, 3, 4}{0} is her positive nor negative, neutral. DIVISION RULE: The quotient of two gers with same sign is positive. The quotient of two integers with opposite s is negative.	C204.2	BTL1
To rekept repre- the o	ne Truncation. etain maximum accuracy, all extra bits during operation (called <i>guard bts</i>) are (e.g., multiplication). If we assume $n = 3$ bits are used in final esentation of a number, $n = 3$ extra guard bits are kept during operation. By end of the operation, the resulting $2n = 6$ bits need to be truncated to = 3 bits by one of the three methods	C204.2	BTL1
the	ain how Boolean subtraction is performed? subtrahend (i.e. in a-b, the subtrahend is b) then perform addition(2's plement).	C204.2	BTL1
class of da instr	APR/MAY 2015,MAY/JUNE 2016 Given that the parallelism occurs within a wide word, the extensions are sified as sub-word parallelism. It is also classified under the more general name ata level parallelism. They have been also called vector or SIMD, for single uction, multiple data . The rising popularity of multimedia applications led to metic instructions that support narrower operations that can easily operate in llel.	C204.2	BTL1
The 1) T	can we speed up the multiplication process? re are two techniques to speed up the multiplication process: the first technique guarantees that the maximum number of summands that t be added is $n/2$ for n-bit operands.	C204.2	BTL1

What is bit pair recoding? Give an example. Bit pair recoding halves the maximum number of summands. Group the Booth- recoded multiplier bits in pairs and observe the following: The pair $(+1 -1)$ is equivalent to to the pair $(0 +1)$. That is instead of adding -1 times the multiplicand m at shift position i to +1 M at position i+1, the same result is obtained by adding +1 M at position i. Eg: 11010 – Bit Pair recoding value is 0 -1 -2	C204.2	BTL1
What are the two methods of achieving the 2's complement?a. Take the 1's complement of the number and add 1.b. Leave all least significant 0's and the first unchanged and then complement the remaining bits	C204.2	BTL1
 What is the advantage of using Booth algorithm? 1) It handles both positive and negative multiplier uniformly. 2) It achieves efficiency in the number of additions required when the multiplier has a few large blocks of 1's. 3) The speed gained by skipping 1's depends on the data 	C204.2	BTL1
 Write the algorithm for restoring division. Do the following for n times: 1) Shift A and Q left one binary position. 2) Subtract M and A and place the answer back in A. 3) If the sign of A is 1, set q0 to 0 and add M back to A. Where A- Accumulator, M- Divisor, Q- Dividend. Step 1: Do the following for n times: 1) If the sign of A is 0, shift A and Q left one bit position and subtract M from A; otherwise, shift A and Q left and add M to A. 2) Now, if the sign of A is 0, set q0 to 1; otherwise, set q0 to0. Step 2: if the sign of A is 1, add M to A. 	C204.2	BTL1
What is Carry Save addition? carry save addition, the delay can be reduced further still. The idea is to take 3 numbers that we want to add together, $x+y+z$, and convert it into 2 numbers c+s such that $x+y+z=c+s$, and do this in O (1) time. The reason why addition cannot be performed in O (1) time is because the carry information must be propagated. In carry save addition, we refrain from directly passing on the carry information until the very last step.	C204.2	BTL1

 When can you say that a number is normalized? When the decimal point is placed to the right of the first (nonzero) significant digit, the number is said to be normalized. The end values 0 to 255 of the excess-127 exponent E are used to represent special values such as: a) When E = 0 and the mantissa fraction M is zero the value exact 0 is represented. When E = 255 and M=0, the value is represented. When E = 0 and M 0, denormal values are represented. When E = 2555 and M 0, the value represented is called Not a number. 	C204.2	BTL1
How overflow occur in subtraction?APRIL/MAY2015If 2 Two's Complement numbers are subtracted, and their signs are different, then overflow occurs if and only if the result has the same sign as the subtrahend.Overflow occurs if• $(+A) - (-B) = -C$ • $(-A) - (+B) = +C$	C204.2	BTL1
 Write the Add/subtract rule for floating point numbers. 1) Choose the number with the smaller exponent and shift its mantissa right a number of steps equal to the difference in exponents. 2) Set the exponent of the result equal to the larger exponent. 3) Perform addition/subtraction on the mantissa and determine the sign of the result 4) Normalize the resulting value, if necessary. 	C204.2	BTL1
Define ALU. MAY/JUNE 2016 The arithmetic and logic unit (ALU) of a computer system is the place where the actual execution of the instructions take place during the processing operations. All calculations are performed and all comparisons (decisions) are made in the ALU. The data and instructions, stored in the primary storage prior to processing are transferred as and when needed to the ALU where processing takes place	C204.2	BTL1
rite the multiply rule for floating point numbers. 1) Add the exponent and subtract 127. 2) Multiply the mantissa and determine the sign of the result 3) Normalize the resulting value, if necessary	C204.2	BTL1


State double precision floating point number?NOV/DEC 2015	C204.2	BTL1
Double-precision floating-point format is a computer number format occupies 8 bytes (64 bits) in computer computer memory and represents a wide, dynamic range of value floating point		
hat is excess-127 format? Instead of the signed exponent E, the value actually stored in the exp and unsigned integer E. In some cases, the binary point is variautomatically adjusted as computation proceeds. In such case, the bisaid to float and the numbers are called floating point numbers.	riable and is	BTL1
What is guard bit? Although the mantissa of initial operands are limited to 24 bits, it is in to retain extra bits, called as guard bits.	nportant C204.2	BTL1
hat are the ways to truncate the guard bits? There are several ways to truncate the guard its: 1) Chopping 2) Von Neumann rounding 3) Rounding	C204.2	BTL1
hat are generate and propagate function? The generate function is given by Gi=xiyi and The propagate function is given as Pi=xi+yi.	C204.2	BTL1
In floating point numbers when so you say that an underflow or occurred? In single precision numbers when an exponent is less than -126 then younderflow has occurred. In single precision numbers when an exponent +127 then we say that an overflow has occurred.	we say that an	BTL3


Define Von Neumann Rounding. ast one of the guard bits is 1, the least significant bit of the retained bits otherwise nothing is changed in retained bits and simply guard bits are dr example, ARM added more than 100 instructions in the NEON multimedia instruction extension to support sub-word parallelism, which used either with ARMv7 or ARMv8. .Multiply 100010 * 100110.	opped.	BTL1
 Write the algorithm for restoring division. n- Restoring Division Algorithm p 1: Do the following n times: If the sign of A is 0, shift A and Q left position and subtract M from A; otherwise, shift A and Q left and ad Now, if the sign of A is 0, set q0 to 1; otherwise, set q0 to 0. p 2: If the Sign of A is 1, add M to A. 		BTL1
Define Exception Also called interrupt. An unscheduled event that disrupts execution; used to detect overflow.	program C204.2	BTL1
Define Interrupt An exception that comes from outside of the processor architectures use the term <i>interrupt</i> for all exceptions.)	or. (Some	BTL1
Multiplying 1000 _{ten} by 1001 _{ten} :	C204.2	BTL1
$\begin{array}{ccc} \textbf{Multiplicand} & 1000_{\text{ten}} \\ \textbf{Multiplier} & \times & \frac{1001_{\text{ten}}}{1000} \\ & & 0000 \end{array}$		
Product 0000 1000 1001000 _{ten}		

rite the multiplication algorithm.	C204.2	BTL1
Start	020112	DILI
-		
Multiplier0 = 1 1. Test Multiplier0 = 0 Multiplier0		
1a. Add multiplicand to product and		
place the result in Product register		
2. Shift the Multiplicand register left 1 bit		
3. Shift the Multiplier register right 1 bit		
•		
No: < 32 repetitions		
32nd repetition?		
Yes: 32 repetitions		
Done		
Divide 1,001,010 _{ten} by 1000 _{ten} :	C204.2	BTL1
1001. Ouotient		
1001 _{ten} Quotient		
Divisor 1000ten 1001010ten Dividend		
$\frac{-1000}{10}$		
101		
1010		
<u>-1000</u>		
10 _{ten} Remainder		

rite the division algorithm.	C204.2	BTL1
2a Shift the Quotient register to the left. setting the new rightmost bit to 1 (3. Shift the Divisor register right 1 bit (3. Shift the Divisor register right 1 bit (3. Shift the Divisor register right 1 bit (5. Shift the Divisor register right 1 bit) (5. Shift the Divisor register right 1 bit)		
DefineScientific notation A notation that renders numbers with a single digit to the left of the decimal point. $0.1_{ten} \times 10^{-8}$	C204.2	BTL1
Define Normalized notation A number in floating-point notation that has no leading 0s.	C204.2	BTL1
Define Overflow in floating-point. A situation in which a positive exponent becomes too large to fit in the exponent field.	C204.2	BTL1
Define Underflow infloating-point A situation in which a negative exponent becomes too large to fit in the exponent field	C204.2	BTL1

	Define Single						1		•					C204.2	BTI
	$^{\circ}$ A floa	ting-point s is the sig		.			~				ner	rative)			
	-	exponent											e sign		
	Ŭ	of the exp					-1,01			(11		ð •11			
	0	fraction is	s the 23-	bit nun	nber.										
31	30 29 28 27 26 25	24 23 22 21	20 19 18	17 16 15	14 13 1	2 11 10	98	7 6	54	3 2	1 0				
s	exponent				frac	tion									
1 bit	8 bits				23	0100								C204.0	DT
	Converting						_				1.2.1.			C204.2	BT
	31 30 29 28 27	Contraction Dates	Contractor of the second		Land to be a land		-	10110	the state	(Sec. 199	100	and the second s			
	1 1 0 0 0	0 0 0 1	0 1 0	0 0 0	0 0	0 0	0 0	0 0	0	0 0	0	00.	82 B)		
	Answer The sign bit i	s 1 the e	vnonent	field c	ontair	ns 120) ar	nd th	ne fr	acti	on f	ield co	ntains		
(-	$1 \times 2^{-2} = 1/4$, or $1)^{s} \times (1 + F)^{s}$	raction)	× 2 ^{(Expo}	nent-Bia	^{s)} = (-1) ¹	\times	(1 +	- 0.2	25)	$\times 2$	(129-127)		
						-1×									
					= -	-1.25	$5 \times$	4							
					= -	- 5.0									
														C204.2	BT
	Write $-0.75_{ten}(AP)$		-	preci	sion	b	inar	У	re	pres	sent	ation	of		
-	-0.75 _{ten} (AP	R/MAY2 0 24 23 22 21 2	0 18) 0 19 18 17	16 15 14	4 13 12	11 10	9 8	7 6	5	4 3	2 1	0	of		
-	-0.75 _{ten} (AP)	R/MAY2 0 24 23 22 21 2	0 18) 0 19 18 17	16 15 14	4 13 12) 0 0	11 10	9 8	7 6	5	4 3	2 1	0	of	22010	
1	-0.75 _{ten} (AP)	R/MAY20 24 23 22 21 2 1 0 1 0 0 ble precis	018) 0 19 18 17 0 0 0 0	16 15 14 0 0 0	4 13 12 0 0 0 2 prese	11 10 0 0 3 bits ntatio	9 8 0 0	7 e 0 c	0.7	4 3 0 0 5 _{ten}	2 1	0	of 022=1023)	C204.2	BT
1 1 bit	$-0.75_{ten}(AP)$ 30 29 28 27 26 25 0 1 1 1 1 1 8 bits Write doul $(=1)^{1} \setminus (1+.)$	R/MAY20 24 23 22 21 2 1 0 1 0 0 ble precis	018) 0 19 18 17 0 0 0 0 sion bin	16 15 14 0 0 0 ary rej	4 13 12 0 0 0 2 0000 (11 10 0 0 3 bits ntatio	9 8 0 0 0 0 0 0	7 e o c of —	0.7	4 3 0 0	2 1	0	of	C204.2	BT
1 1 bit	-0.75 _{ten} (AP)	R/MAY20 24 23 22 21 2 1 0 1 0 0 ble precis	018) 0 19 18 17 0 0 0 0 sion bin	16 15 14 0 0 0	4 13 12 0 0 0 2 0000 (11 10 0 0 3 bits ntatio	9 8 0 0 0 00 00	7 e 0 c	0.7	4 3 0 0 5 _{ten}	2 1	0	of	C204.2	BT
1 1 bit	$-0.75_{ten}(AP)$ 30 29 28 27 26 25 0 1 1 1 1 1 8 bits Write doul $(=1)^{1} \setminus (1+.)$	R/MAY20 24 23 22 21 2 1 0 1 0 0 ble precis	018) 0 19 18 17 0 0 0 0 sion bin	16 15 14 0 0 0 ary rej	4 13 12 0 0 0 2 0000 (11 10 0 0 3 bits ntatio	9 8 0 0 0 0 0 0	7 e o c of —	0.7	4 3 0 0	2 1	0	of	C204.2	BT
1 1 bit	$-0.75_{ten}(AP)$ 30 29 28 27 26 25 0 1 1 1 1 1 8 bits Write doul $(=1)^{1} \setminus (1+.)$	R/MAY20 24 23 22 21 2 1 0 1 0 0 ble precis	018) 0 19 18 17 0 0 0 0 sion bin	16 15 14 0 0 0 ary rej	4 13 12 0 0 0 2 0000 (11 10 0 0 3 bits ntatio	9 8 0 0 0 0 0 0	7 e o c of —	0.7	4 3 0 0	2 1	0	of	C204.2	BT
1 1 bit	$-0.75_{ten}(AP)$ 30 29 28 27 26 25 0 1 1 1 1 1 8 bits Write doul $(=1)^{1} \setminus (1+.)$	R/MAY20 24 23 22 21 2 1 0 1 0 0 ble precis	018) 0 19 18 17 0 0 0 0 sion bin	16 15 14 0 0 0 ary rej	4 13 12 0 0 0 2 0000 (11 10 0 0 3 bits ntatio 000 00 (1 10 9 0 0 0	9 8 0 0 0 0 0 0	7 e o c of —	0.7	4 3 0 0	2 1	0	of	C204.2	BT
1 1 bit 31 1 1 bit	$-0.75_{ten}(AP)$ 30 29 28 27 26 25 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R/MAY20 24 23 22 21 2 1 0 1 0 0 ble precis	018) 0 19 18 17 0 0 0 0 sion bin	16 15 14 0 0 0 ary rej	4 13 12 0 0 0 2 0000 (13 12 0 0	11 10 0 0 3 bits ntatio 000 00 (1 10 9 0 0 0	9 8 0 0 0 0 0 0	7 e o c of —	0.7	4 3 0 0	2 1	0	of 022=1023)	C204.2	BT
1 1 bit 31	$-0.75_{ten}(AP)$ 30 29 28 27 26 25 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R/MAY20 24 23 22 21 2 1 0 1 0 0 ble precis	018) 0 19 18 17 0 0 0 0 sion bin	16 15 14 0 0 0 ary rej	4 13 12 0 0 0 2 0000 (13 12 0 0	11 10 0 0 3 bits ntatio 000 00 (1 10 9 0 0 0	9 8 0 0 0 0 0 0	7 e o c of —	0.7	4 3 0 0	2 1	0	of	C204.2	BT
1 1 bit 31 1 bit	$-0.75_{ten}(AP)$ 30 29 28 27 26 25 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R/MAY20 24 23 22 21 2 1 0 1 0 0 ble precis	018) 0 19 18 17 0 0 0 0 sion bin 0 0000 00 19 18 17 1 0 0 0 0 0	16 15 14 0 0 0 ary rej	4 13 12 0 0 0 2 0000 (13 12 0 0	11 10 0 0 3 bits ntatio 000 00 (1 10 9 0 0 0	9 8 0 0 0 0 0 0	7 e o c of —	0.7	4 3 0 0	2 1	0	of	C204.2	BT

1. It simp 2. it simp will alv ncreases the ac	he advantages to represent number in IEEE format: lifies exchange of data that includes floating-point numbers; olifies the floating-point arithmetic algorithms to know that numbers ways be in this form; and ecuracy of the numbers that can be stored in a word, since the ry leading 0s are replaced by real digits to the right of the nt	C204.2	BTL1
	or floating point addition.(APR/MAY 2017) only four decimal digits of the significand and two decimal digits of Align the decimal point of the number that has the smaller exponent addition of the significands: This sum is not in normalized scientific notation, so adjust it: Since the significand can be only four digits long (excluding the sign), we round the number. truncate the number if the digit to the right of the desired point .	C204.2	BTL1

	PART-B		
Q. No.	Questions	со	Bloom' s Level
1	Explain the sequential version of Multiplication algorithm in detail with diagram hardware and examples (APRIL/MAY2015) (<i>Page.No:183-188</i>)	C204.2	BTL5
2	Discuss in detail about division algorithm in detail with diagram and examples(16)NOV/DEC15,NOV/DEC 2016,nov/dec 2017,APR/MAY2018 (<i>Page.No:189-196</i>)	C204.2	BTL6
3.	Explain how floating point addition is carried out in a computer system.Give example for a binary floating point addition(APRIL/MAY2015) (<i>Page.No:203-206</i>)	C204.2	BTL5
4.	Explain in detail about floating point multiplication(Page.No:206-211)	C204.2	BTL5
5.	Multiply the following pair of signed 2's complement numbers : A = 010111, B = 101100 (Refer notes.)	C204.2	BTL2
6.	Add the numbers 0.5 and -0.4375 using binary Floating point Addition algorithm(NOV/DEC 2017) (Refer notes.)	C204.2	BTL2
7.	. Multiply 1.10 10 X 101010 and 9.200X10 ⁻⁵ using binary Floating point multiplication (Refer notes.)	C204.2	BTL2
8.	Calculate the division of A and B A : 3.264×10^3 B: 6.52×10^2 (Refer notes.)	C204.2	BTL2
9.	Show the IEEE 754 binary representation of the number -0.75 in single and double precision (Refer notes.)	C204.2	BTL2

PART-B

10.	Briefly explain Carry lookahead adder(NOV/DEC2014) (6)	C204.2	BTL2
11.	(<i>Page.No:718-719</i>) Multiply the following pair of signed nos.using Booth's bit –pair recoding of the multiplier A=+13 (multiplicand) and b=-6(multiplier) (NOV/DEC2014)	C204.2	BTL2
12.	(Refer notes.) Discuss in detail about multiplication algorithm with suitable examples and diagram(16)NOV/DEC 15 (<i>Page.No:183-188</i>)	C204.2	BTL6
13.	Explain briefly about floating point addition and subtraction algorithms.(16) MAY/JUNE 16 (<i>Page.No:203-206</i>)	C204.2	BTL5
14.	Explain Booth Multiplication algorithm with suitable example(16) MAY/JUNE2016,NOV/DEC 2016 (Refer notes)	C204.2	BTL5
15.	What is the disadvantage of ripple carry addition and how it is overcome in carry look ahead adder and draw the logic circuit CLA. NOV/DEC 2016 (<i>Page.No:708-710</i>)	C204.2	BTL1

PART-A

•

Q. No.	Questions	СО	Bloom' s Level
	What is pipelining? The technique of overlapping the execution of successive instruction for substantial improvement in performance is called pipelining.	C204.3	BTL1
	What is and precise exception?	C204.3	BTL1
	A precise exception is one in which all instructions prior to the faulting instruction are complete and instruction following the faulting instruction,		

including the faulty instruction; do not change the state of the machine.		
Define processor cycle in pipelining.	C204.3	BTL1
The time required between moving an instruction one step down the pipeline is a processor cycle.		
What is meant by pipeline bubble?(NOV/DEC 2016)	C204.3	BTL1
To resolve the hazard the pipeline is stall for 1 clock cycle. A stall is commonly called a pipeline bubble, since it floats through the pipeline taking space but carrying no useful work.		
What is pipeline register delay?	C204.3	BTL1
Adding registers between pipeline stages me adding logic between stages and setup and hold times for proper operations. This delay is known as pipeline register delay.		
What are the major characteristics of a pipeline?	C204.3	BTL6
The major characteristics of a pipeline are:		
1. Pipelining cannot be implemented on a single task, as it works by splitting multiple tasks into a number of subtasks and operating on them simultaneously.		
The speedup or efficiency achieved by suing a pipeline depends on the number of pipe stages and the number of available tasks that can be subdivided		
What is data path?(NOV/DEC 2016,APR/MAY2018)	C204.3	BTL6
As instruction execution progress data are transferred from one instruction to another, often passing through the ALU to perform some arithmetic or logical operations. The registers, ALU, and the interconnecting bus are collectively referred as the data path.		
What is a pipeline hazard and what are its types?	C204.3	BTL1
Any condition that causes the pipeline to stall is called hazard. They are also called as stalls or bubbles. The various pipeline hazards are:		
Hazard Control Hazard		
What is Instruction or control hazard?	C204.3	BTL1
The pipeline may be stalled because of a delay in the availability of an instruction. For example, this may be a result of a miss in the cache, requiring the instruction to be fetched from the main memory. Such hazards are often called control hazards or instruction hazard.		

	1	[
Define structural hazards.	C204.3	BTL1
This is the situation when two instruction require the use of a given hardware		
resource at the same time. The most common case in which this hazard may arise		
is in access to memory		
What is side effect?	C204.3	BTL1
When a location other than one explicitly named in an instruction as a destination		
operand is affected, the instruction is said to have a side effect		
What do you mean by branch penalty?	C204.3	BTL1
The time lost as a result of a branch instruction is often referred to as branch		
penalty		
What is branch folding?	C204.3	BTL1
When the instruction fetch unit executes the branch instruction concurrently		
with the execution of the other instruction, then this technique is called branch		
folding.		
Will of the survey of the delayed because the an	C204.3	DTI 1
What do you mean by delayed branching?	C204.5	BTL1
Delayed branching is used to minimize the penalty incurred as a result of		
conditional branch instruction. The location following the branch instruction is		
called delay slot. The instructions in the delay slots are always fetched and they are		
arranged such that they are fully executed whether or not branch is taken. That is		
branching takes place one instruction later than where the branch instruction		
appears in the instruction sequence in the memory hence the name delayed		
branching		
Define exception and interrupt.	C204.3	BTL1
Dec 2012,NOV/DEC		
14,MAY/JUNE		
2016,APR/MAY2018))		
Exception:		
The term exception is used to refer to any event that causes an interruption.		
Interrupt:		
An exception that comes from outside of the processor. There are two		
types of interrupt.		
1. Imprecise interrupt and 2.Precise interrupt		

Why is branch prediction algorithm needed? Differentiate between the static and dynamic techniques. (May 2013,APR/MAY 2015,NOV/DEC 15)	C204.3	BTL1
The branch instruction will introduce branch penalty which would reduce the gain in performance expected from pipelining. Branch instructions can be handled in several ways to reduce their negative impact on the rate of execution of instructions. Thus the branch prediction algorithm is needed.		
Static Branch prediction		
The static branch prediction, assumes that the branch will not take place and to continue to fetch instructions in sequential address order.		
Dynamic Branch prediction		
The idea is that the processor hardware assesses the likelihood of a given branch being taken by keeping track of branch decisions every time that instruction is executed. The execution history used in predicting the outcome of a given branch instruction is the result of the most recent execution of that instruction.		
What is branch Target Address?	C204.3	BTL1
The address specified in a branch, which becomes the new program counter, if the branch is taken. In MIPS the branch target address is given by the sum of the offset field of the instruction and the address of the instruction following the branch		
How do control instructions like branch, cause problems in a pipelined processor? Pipelined processor gives the best throughput for sequenced line instruction. In branch instruction, as it has to calculate the target address, whether the instruction jump from one memory location to other. In the meantime, before calculating the larger, the next sequence instructions are got into the pipelines, which are rolled back, when target is calculated.	C204.3	BTL1
What is meant by super scalar processor? Super scalar processors are designed to exploit more instruction level parallelism in user programs. This means that multiple functional units are used. With such an arrangement it is possible to start the execution of several instructions in every clock cycle. This mode of operation is called super scalar execution.	C204.3	BTL1
Define pipeline speedup. [APR/MAY 2012] (A.U.NOV/DEC 2012) Speed up is the ratio of the average instruction time without pipelining to the average instruction time with pipelining. Average instruction time	C204.3	BTL1

What is Vectorizer? The process to replace a block of sequential code by vector instructions is	C204.3	BTL1
called vectorization. The system software, which generates parallelism, is called as vectorizing compiler.		
What is pipelined computer?	C204.3	BTL1
When hardware is divided in to a number of sub units so as to perform the sub operations in an overlapped fashion is called as a pipelined computer.		
List the various pipelined processors. 8086, 8088, 80286, 80386. STAR 100, CRAY 1 and CYBER 205 etc	C204.3	BTL1
Classify the pipeline computers. Based on level of processing → processor pipeline, instruction pipeline, arithmetic pipelines	C204.3	BTL1
Based on number of functions \rightarrow Uni-functional and multi functional pipelines.Based on the configuration \rightarrow Static and Dynamic pipelines and linear and non		
linear pipelines		
Based on type of input \rightarrow Scalar and vector pipelines. Asf		
Define Pipeline speedup. (Nov/Dec 2013) The ideal speedup	C204.3	BTL1
from a pipeline is equal to the number of stages in the pipeline.		
Time per instruction on unpipelined machine		
Number of pipe stages		
Write down the expression for speedup factor in a pipelined architecture. [MAY/JUNE '11] The speedup for a pipeline computer is $S = (k + n - 1)$ tp	C204.3	BTL1
Where, $K \rightarrow$ number of segments in a pipeline, $N \rightarrow$ number of instructions to be executed. Tp \rightarrow cycle time		

Resource conflicts → Caused by access to the memory by two at the same time. Most of the conflicts can be resolved by using separate instruction and data memories. Data dependency → Arises when an instruction depends on the results of the previous instruction but this result is not yet available. Branch difficulties → Arises from branch and other instruction that change the value of PC (Program Counter). C What is meant by vectored interrupt? (Nov/Dec 2013) C An interrupt for which the address to which control is transferred is determined by the cause of the exception. C What is the need for speculation?NOV/DEC 2014 C One of the most important methods for finding and exploiting more ILP is C	C204.3 C204.3	BTL1 BTL1
data memories. Data dependency → Arises when an instruction depends on the results of the previous instruction but this result is not yet available. Branch difficulties → Arises from branch and other instruction that change the value of PC (Program Counter). What is meant by vectored interrupt? (Nov/Dec 2013) C Max An interrupt for which the address to which control is transferred is determined by the cause of the exception. C What is the need for speculation?NOV/DEC 2014 C One of the most important methods for finding and exploiting more ILP is C		BTL1
previous instruction but this result is not yet available. Branch difficulties → Arises from branch and other instruction that change the value of PC (Program Counter). What is meant by vectored interrupt? (Nov/Dec 2013) C An interrupt for which the address to which control is transferred is determined by the cause of the exception. C What is the need for speculation?NOV/DEC 2014 C One of the most important methods for finding and exploiting more ILP is C		BTL1
Branch difficulties → Arises from branch and other instruction that change the value of PC (Program Counter). What is meant by vectored interrupt? (Nov/Dec 2013) C An interrupt for which the address to which control is transferred is determined by the cause of the exception. C What is the need for speculation?NOV/DEC 2014 C One of the most important methods for finding and exploiting more ILP is C		BTL1
What is meant by vectored interrupt? (Nov/Dec 2013) C An interrupt for which the address to which control is transferred is determined by the cause of the exception. C What is the need for speculation?NOV/DEC 2014 C One of the most important methods for finding and exploiting more ILP is C		BTL1
An interrupt for which the address to which control is transferred is determined by the cause of the exception. What is the need for speculation?NOV/DEC 2014 C One of the most important methods for finding and exploiting more ILP is C		BTL1
by the cause of the exception. Image: Comparison of the most important methods for finding and exploiting more ILP is One of the most important methods for finding and exploiting more ILP is	<u>C204.2</u>	
One of the most important methods for finding and exploiting more ILP is	C204.2	
	C204.3	BTL3
speculation. It is an approach whereby the compiler or processor guesses the outcome of an instruction to remove it as dependence in executing other instructions. For example, we might speculate on the outcome of a branch, so that instructions after the branch could be executed earlier. Speculation (also known as <i>speculative loading</i>), is a process implemented in Explicitly Parallel Instruction Computing (EPIC) processors and their compiler s to reduce processor-memory exchanging bottlenecks or latency by putting all the data into memory in advance of an actual load instruction		
Define Imprecise, Precise interrupt C Imprecise interrupt	C204.3	BTL1
Also called imprecise exception. Interrupts or exceptions in pipelined computers that are not associated with the exact instruction that was the cause of the interrupt or exception. Precise interrupt		
Also called precise exception. An interrupt or exception that is always associated with the correct instruction in pipelined computers		
What are the advantages of pipelining?MAY/JUNE 2016 C	C204.3	BTL1
The cycle time of the processor is reduced; increasing the instruction throughput.Some combinational circuits such as adders or multipliers can be made faster by adding more circuitry. If pipelining is used instead, it can save circuitry vs. a more complex combinational circuit.		
What is Program counter (PC)(Fetching) C	C204.3	BTL1
The register containing the address of the instruction in the program being executed		

What is Adder: An adder is need an ALU wired to always	led to compute the next i add its two 32-bit input			C204.3	BTL1
What is Register file(de A state element written by supplying a re	that consists of a set		be read and	C204.3	BTL1
the original data iten	ata path. Size of a data item by rep n in the high-order bits o I the 16-bit offset field in	f the larger, destination	on data item.	C204.3	BTL1
lower 26 bits of the	operates by replacing th instruction shifted left by complishes this shift			C204.3	BTL1
What is Delayed branch A type of branch where executed, independent of	the instruction immediat f whether the branch con	dition is true or false.	nch is always	C204.3	BTL1
What are the contr	ol lines of MIPS function	Function AND OR		C204.3	BTL1
	0010 0110	add sub			

An element of a logical function in which the output does not depend on the values of all the inputs C204.3 What are the Function of seven control lines? C204.3 Signal name Effect when deasserted Effect when asserted RegDst The register destination number for the Write register comes from the rt field (bits 20:16). The register on the Write register input is written with the value on the Write register input is written with the value on the Write data input. ALUSrc The second ALU operand comes from the second register file output (Read data 2). PCSrc The PC is replaced by the output of the adder that computes the value of PC + 4. MemRead None. Data memory contents designated by the address input are put on the Read data output. MemWrite None. Data memory contents designated by the value on	Define Don'i	t-care term		C204.3	B
Signal nameEffect when deassertedEffect when assertedRegDstThe register destination number for the Write register comes from the rt field (bits 20:16).The register destination number for the Write register comes from the rt field (bits 20:16).RegWriteNone.The register on the Write register input is written with the value on the Write data input.ALUSrcThe second ALU operand comes from the second register file output (Read data 2).The second ALU operand is the sign- extended, lower 16 bits of the instruction.PCSrcThe PC is replaced by the output of the adder that computes the value of PC + 4.The PC is replaced by the output of the address input are put on the Read data output.MemReadNone.Data memory contents designated by the address input are replaced by the value on	An e	element of a logical function in wl	hich the output does not depend on		
nameEffect when deassertedEffect when assertedRegDstThe register destination number for the Write register comes from the rt field (bits 20:16).The register destination number for the Write register comes from the rt field (bits 20:16).RegWriteNone.The register on the Write register input is written with the value on the Write data input.ALUSrcThe second ALU operand comes from the second register file output (Read data 2).The second ALU operand is the sign- extended, lower 16 bits of the instruction.PCSrcThe PC is replaced by the output of the adder that computes the value of PC + 4.The PC is replaced by the output of the address input are put on the Read data output.MemReadNone.Data memory contents designated by the address input are replaced by the value on	What are	the Function of seven control lin	nes?	C204.3	B
Write register comes from the rt field (bits 20:16).register comes from the rd field (bits 15:11).RegWrite None.None.The register on the Write register input is written with the value on the Write data input.ALUSrcThe second ALU operand comes from the second register file output (Read data 2).The second ALU operand is the sign- extended, lower 16 bits of the instruction.PCSrcThe PC is replaced by the output of the adder that computes the value of PC + 4.The PC is replaced by the output of the that computes the value of PC + 4.MemReadNone.Data memory contents designated by the address input are put on the Read data output.MemWriteNone.Data memory contents designated by the address input are replaced by the value on		Effect when deasserted	Effect when asserted		
ALUSrcThe second ALU operand comes from the second register file output (Read data 2).The second ALU operand is the sign- extended, lower 16 bits of the instruction.PCSrcThe PC is replaced by the output of the adder that computes the value of PC + 4.The PC is replaced by the output of the adder that computes the branch target.MemReadNone.Data memory contents designated by the address input are put on the Read data output.MemWriteNone.Data memory contents designated by the address input are replaced by the value on	RegDst	Write register comes from the rt field			
second register file output (Read data 2). extended, lower 16 bits of the instruction. PCSrc The PC is replaced by the output of the adder that computes the value of PC + 4. The PC is replaced by the output of the adder that computes the value of PC + 4. MemRead None. Data memory contents designated by the address input are put on the Read data output. MemWrite None. Data memory contents designated by the address input are replaced by the value on	RegWrite	None,			
adder that computes the value of PC + 4. that computes the branch target. MemRead None. Data memory contents designated by the address input are put on the Read data output. MemWrite None. Data memory contents designated by the address input are replaced by the address input are replaced by the value on	ALUSrc				
MemWrite None. Data memory contents designated by the address input are replaced by the value on	PCSrc				
address input are replaced by the value on	MemRead	None.			
and trine data types	MemWrite	None.			
MemtoReg The value fed to the register Write data input comes from the ALU. The value fed to the register Write data input comes from the data memory.	MemtoReg				

common case fast.		
common cube rust.		
	0204.2	
What is Structural hazard?	C204.3	BTL1
When a planned instruction cannot execute in the proper clock cycle		
because the hardware does not support the combination of instructions that are set		
to execute.		
If there is a single memory instead of two memories. If the pipeline had a		
fourth instruction, that in the same clock cycle the first instruction is accessing		
data from memory while the fourth instruction is fetching an instruction from that		
same memory. Without two memories, pipeline could have a structural hazard.		
<u>To avoid structural hazards</u>		
• When designing a pipeline designer can change the design		
 By providing sufficient resources	C204.2	
Define Data Hazards(APR/MAY 2017)	C204.3	BTL1
Data hazard is also called a pipeline data hazard . When a planned		
instruction cannot execute in the proper clock cycle because data that is needed to		
execute the instruction is not yet available.		
• In a computer pipeline, data hazards arise from the dependence of one		
instruction on an earlier one that is still in the pipeline		
• <u>Example:</u>		
add instruction followed immediately by a subtract instruction that uses the sum $(\$_2 \circ 0)$:		
uses the sum ($\$s0$):		
add\$s0, \$t0, \$t1		
sub\$t2, \$s0, \$t3		
Define data Forwarding	C204.3	BTL1
Define data Forwarding	0204.5	DILI
Forwarding is also called as bypassing . A method of resolving a data because hyperbolic resolving the missing data alament from internal buffers rather than		
hazard by retrieving the missing data element from internal buffers rather than		
waiting for it to arrive from programmer-visible registers or memory.		
Define load-use data hazard	C204.3	BTL1
A specific form of data hazard in which the data being loaded by a load		
instruction has not yet become available when it is needed by another		
instruction		

Define Pipeline stall	C204.3	BTL1
Pipeline stall is also called as bubble . A stall initiated in order to resolve a		
hazard.		
Program execution order Time 200 400 600 800 1000 1200 1400 (in instructions) IF ID IF WB IF ID IF <td>C204.3</td> <td>BTL1</td>	C204.3	BTL1
instruction that was fetched is not the one that is needed; that is, the flow of instruction addresses is not what the pipeline expected.		
What are the Schemes for resolving control hazards ?	C204.3	BTL1
1. Assume Branch Not Taken:		
2. Reducing the Delay of Branches:		
3. Dynamic Branch Prediction:		
Define Branch delay slot	C204.3	BTL1
The slot directly after a delayed branch instruction, which in the MIPS architecture is filled by an instruction that does not affect the branch.	204.3	DILI
Define Correlating , Tournament branch predictor	C204.3	BTL1
Correlating predictor A branch predictor that combines local behavior of a particular branch and global information about the behavior of some recent number of executed branches.		
Tournament branch predictor A branch predictor with multiple predictions for each branch and a		
selection mechanism that chooses which predictor to enable for a given branch		

	Name control signal to perform arithmetic operation.(APR/MAY 2017) 1.Regdst 2.Regwrite 3.ALU Src	C204.3	BTL1
52	what is ideal cycle per instruction in pipelining?(APR/MAY 2018) With pipelining, a new instruction is fetched every clock cycle by exploiting instruction-level parallelism, therefore, since one could theoretically have five instructions in the five pipeline stages at once (one instruction per stage), a different instruction would complete stage 5 in every clock cycle	C204.3	BTL1

PART-B

Q. No.	Questions	СО	Bloom' s Level
1	Explain the basic MIPS implementation with binary multiplexers and control lines(16) NOV/DEC 15 (<i>Page.No:</i> 244-251)	C204.3	BTL5
2.	What is hazards ?Explain the different types of pipeline hazards with suitable examples.(NOV/DEC2014,APRIL/MAY2015,MAY/JUNE 2016,NOV/DEC2017) (<i>Page.No:303-324</i>)	C204.3	BTL5
3.	Explain how the instruction pipeline works. What are the various situations where an instruction pipeline can stall? Illustration with an example? NOV/DEC 2015,NOV/DEC 2016. (<i>Page.No:301-302</i>)	C204.3	BTL5
4.	Explain data path in detail(NOV/DEC 14,NOV/DEC2017) (Page.No:251-259)	C204.3	BTL5
5.	Explain dynamic branch prediction .(Page.No:321-323)	C204.3	BTL5
6.	Explain in detail How exceptions are handled in MIPS architecture.(APRIL/MAY2015) .(<i>Page.No:</i> 325-332)	C204.3	BTL5
7.	Explain in detail about building a datapath(NOV/DEC2014 (<i>Page.No:251-259</i>)	C204.3	BTL5
8.	Explain in detail about control implementation scheme(APR/MAY 2018) (<i>Page.No</i> :259-271)	C204.3	BTL5

9.	What is pipelining?Discuss about pipelined datapath and control(16) MAY/JUNE2016 (<i>Page.No</i> :286-303)	C204.3	BTL6
10.	Why is branch prediction algorithm needed?Differentiate between static and dynamic techniques?NOV/DEC 2016 .(<i>Page.No:321-323</i>)	C204.3	BTL3
11.	Design a simple path with control implementation and explain in detail(MAY/JUN 2018) (<i>Page.No:251-271</i>)	C204.3	BTL6
12.	Discuss the limitation in implementing the processor path. Suggest the methods to overcome them(NOV/DEC 2018) (Refer notes)	C204.3	BTL6
13.	When processor designers consider a possible improvement to the processor datapath, the decision usually depends on the cost/performance trade-off . In the following three problems, assume that we are starting with a datapath where I-Mem, Add, Mux, ALU, Regs, D-Mem, and Control blocks have latencies of 400 ps, 100 ps, 30 ps, 120 ps, 200 ps, 350 ps, and 100 ps, respectively, and costs of 1000, 30, 10, 100, 200, 2000, and 500, respectively.Consider the addition of a multiplier to the ALU. Th is addition will add 300 ps to the latency of the ALU and will add a cost of 600 to the ALU. Th e result will be 5% fewer instructions executed since we will no longer need to emulate the MUL instruction. 1 What is the clock cycle time with and without this improvement? 2 What is the speedup achieved by adding this improvement? 3 Compare the cost/performance ratio with and without this improvement. (Refer notes)	C204.3	BTL5
14.	For the problems in this exercise, assume that there are no pipeline stalls and that the breakdown of executed instructions is as follows: add addi not beq lw sw 20% 20% 0% 25% 25% 10% 14.1 In what fraction of all cycles is the data memory used? 14.2 In what fraction of all cycles is the input of the sign-extend circuit needed? What is this circuit doing in cycles in which its input is not needed? (Refer notes)	C204.3	BTL3
15.	Consider the following loop. loop:lw r1,0(r1) and r1,r1,r2 lw r1,0(r1) lw r1,0(r1) beq r1,r0,loop Assume that perfect branch prediction is used (no stalls due to control hazards),that there are no delay slots, and that the pipeline has full forwarding support. Also assume that many iterations of this loop are executed before the loop exits. (Refer notes)	C204.3	BTL3

. <u>PART-A</u>

Q. No.	Questions	СО	Bloom' s Level
	What is Instruction level parallelism?NOV/DEC 2015,NOV/DEC 2016, .(APR/MAY 2017) ILP is a measure of how many of the operations in a computer program can be performed simultaneously. The potential overlap among instructions is called instruction level parallelism	C204.4	BTL1
	 What are the various types of Dependences in ILP. Data Dependences Name Dependences Control Dependences 	C204.4	BTL1
	What is multiprocessors? Mention the categories of multiprocessors? Multiprocessor is the use of two or more central processing units (CPUs) within a single computer system. It is used to increase performance and improve availability. The different categories are SISD, SIMD, MIMD	C204.4	BTL1
	Define Static multiple issue and Dynamic multiple issue. Static multiple issue - An approach to implementing a multiple-issue processor where manydecisions are made by the compiler before execution. Dynamic multiple issue - An approach to implementing a multiple-issue processor wheremany decisions are made during execution by the processor.	C204.4	BTL1
	What is Speculation? An approach whereby the compiler or processor guesses the outcome of an instruction to remove it as dependence in executing other instructions	C204.4	BTL1
	Define Use latency. Number of clock cycles between a load instruction and an instruction that can use the result of the load with-out stalling the pipeline	C204.4	BTL6

What is Loop unrolling?	C204.4	BTL6
A technique to get more performance from loops that access arrays, in which multiple copies of the loop body are made and instructions from different iterations are scheduled together		
Define Register renaming. The renaming of registers by the compiler or hardware to remove anti-dependences	C204.4	BTL1
What is Superscalar and Dynamic pipeline schedule? Superscalar-An advanced pipelining technique that enables the processor to execute morethan one instruction per clock cycle by selecting them during execution. Dynamic pipeline schedule-Hardware support for reordering the order of instructionexecution so as to avoid stalls.	C204.4	BTL1
Define Commit unit. The unit in a dynamic or out-of-order execution pipeline that decides when it is safe to release the result of an operation to programmer visible registers and memory	C204.4	BTL1
What is Reservation station? A buffer within a functional unit that holds the operands and the operation.	C204.4	BTL1
Define Reorder buffer? The buffer that holds results in a dynamically scheduled processor until it is safe to store the results to memory or a register	C204.4	BTL1
Define Out of order execution. A situation in pipelined execution when an instruction blocked from executing does not cause the following instructions to wait	C204.4	BTL1
What is In order commit? A commit in which the results of pipelined execution are written to the programmer visible state in the same order that instructions are fetched	C204.4	BTL1
. Define Strong scaling and weak scaling. APRIL/MAY 2015,NOV/DEC2017 Strong scaling Speed-up achieved on a multi-processor without increasing the size of the problem. Weak scaling. Speed-up achieved on a multi-processor while increasing the size of the problem. Speed-up achieved on a multi-processor while increasing the size of the problem proportionally to the increase in the number of processors.	C204.4	BTL1

Define Single Instruction, Single Data stream(SISD)A sequential computer which exploits no parallelism in data streams. Single control unit (CU) fetches single from memory. The CU then generates appropriate a single processing element (PE) to operate on single D operation at a time.Examples of SISD architecture are the traditional unipu PC	n either the instruction or Instruction Stream (IS) control signals to direct bata Stream (DS) i.e. one	BTL1
Define Single Instruction, Multiple Data streams Instruction,Single Data stream (MISD). Single Instruction, Multiple Data streams (SIMD) A computer which exploits multiple data streams aga stream to perform operations which may be natu example, an array processor or GPU.	ainst a single instruction	BTL1
Define Multiple Instruction, Multiple Data stream program multiple data streams .Multiple Instruction, Multiple Data streams (MIMI Multiple autonomous processors simultaneously instructions on different data. Distributed systemsare be MIMD architectures; either exploiting a single sha distributed memory space. A multi-coresuperscalar processor.	D) y executing different generally recognized to ared memory space or a	BTL1
Single program multiple data streams : Multiple autonomous processors simultaneously exec on different data.	uting the same program	
Define multithreading.(NOV/DEC2014,NOV/DE Multithreading is the ability of a program or an o more than one user at a time and to manage multip without the need to have multiple copies of the p the computer. To support this, central processin support to efficiently execute multiple threads	operating system to serve ble simultaneous requests programs running within	BTL1
What are Fine grained multithreading and Coarse g multithreading?MAY/JUNE 2016,NOV/DEC2017 Fine grained multithreading Switches between threads on each instruction, cau multiples threads to be interleaved, - Usually done in a round-robin fashior	using the execution of	BTL1

threads - CPU must be able to switch threads every clock		
Coarse grained multithreading Switches threads only on costly stalls, such as L2 cache misses		
What is multiple issue? Write any two approaches.Multiple issue is a scheme whereby multiple instructions are launched in one clock cycle. It is a method for increasing the potential amount of instruction level parallelism. It is done by replicating the internal components of the computer so that it can launch multiple instructions in every pipeline stage The two approaches are: 1. Static multiple issue (at compile time) 2. Dynamic multiple issue (at run time)	-	BTL1
What is meant by speculation? what is the need for speculation(NOV/DEC2014)	C204.4	BTL1
One of the most important methods for finding and exploiting more ILP is speculation. It is an approach whereby the compiler or processor guesses the outcome of an instruction to remove it as dependence in executing other instructions. For example, we might speculate on the outcome of a branch, so that instructions after the branch could be executed earlier. Speculation (also known as <i>speculative loading</i>), is a process implemented in Explicitly Parallel Instruction Computing (EPIC) processors and their compiler s to reduce processor-memory exchanging bottlenecks or latency by putting all the data into memory in advance of an actual load instruction		
Define – Static Multiple Issue Static multiple issue is an approach to implement a multiple-issue processor where many decisions are made by the compiler before execution.	. C204.4	BTL1
What is meant by anti-dependence? How is it removed? Anti-dependence is an ordering forced by the reuse of a name, typically a register rather than by a true dependence that carries a value between two instructions. It is also called as name dependence. Register renaming is the technique used to remove anti-dependence in which the registers are renamed by the compiler or hardware	5	BTL1
What is meant by loop unrolling? An important compiler technique to get more performance from loops is loop unrolling, where multiple copies of the loop body are made. After unrolling, there is more ILP available by overlapping instructions from different iterations		BTL1

Differentiate UMA from NUMA. (APRIL/MAY2015) Uniform memory access (UMA) is a multiprocessor in which latency to any word in main memory is about the same no matter which processor requests the access. Non uniform memory access (NUMA) is a type of single address space multiprocessor in which some memory accesses are much faster than others depending on which processor asks for which word.	C204.4	BTL1
What is flynn'sclassification?NOV/DEC 2014,NOV/DEC2017,APR/MAY 2018) Michael Flynn proposed a classification for computer architectures based on the number of instruction steams and data streams Single Instruction, Single Data stream (SISD) Single instruction, multiple data (SIMD) Multiple instruction, single data(MISD) Multiple instruction, multiple data(MIMD)	C204.4	BTL1
Define A super scalar processor? NOV/DEC 2015 Super scalar processors are designed to exploit more instruction level parallelism in user programs. This means that multiple functional units are used. With such an arrangement it is possible to start the execution of several instructions in every clock cycle. This mode of operation is called super scalar execution.	C204.4	BTL1
state the need for Instruction Level Parallelism?MAY/JUNE 2016Instruction-level parallelism (ILP-) is a measure of how many of the operationsin a computer program can be performed simultaneously. The potential overlapamong instructions is called instruction level parallelism. There are two approachesto instruction level parallelism: Hardware ,Software	C204.4	BTL3
What are symmetric multi-core processor and asymmetric multi-core processor? A symmetric multi-core processor is one that has multiple cores on a single chip, and all of those cores are identical. Example: Intel Core In an asymmetric multi-core processor, the chip has multiple cores onboard, but the cores might be different designs. Each core will have different capabilities		BTL1
Define Multicore processors. A multi-core processor is a processing system composed of two or more independent cores. The cores are typically integrated onto a single integrated circuit die or they may be integrated onto multiple dies in a single chip package.	C204.4	BTL1

		C204.4	
	Define cluster. Group of independent servers (usually in close proximity to one another) interconnected through a dedicated network to work as one centralized data processing resource. Clusters are capable of performing multiple complex instructions by distributing workload across all connected servers. Clustering improves the system's availability to users, its aggregate performance, and overall tolerance to faults and component failures. A failed server is automatically shut down and its users are switched instantly to the other servers	C204.4	BTL1
	What is ware scale computer? A cluster is a collection of desktop computers or servers connected together by a local area network to act as a single larger computer. A warehouse-scale computer (WSC) is a cluster comprised of tens of thousands of servers	C204.4	BTL1
	Whatismessagepassingmultiprocessor?Message passing systems provide alternative methods for communication and movement of data among multiprocessors (compared to shared memorymultiprocessor systems). A message passing system typically combines local memory and processor at each node of the interconnection network.	C204.4	BTL1
• d f f c S h e	 What are thePros and Cons of Message Passing Message sending and receiving is much slower than addition, for example But message passing multiprocessors are much easier for hardware designers to design – Don't have to worry about cache coherency for example • The advantage for programmers is that communication is explicit, so there are fewer "performance surprises" than with the implicit communication in cache-coherent SMPs. – Message passing standard MPI (www.mpi-forum.org) • However, its harder to port a sequential program to a message passing multiprocessor since every communication must be identified in advance. – With cache-coherent shared	C204.4	BTL1
I E I I I I I I I I I I I I I I I I I I	Differentiate Explicit threads Implicit Multithreading(apr/may2017) Explicit threads User-level threads which are visible to the application program and kernel- level threads which are visible only to operating system, both are referred to as explicit threads. Implicit Multithreading Implicit Multithreading refers to the concurrent execution of multiple threads extracted from a single sequential program. Explicit Multithreading refers to the concurrent executions from different explicit threads, either by interleaving instructions from different threads on shared pipelines or by parallel execution on parallel pipelines	C204.4	BTL1

What are the advantages of Speculation?	C204.4	
 Speculating on certain instructions may introduce exceptions that were formerly not present. Example a load instruction is moved in a speculative manner, but the address it uses is not legal when the speculation is incorrect. Compiler-based speculation, such problems are avoided by adding special speculation support that allows such exceptions to be ignored until it is clear that they really should occur. In hardware-based speculation, exceptions are simply buffered until it is clear that the instruction causing them is no longer speculative and is ready to complete; at that point the exception is raised, and nor-mal exception handling proceeds. Speculation can improve performance when done properly and decrease performance when done carelessly. 		BTL1
Define issue packet The set of instructions that issues together in one clock cycle; the packet may be determined statically by the compiler or dynamically by the processor	C204.4	BTL1
State Very Long Instruction Word (VLIW) A style of instruction set architecture that launches many operations that are defined to be independent in a single wide instruction, typically with many separate opcode fields	C204.4	BTL1
Define use latency. Number of clock cycles between a load instruction and an instruction that can use the result of the load without stalling the pipeline.	C204.4	BTL1
Define Name Dependence /Antidependence It is an ordering forced by the reuse of a name, typically a register, rather than by a true dependence that carries a value between two instructions.	C204.4	BTL1
What are the Advantages of register renaming? Renaming the registers during the unrolling process allows the compiler to move these independent instructions subsequently so as to better schedule the code. The renaming process eliminates the name dependences, while preserving the true dependences. .	C204.4	BTL1

Write down the difference between this simple superscalar	and a VLIW C204.4	
processor:		
• The code, whether scheduled or not, is guaranteed by the execute correctly.		
 The compiled code always run correctly independent of or pipeline structure of the processor. In some VLIW designs, recompilation was required across different processor models. 		BTL1
 In other static issue processors, code would run co different implementations, but often so poorly. 	rrectly across	
Give examples of each dependence in ILP	C204.4	
Data Dependence		
• ReadAfterWrite(RAW)		
Instruction j triesto read operand beforeiInstructies it		
I: add r1,r2,r3		
J: sub r4,r1,r3		
anti-dependence		
Instr _J writes operand <u>before</u> Instr _I reads it		BTL1
I: sub r4,r1,r3		
J: add r1,r2,r3		
K: mul r6,r1,r7 output dependence		
Instr _J writes operand <u>before</u> Instr _I writes it.		
I: sub r1,r4,r3		
J: add r1,r2,r3		
K: mul r6,r1,r7		
List the Advantages of Dynamic Scheduling	C204.4	
1. It uses hardware-based speculation, especially for branch		
predicting the direction of a branch, a dynamically schedu	-	
can continue to fetch and execute instructions along the p		
Because the instructions are committed in order.A	*	
dynamically scheduled pipeline can also support specula		
addresses, allowing load-store reordering, and using the co		
avoid incorrect speculation.		
2. Not all stalls are predictable; in particular, cache miss	es can cause	
unpredictable stalls. Dynamic scheduling allows the proc	essor to hide	BTL1
some of those stalls by continuing to execute instructions wh	ile waiting for	DILI
the stall to end.		
3. If the processor speculates on branch outcomes using dy		
prediction, it cannot know the exact order of instructions at		
since it depends on the predicted and actual behavior of brand		
4. As the pipeline latency and issue width change from one in		
to another, the best way to compile a code sequence also chan	-	
5. Old code will get much of the benefit of a new implementation	on without the	
need for recompilation.		

Winita da	wn the Speed-up (Performance Improvement) equation.	C204.4	
	It tells us how much faster a task can be executed using the machine with the enhancement as compare to the original machine. It is defined as Speedup = Performance for entire task using improved machine Performance for entire task using old machine or Speedup = Fraction _{enhanced} (F _e)	.204.4	BTL1
Advanta; • I • I • I • S Disadvar • S • I • I • I • I • S • I • S • I • S • S • S • S • S • S • S • S	e the advantages and disadvantages of SIMD. ges of SIMD Reduces the cost of control unit over dozens of execution units. It has reduced instruction bandwidth and program memory. It needs only one copy of the code that is being executed simultaneously. SIMD works best when dealing with arrays in 'for' loops. Hence, for barallelism to work in SIMD, there must be a great deal of identically structured data, which is called data-level parallelism. Intages of SIMD SIMD is at its weakest in case or switch statements, where each execution unit must perform a different operation on its data, depending on what data t has. Execution units with the wrong data are disabled, so that units with proper data may continue. Such situation essentially run at 1/nth performance, where 'n' is the number of cases.	C204.4	BTL1
Advantag arise from executed Disadvan individua	fine-grained multithreading is that it can hide the throughput losses that m both short and long stalls, since instructions from other threads can be when one thread stalls.	C204.4	BTL1
Advanta Advanta Advanta Disadvar O t T The new	ges: coarse-grained multithreading is much more useful for reducing the penalty of high-cost stalls	C204.4	BTL1

What are the Advantages SMT.	C204.4	
 Simultaneous Multithreaded Architecture is superior in performant multiple-issue multiprocessor (multiple-issue CMP). SMP boosts utilization by dynamically scheduling functional units multiple threads. SMT also increases hardware design flexibility. SMT increases the complexity of instruction scheduling. With register renaming and dynamic scheduling, multiple instruction independent threads can be issued without regard to the deperamong them; the resolution of the dependences can be handled dynamic scheduling capability. Since you are relying on the existing dynamic mechanisms, SMT d switch resources every cycle. Instead, SMT is always exinstructions from multiple threads, leaving it up to the hardwassociate instruction slots and renamed registers with their proper the 	among uctions idences by the oes not ecuting vare to	BTL1
What are the advantages and disadvantages of multicore processor?	C204.4	
advantages The proximity of multiple CPU cores on the same die allows the cad coherency circuitry to operate at a much higher clock rate than is possible if signals have to travel off-chip. Combining equivalent CPUs on a single die significantly improves the performance of cache snoop (alternative: Bus sno operations. Put simply, this means that signals between different CPUs trave shorter distances, and therefore those signals degrade less. These higher-qua signals allow more data to be sent in a given time period, since individual signals can be shorter and do not need to be repeated as often. Disadvantages Maximizing the usage of the computing resources provided by mult processors requires adjustments both to the operating system (OS) support a existing application software. Also, the ability of multi-core processors to in application performance depends on the use of multiple threads within applic	the oping) el lity gnals i-core nd to crease	BTL1

PART-B

Q. No.	Questions	СО	Bloom' s Level
1.	Explain Instruction level parallel processing state the challenges of parallel processing.(NOV/DEC2014,APR/MAY2018) -(<i>Page.No:620-625</i>)	C204.4	BTL5
2.	Explain the difficulties faced by parallel processing programs(APR/MAY 2018) (<i>Page.No:</i> -625-631)	C204.4	BTL2
3.	Explain shared memory multiprocessor with a neat diagram?NOV/DEC 2016 (<i>Page.No:-517-521</i>)	C204.4	BTL5
4.	Explain in detail Flynn's classification of parallel hardware (NOV/DEC 2015,MAY/JUNE 2016,NOV/DEC	C204.4	BTL5

	2016,NOV/DEC2017) (Page.No:-634-640)		
5.	Explain cluster and other Message passing Multiprocessor (Refer notes.)	C204.4	BTL5
6.	Explain in detail about hardware Multithreading(NOV/DEC2015,MAY/JUNE2016) (<i>Page.No:-631-640</i>)	C204.4	BTL5
7.	Explain Multicore processors(NOV/DEC2014,MAY/JUNE2016) (<i>Page.No:-</i> 517-521)	C204.4	BTL5
8.	Explain the different types of multithreading (<i>Page.No:-631-640</i>)	C204.4	BTL5
9.	What is hardware Multithreading?compare and contrast Fine grained Multi-Threading and coarse grained multithreading(APRIL/MAY2015,APR/MAY 2018) (Refer notes.)	C204.4	BTL1
10.	Discuss about SISD,MIMD,SIMD,SPMD and VECTOR SYSTEM(16) APRIL/MAY2015 (<i>Page.No:</i> -509-517)	C204.4	BTL6
11.	Brief about cluster and its application. (Refer notes.)	C204.4	BTL4
12.	Explain in detail about data warehouse and its application. (Refer notes.)	C204.4	BTL5
13.	Explain about different types of message passing multiprocessor. (Refer notes.)	C204.4	BTL5
14.	Explain in detail about SMT(NOV/DEC 2017) (<i>Page.No:-515-517</i>)	C204.4	BTL5
15.	Classify shared memory multiprocessor based on memory latency(MAY/JUN 2018) (<i>Page.No:-624-630</i>)	C204.4	BTL2

. <u>PART -A</u>

Q. No.	Questions	СО	Bloom' s Level
	What is principle of locality? The principle of locality states that programs access a relatively small portion of their address space at any instant of time	C204.5	BTL1

Define spatial locality.	C204.5	BTL1
The locality principle stating that if a data location is referenced, data locations with nearby addresses will tend to be referenced soon.		
Define Memory Hierarchy.(MAY/JUNE 2016)	C204.5	BTL1
A structure that uses multiple levels of memory with different speeds and sizes. The faster memories are more expensive per bit than the slower memories.		
Define hit ratio. (A.U.APR/MAY 2013,NOV/DEC 2015)When a processor refers a data item from a cache, if the referenced item is in the cache, then such a reference is called Hit. If the referenced data is not in the cache, then it is called Miss, Hit ratio is defined as the ratio of number of Hits to number of references.Hit ratio =Total Number of references	C204.5	BTL1
What is TLB? What is its significance?Translation look aside buffer is a small cache incorporated in memory management unit. It consists of page table entries that correspond to most recently accessed pages. Significance The TLB enables faster address computing. It contains 64 to 256 entries	C204.5	BTL1
Define temporal locality. The principle stating that a data location is referenced then it will tend to be referenced again soon.	C204.5	BTL6
How cache memory is used to reduce the execution time. (APR/MAY'10) If active portions of the program and data are placed in a fast small memory, the average memory access time can be reduced, thus reducing the total execution time of the program. Such a fast small memory is called as cache memory.	C204.5	BTL6
Define memory interleaving. (A.U.MAY/JUNE '11) (apr/may2017) In order to carry out two or more simultaneous access to memory, the memory must be partitioned in to separate modules. The advantage of a modular memory is that it allows the interleaving i.e. consecutive addresses are assigned to different memory module	C204.5	BTL1
	The locality principle stating that if a data location is referenced, data locations with nearby addresses will tend to be referenced soon. Define Memory Hierarchy.(MAY/JUNE 2016) A structure that uses multiple levels of memory with different speeds and sizes. The faster memories are more expensive per bit than the slower memories. Define hit ratio. (A.U.APR/MAY 2013,NOV/DEC 2015) When a processor refers a data item from a cache, if the referenced item is in the cache, then such a reference is called Hit. If the referenced data is not in the cache, then such a references. Hit ratio =Total Number of references. What is TLB? What is its significance? Translation look aside buffer is a small cache incorporated in memory management unit. It consists of page table entries that correspond to most recently accessed pages. Significance The TLB enables faster address computing. It contains 64 to 256 entries Define temporal locality. The principle stating that a data location is referenced then it will tend to be referenced again soon. How cache memory is used to reduce the execution time. (APR/MAY'10) If active portions of the program and data are placed in a fast small memory, the average memory access time can be reduced, thus reducing the total execution time of the program. Such a fast small memory is called as cache memory. Define memory interleaving. (A.U.MAY/JUNE '11) (apr/may2017) In order to carry out two or more simultaneous access to memory, the memory is that it allows the interleaving i.e. consecutive addresses are assigned to different	The locality principle stating that if a data location is referenced, data locations with nearby addresses will tend to be referenced soon. C204.5 Define Memory Hierarchy.(MAY/JUNE 2016) C204.5 A structure that uses multiple levels of memory with different speeds and sizes. The faster memories are more expensive per bit than the slower memories. C204.5 Define hit ratio. (A.U.APR/MAY 2013,NOV/DEC 2015) C204.5 When a processor refers a data item from a cache, if the referenced item is in the cache, then such a reference is called Hit. If the referenced data is not in the cache, then such a references C204.5 What is TLB? What is its significance? C204.5 Translation look aside buffer is a small cache incorporated in memory management unit. It consists of page table entries that correspond to most recently accessed pages. Significance The TLB enables faster address computing. It contains 64 to 256 entries C204.5 How cache memory is used to reduce the execution time. (APR/MAY'10) If active portions of the program and data are placed in a fast small memory, the average memory access time can be reduced, thus reducing the total execution time of the program. Such a fast small memory is called as cache memory. C204.5 Define memory interleaving. (A.U.MAY/JUNE '11) (apr/may2017) C204.5 In order to carry out two or more simultaneous access to memory, the memory is the paritioned in to separate modules. The advantage of a modular memory is that it allows the interleaving i.e. consecutive addresses are assigned to different

Define Hit and Miss? (DEC 2013)	C204.5	BTL1
The performance of cache memory is frequently measured in terms of a quantit called hit ratio. When the CPU refers to memory and finds the word in cache, it said to produce a hit. If the word is not found in cache, then it is in main memor and it counts as a miss	is	
What is cache memory?NOV/DEC 2016	C204.5	BTL1
It is a fast memory that is inserted between the larger slower main memory and the processor. It holds the currently active segments of a program and their data	ne	
What is memory system? [MAY/JUNE '11] [APR/MAY 2012] Every computer contains several types of devices to store the instructions and data required for its operation. These storage devices plus the algorithm-implemented by hardware and/or software-needed to manage the stored information from the memory system of computer	ed	BTL1
What is Read Access Time? [APR/MAY 2012] A basic performance measure is the average time to read a fixed amount of information, for instance, one word, from the memory. This parameter is called the read access time		BTL1
What is the necessary of virtual memory? State the advantages of virtual memory? MAY/JUNE 2016Virtual memory is an important concept related to memory management. It is used to increase the apparent size of main memory at a very low cost. Data are addressed in a virtual address space that can be as large as the addressing capability of CPU. Virtual memory is a technique that uses main memory as a "cache" for secondary storage. Two major motivations for virtual memory: to allow efficient and sat sharing of memory among multiple programs, and to remove the programmin 	e fe	BTL1
What are the units of an interface? (Dec 2012)	C204.5	BTL1
DATAIN, DATAOUT, SIN, SOUT		
Distinguish between isolated and memory mapped I/O? (May 2013)	C204.5	BTL1
The isolated I/O method isolates memory and I/O addresses so that memor address values are not affected by interface address assignment since each has it own address space.		
In memory mapped I/O , there are no specific input or output instructions. The CPU can manipulate I/O data residing in interface registers with the same instructions that are used to manipulate memory words		

Distinguish between memory mapped I/O and I/O mapped I/O. Memory mapped I/O:	C204.5	BTL1
When I/O devices and the memory share the same address spa arrangement is called memory mapped I/O. The machine instructions access memory is used to trfer data to or from an I/O device.		
I/O mapped I/O: Here the I/O devices the memories have different address space. It has I/O instructions. The advantage of a separate I/O address space is t devices deals with fewer address lines.		
Define virtual memory.(nov/dec 2017)	C204.5	BTL1
The data is to be stored in physical memory locations that have ad different from those specified by the program. The memory control c translates the address specified by the program into an address that can to access the physical memory	ircuitry	
What is Semi Random Access? Memory devices such as magnetic hard disks and CD-ROMs contain m rotating storage tracks. If each track has its own read write head, the trac be accessed randomly, but access within each track is serial. In such cas access mode is semi random.	cks can	BTL1
What is the use of DMA? (Dec 2012)(Dec 2013,APR/MAY2018) DMA (Direct Memory Access) provides I/O transfer of data directly to an the memory unit and the peripheral.	nd from	BTL1
Mention the advantages of USB. (May 2013) The Universal Serial Bus (USB) is an industry standard developed to prov speed of operation called low-speed and full-speed. They provide simple, 1 and easy to use interconnect system.		BTL1
What is meant by vectored interrupt?(Dec 2013) Vectored Interrupts are type of I/O interrupts in which the device that gener interruptrequest (also called IRQ in some text books) identifies itself directl processor		BTL1

Static RAM is more expensive, requires the amount of data than dynamic RAM, but be power-refreshed and is therefore fasted capacitor that needs frequent power refree a DRAM discharges its contents, a power from reading, just to maintain the charge must be refreshed about every 15 microsof RAM. SRAMs are simply integrated cirraccess port that can provide either a read time to any datum. SRAMs don't need to refresh and so the attime. SRAMs typically use six to eight the information from being disturbed when the retain the charge in standby mode. In a dynamic RAM (DRAM), the in a capacitor. A single transistor is then a read the value or to overwrite the charge single transistor per bit of storage, they at SRAM	access time is very close to the cycle ransistors per bit to prevent the read. SRAM needs only minimal power to e value kept in a cell is stored as a charge used to access this stored charge, either to stored there. Because DRAMs use only a	C204.5	BTL1
what is DMA <u>?(NOV/DEC 2014)</u> Direct memory access (DMA) is (I/O) device to send or receive data direct bypassing the CPU to speed up memory of chip known as a DMA controller (DMAC	operations. The process is managed by a	C204.5	BTL1
 Differentiate programmed I/O and inte	errupt i/O(NOV/DEC2014)	C204.5	BTL1
programmed I/OProgrammed IO is the process of IOinstruction written in computerprogramIn Programmed IO technique totransfer data,required constantmotoring on peripheral by CPU,oncedata transfer is initiated, CPU have towait for next transfer.	interrupt i/O Interrupt Initiated IO is done by using interrupt and some special command. In Interrupt Initiated IO once data transfer initiated ,CPU execute next program without wasting time and the interface keep monitoring the device.		
what is the purpose of dirty /modified I A dirty bit or modified bit is a bit that memory and indicates whether or not the modified.[1] The dirty bit is set when	bit in cache memory.(NOV/DEC2014) t is associated with a block of computer corresponding block of memory has been the processor writes to (modifies) this ated block of memory has been modified	C204.5	BTL1

Speed	need to implement	Size	Cost (\$/bit)	Current			
			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -				
Fastest	Memory	Smallest	Highest	SRAM			
	Memory			DRAM			
					12107		
Slowest	Memory	Biggest	Lowest	Magnetic d	ISK		
	The basic structu	ure of a m	emory hierarchy.				
	w DMA can impro		-				C204.5
	speeds continue to				· ·	U	
	the same chip.A la he transfer of data t						
	CPU has some wor		•				
	grammed input/out						
	the read or write of	-	• •				
work. With	DMA, the CPU firs	t initiate	es the transfer, th	en it doe	s other opera	ations	
	nsfer is in progress.		finally receives a	an interru	pt from the	DMA	
controller wl	nen the operation is	done.					
Memory Te Main memor while levels	y is implemented fr closer to the process	rom DR sor (cac	AM (dynamic ra hes) use SRAM	ndom acc (static rar	dom access),	C204.5
Memory Te Main memory while levels memory). Dl slower. The bit of memory silicon;	chnologies by is implemented fr closer to the process RAM is less costly p price difference aris by, and DRAMs thus	rom DR sor (cac per bit tl ses beca s have la	AM (dynamic ra hes) use SRAM han SRAM, altho use DRAM uses arger capacity fo	ndom acc (static rar ough it is significan r the sam	idom access substantially ntly less area e amount of \$ per G i), 7 1 per	C204.5
Memory Te Main memory while levels memory). Di slower. The bit of memor	chnologies by is implemented fr closer to the process RAM is less costly p price difference aris by, and DRAMs thus	rom DR sor (cac per bit tl ses beca s have la	AM (dynamic ra hes) use SRAM han SRAM, altho use DRAM uses	ndom acc (static rar ough it is significan r the sam	dom access substantially ntly less area e amount of), 7 1 per	C204.5
Memory Te Main memory while levels memory). Dl slower. The bit of memory silicon; Memory te	chnologies by is implemented fr closer to the process RAM is less costly p price difference aris by, and DRAMs thus	rom DR sor (cac per bit tl ses beca s have la	AM (dynamic ra hes) use SRAM han SRAM, altho use DRAM uses arger capacity fo Typical access t	ndom acc (static rar ough it is significan r the sam	idom access substantially ntly less area e amount of \$ per G i), 7 1 per	C204.5
Memory Te Main memory while levels memory). Dl slower. The bit of memory silicon; Memory to SRAM sem	chnologies by is implemented fr closer to the process RAM is less costly p price difference aris by, and DRAMs thus cchnology	rom DR sor (cac per bit th ses becau is have h y $i-2$	AM (dynamic ra hes) use SRAM han SRAM, altho use DRAM uses arger capacity fo Typical access t	ndom acc (static rar ough it is significan r the sam	idom access substantially ntly less area e amount of \$ per Gi 2012), 7 1 per	C204.5
Memory Te Main memory while levels memory). Di slower. The bit of memory silicon; Memory te SRAM sem DRAM sem	chnologies by is implemented fr closer to the process RAM is less costly p price difference aris by, and DRAMs thus cchnology hiconductor memory	rom DR sor (cac per bit th ses becau s have h y $i-2$ y -70	AM (dynamic ra hes) use SRAM han SRAM, althouse DRAM uses arger capacity fo Typical access t .5 ns	ndom acc (static rar ough it is significan r the sam	idom access substantially ntly less area e amount of \$ per Gi 2012 00-\$1000), 7 1 per	C204.5
Memory Te Main memory while levels memory). Di slower. The bit of memory silicon; Memory te SRAM sem DRAM sem	chnologies by is implemented fr closer to the process RAM is less costly p price difference aris by, and DRAMs thus cchnology hiconductor memory hiconductor memory conductor memory	rom DR sor (cac per bit tl ses becau s have la y i–2 y –70)00	AM (dynamic ra hes) use SRAM han SRAM, althouse DRAM uses arger capacity fo Typical access t .5 ns) ns	ndom acc (static rar ough it is significan r the sam ime	adom access substantially ntly less area e amount of \$ per Gi 2012 00–\$1000 0–\$20), / 1 per	C204.5
Memory Te Main memory while levels memory). Di slower. The bit of memory silicon; Memory te SRAM sem DRAM sem Flash semio	chnologies by is implemented fr closer to the process RAM is less costly p price difference aris by, and DRAMs thus cchnology hiconductor memory hiconductor memory conductor memory	rom DR sor (cac per bit tl ses becau s have la y i–2 y –70)00	AM (dynamic ra hes) use SRAM han SRAM, althouse DRAM uses arger capacity fo Typical access t .5 ns) ns –50,000 ns	ndom acc (static rar ough it is significan r the sam ime	adom access substantially ntly less area e amount of \$ per Gi 2012 00–\$1000 0–\$20 .75–\$1.00), 1 per 1 B in	C204.5

 In many computers the cache block size is in the range 32 to 128 bytes. What would be the main Advantages and disadvantages of making the size of the cache blocks larger or smaller? Larger the size of the cache fewer be the cache misses if most of the data in the block are actually used. It will be wasteful if much of the data are not used before the cache block is moved from cache. Smaller size means more misses 		BTL1
Define USB. Universal Serial Bus, an external busstandard that supports data transfer ratesof 12 Mbps. A single USB portcan be used to connect up to 127 peripheral devices, such as mice, modems, and keyboards. USB also supportsPlug-and-Play installationandhot plugging.		BTL1
Define Memory latency The amount of time it takes to transfer a word of data to or from the memory.	C204.5	BTL1
Define Memory bandwidth Tthe number of bits or bytes that can be transferred in one second. It is used to measure how much time is needed to transfer an entire block of data.	C204.5	BTL1
Define miss Rate. The miss rate (1-hit rate) is the fraction of memory accesses not found in the upper level.	C204.5	BTL1
Define Hit rate. Hit rate⊇ The fraction of memory accesses found in a level of the memory hierarchy. •	C204.5	BTL1
Define miss rate. Miss rate⊇ The fraction of memory accesses not found in a level of the memory hierarchy.	C204.5	BTL1
Define Hit time. Hit time is the time to access the upper level of the memory hierarchy, which includes the time needed to determine whether the access is a hit or a miss	C204.5	BTL1

The miss penalty is the time to replace a block in the upper level with the corresponding block from the lower level, plus the time to deliver this block to		BTL1
the processor		
Define tag in TLB	C204.5	BTL1
Tag \supseteq A field in a table used for a memory hierarchy that contains the address information required to identify whether the associated block in the hierarchy corresponds to a requested word.		
 What are the steps to be taken on an instruction cache miss: 1. Send the original PC value (current PC - 4) to the memory. 2. Instruct main memory to perform a read and wait for the memory to complete its access. 3. Write the cache entry, putting the data from memory in the data portion of the entry, writing the upper bits of the address (from the ALU) into the tag field, and turning the valid bit on. 4. Restart the instruction execution at the first step, which will refetch the instruction, this time finding it in the cache 	C204.5	BTL1
What is write through cache The simplest way to keep the main memory and the cache consistent is always to write the data into both the memory and the cache. • This scheme is called write-through.	C204.5	BTL1
What is write back cache In a write back scheme, when a write occurs, the new value is written only to the block in the cache.	C204.5	BTL1
What are the techniques to improve cache performance? Two different techniques for improving cache performance. • One focuses on reducing the miss rate by reducing the probability that two different memory blocks will participate for the same cache location. • The second technique reduces the miss penalty by adding an additional level to the hierarchy. This technique, called multilevel caching	C204.5	BTL1
Define dirty bit dirty bit is commonly used. This status bit indicates whether the block is dirty (modified while in the cache) or clean (not modified).	C204.5	BTL1
What is TLB. Translation-lookaside buffer (TLB)⊇A cache that keeps track of recently used address mappings to try to avoid an access to the page table.	C204.5	BTL1

	C20	4.5	BTL1
What are the messages transferred in D	MA?		
To initiate the transfer of a block of waddress ii) Number of words in the block	vords , the processor sends, i) Starting k iii)Direction of transfer.		
Define Burst mode.	C20	4.5	BTL1
	be given exclusive(limited) access to of data without interruption. This is		
Define bus master	C20	4.5	BTL1
Bus Master: The device that is allowed any given time is called the bus master	I to initiate data transfers on the bus at		
Define bus arbitration.	C20	4.5	BTL1
Bus Arbitration: It is the process by w master is selected and the bus mastershi	nich the next device to become the bus p is transferred to it.		
What are the approaches for bus arbitra	tion? C20	4.5	BTL1
	on. They are i)Centralized arbitration (n) ii)Distributed arbitration (all devices master).		

PART -B

Q. No.	Questions	СО	Bloom' s Level
1	ExplainindetailaboutmemoryTechnologies(APRIL/MAY2015,NOV/DEC2017) (Page.No:-378-383)	C204.5	BTL5
2	Expain in detail about memory Hierarchy with neat diagram (<i>Page.No:-374-378</i>)	C204.5	BTL5
3	Discuss the various mapping schemes used in cache memory(NOV/DEC2014) (<i>Page.No:-383-397</i>)	C204.5	BTL6
4	Discuss the methods used to measure and improve the performance of the cache.(NOV/DEC 2017) (<i>Page.No:-398-417</i>)	C204.5	BTL6
5.	Explain the virtual memory address translation and TLB with necessary diagram.(APRIL/MAY2015,NOV/DEC 2015,NOV/DEC 2016,APR/MAY2018) (<i>Page.No:-</i> 427-452)	C204.5	BTL5

		C204.5	BTL5
6.	Draw the typical block diagram of a DMA controller and explain how it is		
0.	used for direct data transfer between memory and peripherals. (NOV/DEC		
	2015,MAY/JUNE 2016,NOV/DEC 2016,MAY/JUN 2018) Page.No:-399-		
	402)	G204.5	
7.	Explain in detail about interrupts with diagram	C204.5	BTL5
	(Page.No:-436-242)		
8.	Describe in detail about programmed Input/Output with neat diagram	C204.5	BTL5
	(MAY/JUN 2018) (Refer notes)		
9.	Explain in detail about the bus arbitration techniques.(NOV/DEC2014)(8)	C204.5	BTL5
	(Page.No:-237-242)		
	Draw different memory address layouts and brief about the technique used	C204.5	BTL5
10.	to increase the average rate of fetching words from the main memory		
	(8)(NOV/DEC2014)		
	(Refer notes)		
11.	Explain in detail about any two standard input and output interfaces	C204.5	BTL5
11.	required to connect the I/O devices to the bus.(NOV/DEC2014)		
	(Page.No:-438-452)	~~~~~~	
12.	Explain mapping functions in cache memory in cache memory to determine	C204.5	BTL5
	how memory blocks are placed in cache (Nov/Dec 2014) (Refer notes)		
10	Explain the various mapping techniques associated with cache memories	C204.5	BTL5
13.	(MAY/JUNE 2016, MAY/JUN 2018)		
	(Refer notes)		
14.	Explain sequence of operations carried on by a processor when interrupted	C204.5	BTL5
14.	by a peripheral device connected to it(MAY/JUN 2018) (Page.No:-436-		
	242)		
15.	Explain virtual memory and the advantages of using virtual memory	C204.5	BTL5
	(Page.No:-427-252)		