

JEPPIAAR ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

<u>EC8392–Communication Engineering</u> Question Bank

II YEAR A & B / BATCH : 2017 - 2021

Vision of Institution

To build Jeppiaar Engineering College as an Institution of Academic Excellence in Technical education and Management education and to become a World Class University.

Mission of Institution

M1	To excel in teaching and learning , research and innovation by promoting the principles of scientific analysis and creative thinking
M2	To participate in the production, development and dissemination of knowledge and interact with national and international communities
M3	To equip students with values , ethics and life skills needed to enrich their lives and enable them to meaningfully contribute to the progress of society
M4	To prepare students for higher studies and lifelong learning, enrich them with the practical and entrepreneurial skills necessary to excel as future professionals and contribute to Nation's economy

Program Outcomes (POs)

PO1	Engineering Knowledge : Apply the Knowledge of mathematics, science engineering fundamentals, and an engineering specialization to the solution	
	complex engineering problems.	
	Problem analysis: Identify, formulate, review research literature, and analyze	
PO2	complex engineering problems reaching substantiated conclusions using first	
	principles of mathematics, natural sciences, and engineering sciences.	
	Design/development of solutions: Design solutions for complex engineering	
PO3	problems and design system components or processes that meet the specified	
105	needs with appropriate consideration for the public health and safety, and the	
	cultural, societal, and environmental considerations	
	Conduct investigations of complex problems: Use research-based Knowledge	
PO4	and research methods including design of experiments, analysis and interpretation	
	of data, and synthesis of the information to provide valid conclusions.	
	Modern tool usage: Create, select, and apply appropriate techniques, resources,	
PO5	and modern engineering and IT tools including prediction and modeling to	
	complex engineering activities with an understanding of the limitations.	
	The engineer and society: Apply reasoning informed by the contextual	
PO6	Knowledge to assess societal, health, safety, legal and cultural issues and the	
	consequent responsibilities relevant to the professional engineering practice.	
	Environment and sustainability : Understand the impact of the professional	
PO7	engineering solutions in societal and environmental contexts, and demonstrate the	
	Knowledge of, and need for sustainable development.	
DOP	Ethics: Apply ethical principles and commit to professional ethics and	
PO8	responsibilities and norms of the engineering practice.	

PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.			
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.			
PO11	Project management and finance : Demonstrate Knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.			
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.			

Vision of Department

To emerge as a globally prominent department, developing ethical computer professionals, innovators and entrepreneurs with academic excellence through quality education and research.

Mission of Department

M1	To create computer professionals with an ability to identify and formulate the	
	engineering problems and also to provide innovative solutions through effective	
	teaching learning process.	
M2	To strengthen the core-competence in computer science and engineering and to create an ability to interact effectively with industries.	
M3	To produce engineers with good professional sKills, ethical values and life skills for the betterment of the society.	
M4	To encourage students towards continuous and higher level learning on technological advancements and provide a platform for employment and self-employment .	

Program Educational Objectives (PEOs)

PEO1	To address the real time complex engineering problems using innovative approach		
	with strong core computing skills.		
PEO2	To apply core-analytical Knowledge and appropriate techniques and provide		
	solutions to real time challenges of national and global society		
PEO3	Apply ethical Knowledge for professional excellence and leadership for the		
	betterment of the society.		
PEO4	Develop life-long learning skills needed for better employment and		
	entrepreneurship		

SYLLABUS

UNIT I ANALOG MODULATION 9

Amplitude Modulation – AM, DSBSC, SSBSC, VSB – PSD, modulators and demodulators – Angle modulation – PM and FM – PSD, modulators and demodulators – Superheterodyne receivers

UNITII PULSE MODULATION 9

Low pass sampling theorem – Quantization – PAM – Line coding – PCM, DPCM, DM, and ADPCM And ADM, Channel Vocoder - Time Division Multiplexing, Frequency Division Multiplexing.

UNIT III DIGITAL MODULATION AND TRANSMISSION 9

Phase shift keying – BPSK, DPSK, QPSK – Principles of M-ary signaling M-ary PSK & QAM Comparison, ISI – Pulse shaping – Duo binary encoding – Cosine filters – Eye pattern, equalizers

UNIT IV INFORMATION THEORY AND CODING 9

Measure of information – Entropy – Source coding theorem – Shannon–Fano coding, Huffman Coding, LZ Coding – Channel capacity – Shannon-Hartley law – Shannon's limit – Error control codes – Cyclic codes, Syndrome calculation – Convolution Coding, Sequential and Viterbi decoding

UNIT V SPREAD SPECTRUM AND MULTIPLE ACCESS 9

PN sequences – properties – m-sequence – DSSS – Processing gain, Jamming – FHSS – Synchronisation and tracking – Multiple Access – FDMA, TDMA, CDMA,

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

Ability to comprehend and appreciate the significance and role of this course in the present contemporary world

- Apply analog and digital communication techniques.
- Use data and pulse communication techniques.
- Analyze Source and Error control coding.

TEXT BOOKS:

1. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007

2. S. Haykin "Digital Communications" John Wiley 2005

REFERENCES:

1. B.P.Lathi, "Modern Digital and Analog Communication Systems", 3rd edition, Oxford University Press, 2007

2. H P Hsu, Schaum Outline Series – "Analog and Digital Communications" TMH 2006

3. B.Sklar, Digital Communications Fundamentals and Applications" 2/e Pearson Education 2007.

Course Outcomes (COs)

BLOOM TAXANOMY LEVELS

BTL6: Creating BTL 5: Evaluating BTL 4: Analyzing BTL 3: Applying BTL 2: Understanding BTL 1: Remembering

INDEX

UNIT NO	TEXT/ REFERENCE BOOK	PAGE NO
UNIT -I	1. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	113-1 73
UNIT -II	1. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	183-2 40
UNIT -III	1. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	249-3 10

UNIT -IV	1. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	511-5 64
UNIT -V	1. H Taub, D L Schilling, G Saha, "Principles of	720-7 45
	Communication Systems" 3/e, TMH 2007 2. S. Haykin "Digital Communications" John Wiley 2005	310-3 43

UNIT I

I ANALOG MODULATION

Amplitude Modulation – AM, DSBSC, SSBSC, VSB – PSD, modulators and demodulators – Angle modulation – PM and FM – PSD, modulators and demodulators – Superheterodyne receivers

S.	Question	Cours	Bloom
No.		e	S
		Outco	Taxan
		me	omy
1			Level
1	Define Amplitude modulation. <u>NOV/DEC 2011</u>		DTI 1
	Amplitude Modulation is the process of changing the amplitude of a relatively high frequency carrier signal in proportion with the instantaneous value of the modulating signal.		BTL1
2	What is modulation index and percentage modulation in AM? NOV/DEC 2011		BTL 1
	Modulation index is a term used to describe the amount of amplitude change present in an AM waveform .It is also called as coefficient of modulation.		
	Mathematically modulation index is		
	$\mathbf{m} = \mathbf{E}_{\mathbf{m}} / \mathbf{E}_{\mathbf{c}}$		
	Where m = Modulation coefficient		
	E_m = Peak change in the amplitude of the output waveform voltage.		

	$E_c =$ Peak amplitude of the unmodulated carrier voltage.		
	Percent modulation gives the percentage change in the amplitude of the output wave when the carrier is acted on by a modulating signal.		
3		BTL	1
	In a Amplitude modulation system, the carrier frequency is Fc= 100KHz. The maximum frequency of the signal is 5 KHz. Determine the lower and upper side bands and the band width of AM signal. <u>APRIL?MAY 2010</u> , <u>NOV/DEC 2010</u> $B=2f_{m(max)}=2(5khz)=10khz$ $f_{usf}=fc+fm=100khz+5khz=105khz$ $f_{lsf}=fc-fm=100khz-5khz=95khz$		
4		BTL	1
4	The maximum frequency deviation in an FM is 10 KHz and signal frequency is 10 KHz. Find out the bandwidth using Carson's rule and the modulation index <u>APRIL?MAY 2010</u> m=10khz/10khz=1 Bandwidth using carson's rule B=2(f+fm) B=2(10khz+10khz)=40khz.	BIL	, 1
5	Draw the frequency spectrum and mention the bandwidth of AM signal <u>APRIL?MAY 2011 MAY/JUNE 2013, APRIL/MAY 2015</u> mV_c/2 mV_c/2 fm fm fm fm	BTL	2
	$f_c-f_m f_c f_c+f_m$ frequency		
6	In an AM transmitter, the carrier power is 10 kW and the modulation index is 0.5. Calculate the total RF power delivered. <u>APRIL?MAY 2011</u> Pt=pc(1+m 2/2)	BTL	. 1

	Pt=10kw(1+0.25/2)	
	Pt=11.25watts	
	m=0.5	
	pc=10kw	
7		
7	.State Carson's rule.	BTL 2
	Carson rule states that the bandwidth required to transmit an angle	
	modulated wave as twice the sum of the peak frequency deviation and	
	the highest modulating signal frequency. Mathematically Carson's rule	
	is $B=2(\Delta f + f_m) Hz$	
8	Draw the waveforms of AM signal <u>NOV/DEC 2009</u> .	BTL 1
	CARRIER INPUT SIGNAL	
	J<	
	1 8 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	MODULATING INPUT SIGNAL	
	es Emax	
	Emt. ATT	
	A A A A A A A A A A A A A A A A A A A	
	E min alle	
	ENVELOPE	

9	What is the required bandwidth for FM signal, in terms of frequency deviation? NOV/DEC 2009 For high index modulation ,the minimum bandwidth is approximated by B=2∆ f hz	BTL 1
10	A broadcast radio transmitter radiates 5 KW power when the modulation percentage is 60% How much is the carrier power? $P_t = 5kW,m=0.6 \text{ or } 60\%$ $P_{total} = P_c [1 + m^2/2]$ $P_c = P_{total} / [1 + m^2/2] = 5* 10^2 / [1 + (.6)^2/2] = 4.24 \text{ kW}$	BTL 1
11	What is modulation? Modulation is the process of changing any one parameter (amplitude, frequency or phase) of a relatively high frequency carrier signal in proportion with the instantaneous value of the modulating signal or message signal	BTL 1
12	Define image frequency rejection ratio. The image frequency rejection ratio is the measure of the ability of preselector to reject the image frequency.	BTL 1
	Mathematically, IFRR is	
	IFRR = $(1+Q^2\rho^2)^{1/2}$ Where $\rho = (f_{im}/f_{RF})-(f_{RF}/f_{im})$	
	Q – quality factor of preselector	
	f _{im} -image frequency	
	f _{RF} - RF frequency	
13	Define Deviation ratio viation ratio is the worst-case modulation index and is equal to the maximum peak frequency deviation divided by the maximum modulating signal frequency. Mathematically, the deviation ratio is	
	$\mathbf{DR} = \Delta \mathbf{f}_{(\max)} / \mathbf{f}_{m(\max)}$	BTL 1
14	Write down the comparison of frequency and amplitude modulation	BTL 1

	 AM Noise interference is more. Amplitude Modulation is the process of changing the amplitude of a relatively high frequency carrier signal in proportion with the instantaneous value of the modulating signal. FM Noise interference is less Frequency Modulation is the process of changing the frequency of a relatively high frequency carrier signal in proportion with the instantaneous value of the modulating signal. 	
15	If a modulated wave with an average voltage of 20Vp changes in amplitude ±5V, determine the maximum and minimum envelope amplitudes and the modulation coefficients. $V_m = 20Vp$ $V_c = 5 V$	BTL 1
	$m = V_{max} - V_{min} / V_{max} + V_{min}$ $V_{max} = V_m + V_c = 20 + 5 = 25V$ $V_{min} = V_m - V_c = 20 - 5 = 15V$ $m = V_{max} - V_{min} / V_{max} + V_{min} = 25 - 15 / 25 + 15 = 0.25$	
16	An FM transmitter has a rest frequency $f_c = 96MHz$ and a deviation sensitivity $K_1 = 4$ KHz/V. Determine the frequency deviation for a modulating signal $V_m(t) = 8sin(2\pi \ 2000t)$. Determine the modulation index. $V_m = 8V$, $f_m = 2000Hz$ and $K_1 = 4$ kHz/V Frequency deviation = $\delta = K_1V_m = 4$ kHz/V * $8V = 32$ kHz Modulation index = $m = \delta/f_m = 32$ kHz/2000Hz = 16	BTL 1

17	For an FM receiver with an input frequency deviation $\Delta f=4$ kHz and a transfer ratio K= 0.01 V/k Hz, determine V _{out} . $V_{out} = K * \Delta f = 0.01 * 40 = 0.4 V$	BTL 1
18		BTL 1
	Define bandwidth efficiency <u>NOV/DEC 2012.</u>	
	Bandwidth efficiency(B.E)=Transmission bitrate(bps)/minimum bandwidth(hz)	
	B.E=bits/cycle	
19	Distinguish between FM and PM <u>NOV/DEC 2012.</u> . <u>NOV/DEC 2016</u>	BTL 2
	FM- Frequency is varied directly but Phase is indirectly varied with respect to modulating signal.	
	PM- Frequency is varied indirectly but Phase is directly varied with respect to modulating signal.	
20	What is the bandwidth of the FM signal if the frequency sensitivity of the modulator is	BTL 2
	25 Khz per volt? <u>APRIL/MAY 2015</u>	
21	Define Phase modulation. Phase of a constant amplitude carrier is varied directly proportional to the amplitude of the modulating signal at a rate equal to the frequency of the modulating signal	BTL 1
22	What are the advantages of angle modulation and also list its disadvantages. vantages:	BTL 1
	 i. Noise reduction. ii. Improved system fidelity. iii. more efficient use of power. Disadvantages: 	
	i. wider Bandwidth. ii.uses more complex circuit in receiver and	

	transmitter	
23	Give the expression for bandwidth of angle-modulated wave in terms of Bessel's table. B= $2(n^*f_m)$	BTL 1
24	n=no. of significant sidebands for m found using Bessel's tableDefine deviation sensitivity for FM and PM and give its units.	BTL 1
27	FM: Change in output frequency occurs when amplitude changes in input signal. Unit $K_1 = (rad/s)/V$.	DILI
	PM: Change in output phase occurs when amplitude changes in input signal. Unit K=(rad)/V.	
25	Define instantaneous frequency deviation. The instantaneous frequency deviation is the instantaneous change in the frequency of the carrier and is defined as the first derivative of the instantaneous phase deviation	BTL 1
26	Define instantaneous frequency deviation. The instantaneous frequency deviation is the instantaneous change in the frequency of the carrier and is defined as the first derivative of the instantaneous phase deviation.	BTL 1
27	Define frequency deviation.Frequency deviation is the change in frequency that occurs in the carrier when it is acted on by a modulating signal frequency. Frequency deviation is typically given as a peak frequency shift in Hertz (Δf). The peak-to-peak frequency deviation (2 Δf) is sometimes called carrier 	BTL 1
28	State Carson rule.Carson rule states that the bandwidth required to transmit an anglemodulated wave as twice the sum of the peak frequency deviation andthe highest modulating signal frequency. Mathematically Carson's ruleis $B=2(\Delta f + f_m) Hz$	BTL 5

29	Define Heterodyning. Heterodyne means to mix two frequencies together in a nonlinear device or to translate one frequency to another, using nonlinear mixing	BTL 5
30	Define direct frequency modulation. direct frequency modulation, frequency of a constant amplitude carrier signal is directly proportional to the amplitude of the modulating signal at a rate equal to the frequency of the modulating signal.	BTL 5
31	st the sourses of internal and external noise. <u>NOV/DEC 2016</u>	BTL 5
	ernal noise Partion noise	
	Low frequency or flicker noise	
	High Frequency or transit time noise	
	Shot noise	
	Thermal noise .	
32	mpare AM with DSB-SC and SSB-SC. Nov/Dec 2015.	BTL 5
	nplitude Modulation - carrier frequency and upper and lower sidebands. -carries message	
	publesideband suppressd carrier – upper and lower sidebands with carrier- carries message	
	gle sideband suppressed carrier-Either lowersideband or uppersideband- carries message	
	PART-B	
1	Explain the principles of amplitude modulation its generation and detection (8) NOV/DEC 2011, APRIL?MAY2011, NOV/DEC 2010,NOV/DEC 2009Refer Page No120 . H Taub, D L Schilling, G Saha, "Principles	BTL 2
	of Communication Systems" 3/e, TMH 2007	

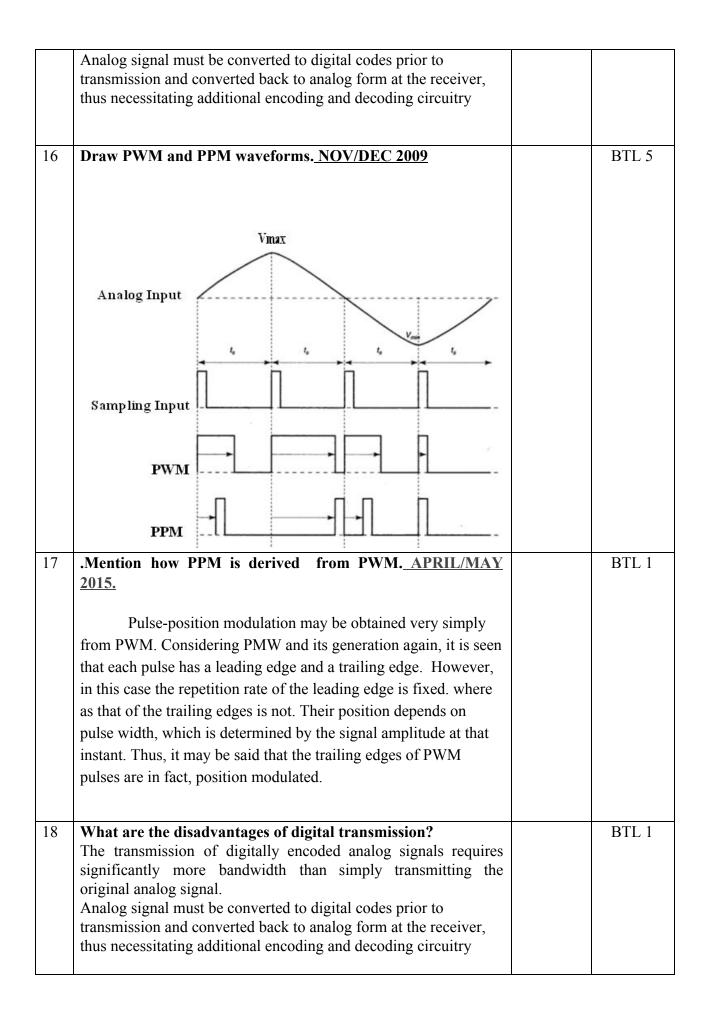
2	Write a note on frequency spectrum analysis of anglemodulated waves. (8) NOV/DEC 2011	BTL 5
	Refer Page No282 in . H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	
3	Explain the band width requirements of angle modulated waves. (8) NOV/DEC 2011, APRIL?MAY 2011	BTL 5
	Refer Page No286 . H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	
4	Compare FM and PM. (8) NOV/DEC 2011, APRIL?MAY 2010,	BTL 2
	APRIL?MAY 2011 APRIL/MAY 2015	
	Refer Page No 286 in. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	
5	Derive the relationship between the voltage amplitudes of the side band frequencies and the carrier and draw the frequency spectrum. (8 Marks) <u>APRIL?MAY 2010</u>	BTL 2
	Refer Page No139 in. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	
6	. Discuss about the sets of side bands produced when a carrier is frequency modulated by a single frequency sinusoid. (8 Marks) <u>APRIL?MAY 2010</u>	BTL 2
	Refer Page No282 in. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	
7	<i>In an AM modulator, 500 KHz carrier of amplitude 20 V is modulated by 10 KHz modulating signal which causes a change in the output wave of</i> + <i>7.5 V. Determine:</i>	BTL 1
	(1) Upper and lower side band frequencies (2) Modulation Index	
	 (2) Notation interference (3) Peak amplitude of upper and lower side frequency (4) Maximum and minimum amplitudes of envelope. (8 Marks) <u>APRIL?MAY 2010</u> 	
	Refer Page No153 in H Taub, D L Schilling, G Saha, "Principles o 3/e, TMH 2007	
8	Obtain a relationship between carrier and side band powers in an AM	BTL2
	DSBFC wave and explain how power distribution takes place in AM DSB FC system. <u>NOV/DEC 2010 NOV/DEC 2012</u>	
	Refer Page No149 in H Taub, D L Schilling, G Saha, "Principles	

9	BTL 5
10.Define FM and PM modulation. Write down their equations. Descr	
produce PM from FM modulator <u>NOV/DEC 2009.</u>	
Refer Page No277 H Taub, D L Schilling, G Saha, "Principles of	
Communication Systems" 3/e, TMH 2007	
10 Explain the difference between phase modulation and frequency dulation.	BTL 5
APRIL/MAY 2015.	
Refer Page No 281 in H Taub, D L Schilling, G Saha, "Principles	
of Communication Systems" 3/e, TMH 2007	
11 Explain the difference between phase modulation and frequency	BTL 5
odulation. APRIL/MAY 2015.	
Refer Page No 281 H Taub, D L Schilling, G Saha, "Principles	
Communication Systems" 3/e, TMH 2007	
12 the help of neat block diagram explain about the generation of SSBSC	BTL 5
wave and demodulation. <u>NOV/DEC 2015, Nov/Dec 2016.</u>	
Refer Page291 H Taub, D L Schilling, G Saha, "Principles of	
mmunication Systems" 3/e, TMH 2007	
13 ceiver connected to an antenna resistance is 50 ohms has an	BTL 5
equivalent noise resistance of 30 ohms. Calculate the receivers noise	
figure and its equivalent noise temperature. <u>Nov/Dec 2016.</u>	
Notes	
14 0 khz carrier is simultaneously modulated with 300 khz 800khz and 2	BTL 5
Khz audio sine waves. Find the frequencies present in the output.	
<u>Nov/Dec 2016</u>	
300=1300khz USF	
00=700khz LSF	
800=1800khz USF	
300=200khz LSF	
2=1002khz USF	
2=998khz LSF	
25 MHZ carrier is modulated by a 400 Khz audio sine wave. If the	
carrier voltage is 4V and the maximum frequency deviation is 10	
khz and phase deviation is 25 radiance. Write the equations for	

	modulated wavefor FM and PM. If the modulating frequency osnow changed to2khzall elseremaining constant. Write a newequation for FM and PM.ec 2016.notes	
15	25 MHZ carrier is modulated by a 400 Khz audio sine wave. If the carrier voltage is 4V and the maximum frequency deviation is 10 khz and phase deviation is 25 radiance. Write the equations for modulated wave for FM and PM. If the modulating frequency os now changed to 2khz all else remaining constant. Write a new equation for FM and PM. <u>ec 2016.</u> Refer notes	BTL 5
16	carrier is amplitude modulated to a depth of 100 %. Calculate the total power in case of AM and DSBSC techniques. How much power saving is achieved in DSBSC?. If the depth of modulation is changed to 75% then how much power in Watts is required for transmitting DSBSC wave? Compare the power required for DSBSC in both cases and comment on the reason for change in power levels. <u>Nov/Dec 2016</u> Notes.	BTL 5

UNIT II

PULSE MODULATION


Low pass sampling theorem – Quantization – PAM – Line coding – PCM, DPCM, DM, and ADPCM And ADM, Channel Vocoder - Time Division Multiplexing,Frequency Division Multiplexing

•

S. No.	Question	Course Outcome	Blooms Taxanomy
			Level
1	What is the need for sampling? <u>NOV/DEC 2011</u>		BTL 1
	To convert analog signals to digital signals sampling is needed.		
2	Define Nyquist sampling theorem. APRIL/MAY 2010, APRIL?MAY 2011		BTL 1
	If a finite energy signal g(t) contains no frequency higher		
	than W Hz, it is completely determined by specifying		
	its ordinates at a sequence of points spaced 1/2W		
	seconds apart. fs>2fa		
	where . fs= sampling frequency		
	fa=analog frequency		
3	For the signal m(t)= 3 cos 500 ^t + 4 sin 1000 ^t , Determine the Nyquist sampling rate. <u>APRIL/MAY 2010</u> .Refer notes		BTL 5
	4.What is meant by differential pulse code modulation? <u>APRIL?MAY 2011</u>		
	With DPCM the difference in the amplitude of two successive		
	samples is transmitted rather than the actual sample. Because the		
	range of sample differences is typically less than the range of individual samples fewer bits are required for DPCM than conventional PCM.		
4	Define companding <u>NOV/DEC 2010</u>		BTL 1
	Companding is the process of compression and then expanding. Higher amplitude signals are compressed prior to transmission and then expanded in the receiver. Companding is the means of improving dynamic range of communication systems		
5	What are the advantages of digital transmission? NOV/DEC 2010		BTL 1

	i. The transmission of digitally encoded analog]
	signals requires significantly more bandwidth than	
	simply transmitting the original analog signal.	
	Analog signal must be converted to digital codes prior to	
	transmission and converted back to analog form at the receiver,	
	thus necessitating additional encoding and decoding circuitry	
6	Draw PWM and PPM waveforms. NOV/DEC 2009	 BTL 1
0		DILI
7	Compare slope overload and granular noise.	BTL 1
	Slope overload noise	
	Slope of analog signal is greater than delta modulator can maintain	
	Caused when step- size is small.	
	Granular noise	
	Original input signal has relatively constant amplitude and the reconstructed signal has variation the were not present in the original signal	
	Caused when step -size is large.	
8	<u>.</u> What do you mean by slope overload distortion in delta modulation?	BTL 5
	Slope of analog signal is greater than delta modulator can maintain. Caused when the step size is small.	
	Slope-overload distortion m(t) Δ $m_{q}(t)$ Δ T_{q}	
L		

9	Define and state the causes of fold over distortion	BTL 1
	The minimum sampling rate (f_s) is equal to twice the highest	
	audio input frequency (f_a) . If fs is less than two times f_a ,	
	distortion will result. The distortion is called aliasing or fold	
	over distortion. The side frequencies from one harmonic fold	
	over into the sideband of another harmonic. The frequency that	
	folds over is an alias of the input signal hence, the names	
	"aliasing" or "fold over distortion	
10	Define overload distortion.	BTL 1
10	If the magnitude of sample exceeds exceeds the highest	DILI
	quantization interval, overload distortion occurs	
11	What is the need for sampling? <u>NOV/DEC 2011</u>	BTL 5
	To convert analog signals to digital signals sampling is needed.	
12	Define Nyquest sampling theorem. <u>APRIL/MAY 2010</u> , APRIL 2MAY 2011	BTL 1
	APRIL?MAY 2011	
	If a finite energy signal g(t) contains no frequency higher than W Hz, it	
	is copletely determined by specifying its ordinates at a sequence	
	of points spaced $1/2W$ seconds apart. $f_s > 2f_a$	
	where . $f_{s=}$ sampling frequency	
	f _{a=analog} frequency	
13	For the signal m(t)= 3 cos 500 ^t + 4 sin 1000 ^t , Determine the	BTL 1
	Nyquist sampling rate. <u>APRIL/MAY 2010</u>	
	Refer notes	
14	Define companding and state the need for companding in a	BTL 1
	PCM system. NOV/DEC 2010, APRIL/MAY 2015	
	Companding is the process of compression and then expanding.	
	Higher amplitude signals are compressed prior to transmission	
	and then expanded in the receiver. Companding is the means of	
1.7	improving dynamic range of communication systems	
15	. What are the advantages of digital transmission? <u>NOV/DEC</u> 2010	BTL 1
	The transmission of digitally encoded analog signals requires	
	significantly more bandwidth than simply transmitting the	
	original analog signal.	

19	Define pulse code modulation.	BTL 1
	In pulse code modulation, analog signal is sampled and converted	
	to fixed length, serial binary number for transmission. The binary	
	number varies according to the amplitude of the analog signal.	
20	What is the purpose of the sample and hold circuit?	BTL 1
	The sample and hold circuit periodically samples the analog input signal and converts those samples to a multilevel PAM signal	
21	.What is the Nyquest sampling rate?	BTL4
	Nyquest sampling rate states that, the minimum sampling rate is	
	equal to twice the highest audio input frequency.	
22	What is the principle of pulse modulation?	BTL5
	Pulse modulation consists essentially of sampling analog	
	information signal and then converting those discrete pulses and	
	transporting the pulses from a source to a destination over a	
	physical transmission medium.	
23	List the four predominant methods of pulse modulation.	BTL5
	i. Pulse width modulation (PWM)	
	ii. Pulse position modulation (PPM)	
	iii. Pulse amplitude modulation (PAM)iv. Pulse duration modulation (PDM)	
	iv. Pulse duration modulation (PDM)	
24	What is codec?	BTL1
	An integrated circuit that performs the PCM encoding and	
	decoding functions is called a Codec (coder/decoder).	
25	Define quantization.	BTL1
	Quantization is a process of approximation or rounding	
	off. Assigning PCM codes to absolute magnitudes is called quantizing	
26	Define dynamic range.	BTL5
-	Dynamic range is the ratio of the largest possible magnitude to	
	the smallest possible magnitude. Mathematically, dynamic range	
	is	
	$DR = V_{max} / V_{min}$	
27	What is PAM?	BTL1

	PAM is the pulse amplitude modulation. In pulse amplitude modulation, the amplitude of a carrier consisting of a periodic train of rectangular pulses is varied in proportion to sample values of a message signal.	
28	List the four predominant methods of pulse modulation.i.Pulse width modulation (PWM)ii.Pulse position modulation (PPM)iii.Pulse amplitude modulation (PAM)iv.Pulse duration modulation (PDM)	BTL3
29	What is PWM? PWM is the pulse width modulation. In pulse width modulation, the width of a carrier consisting of a periodic train of rectangular pulses is varied in proportion to sample values of a message signal.	BTL1
30	What is PPM? PAM is the pulse position modulation. In pulse position modulation, the position of carrier r consisting of a periodic train of rectangular pulses is varied in proportion to sample values of a message signal.	BTL1
	PART-B	
1	PART-BDescribe the basic principles of PCM system.and PCMtransmitter. NOV/DEC 2011, NOV/DEC 2010Refer Page No425 in H Taub, D L Schilling, G Saha,"Principles of Communication Systems" 3/e, TMH 2007	BTL5
2	What is companding ? Explain in detail. (8) NOV/DEC 2011, <u>APRIL/MAY 2010,NOV/DEC2009</u> Refer Page No442 H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	BTL5
3	Describe in detail the adaptive delta modulation system. (8) <u>NOV/DEC 2011</u> Refer Page No457 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	BTL5
4	. What is signal to quantization noise? Explain. (8) <u>NOV/DEC</u> 2011, <u>APRIL?MAY 2011</u>	BTL5

Refer Page No439 H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 20075Discuss about the causes of ISL (8 Marks) APRIL2MAY 2010, APRIL2MAY 2011 Refer Page No463 H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL56 6 Explain in detail the Delta modulation transmitter and Receiver. (10 Marks) APRIL2MAY 2010,NOV/DEC2009 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL27Discuss the draw backs of delta modulator and explain the significance of adaptive delta modulator. (6 Marks) APRIL2MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299.Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011 Refer NotesBTL2			
5 Discuss about the causes of ISI. (8 Marks) APRIL?MAY 2010, APRIL?MAY 2011 Refer Page No463 H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL5 6 6 Explain in detail the Delta modulation transmitter and Receiver. (10 Marks) APRIL?MAY 2010,NOV/DEC2009 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL2 7 Discuss the draw backs of delta modulation and explain the significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL2 8 What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL2 9 9.Compare DM and PCM_APRIL?MAY 2011. NOV/DEC 2010. Refer Notes BTL5 10 11.Compare analog and digital modulation. APRIL?MAY 2011 BTL2		Refer Page No439 H Taub, D L Schilling, G Saha,	
APRIL?MAY 2010, .APRIL?MAY 2011 Refer Page No463 H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL266 Explain in detail the Delta modulation transmitter and Receiver. (10 Marks) APRIL?MAY 2010,NOV/DEC2009 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL27Discuss the draw backs of delta modulation and explain the significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299.Compare DM and PCM_APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2		"Principles of Communication Systems" 3/e, TMH 2007	
APRIL?MAY 2010, .APRIL?MAY 2011 Refer Page No463 H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL266 Explain in detail the Delta modulation transmitter and Receiver. (10 Marks) APRIL?MAY 2010,NOV/DEC2009 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL27Discuss the draw backs of delta modulation and explain the significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299.Compare DM and PCM_APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2	_		
Refer Page No463 H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL266 Explain in detail the Delta modulation transmitter and Receiver. (10 Marks) APRIL?MAY 2010,NOV/DEC2009 Refer Page No 455 in H Taub, D L Schilling, G Saha, 	5		BTL5
"Principles of Communication Systems" 3/e, TMH 2007 BTL2 6 6 Explain in detail the Delta modulation transmitter and Receiver. (10 Marks) APRIL?MAY 2010,NOV/DEC2009 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL2 7 Discuss the draw backs of delta modulation and explain the significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL2 8 What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL2 9 9Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer Notes BTL5 10 11.Compare analog and digital modulation. APRIL?MAY 2011 BTL2			
66 Explain in detail the Delta modulation transmitter and Receiver. (10 Marks) APRIL?MAY 2010,NOV/DEC2009 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL27Discuss the draw backs of delta modulation and explain the significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2			
Receiver. (10 Marks) APRIL?MAY 2010,NOV/DEC2009 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL27Discuss the draw backs of delta modulation and explain the significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2		"Principles of Communication Systems" 3/e, 1MH 2007	
Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 20077Discuss the draw backs of delta modulation and explain the significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2	6	6 Explain in detail the Delta modulation transmitter and	BTL2
"Principles of Communication Systems" 3/e, TMH 2007 BTL2 7 Discuss the draw backs of delta modulation and explain the significance of adaptive delta modulator. (6 Marks) BTL2 APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL2 8 What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL2 9 9.Compare DM and PCM_APRIL?MAY 2011. NOV/DEC 2010 LOID. Refer Notes BTL5 10 11.Compare analog and digital modulation. APRIL?MAY 2011 BTL2		Receiver. (10 Marks) APRIL?MAY 2010,NOV/DEC2009	
7Discuss the draw backs of delta modulation and explain the significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299Compare DM and PCM_APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2		Refer Page No 455 in H Taub, D L Schilling, G Saha,	
significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2		"Principles of Communication Systems" 3/e, TMH 2007	
significance of adaptive delta modulator. (6 Marks) APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2			
APRIL?MAY 2011 Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 8 What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 9 9Compare DM and PCM_APRIL?MAY 2011. NOV/DEC 2010. Refer Notes BTL5 10 11.Compare analog and digital modulation. APRIL?MAY 2011 BTL2	7	-	BTL2
Refer Page No 455 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL28What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2			
"Principles of Communication Systems" 3/e, TMH 20078What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL299Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2			
8 What are the types of sampling? Explain the operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 BTL2 9 9Compare DM and PCM_APRIL?MAY 2011. NOV/DEC 2010. Refer Notes BTL5 10 11.Compare analog and digital modulation. APRIL?MAY 2011 BTL2			
operation of the sample and hold circuit. NOV/DEC 2010 Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL599Compare DM and PCM APRIL?MAY 2011. NOV/DEC 2010. Refer NotesBTL51011.Compare analog and digital modulation. APRIL?MAY 2011BTL2			
Refer Page No 429 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007BTL599Compare DM and PCM <u>APRIL?MAY 2011. NOV/DEC 2010. Refer Notes</u> BTL51011.Compare analog and digital modulation. <u>APRIL?MAY 2011</u> BTL2	8		BTL2
"Principles of Communication Systems" 3/e, TMH 2007 BTL5 9 9Compare DM and PCM <u>APRIL?MAY 2011. NOV/DEC</u> BTL5 2010. Refer Notes BTL2 10 11.Compare analog and digital modulation. <u>APRIL?MAY 2011</u> Image: April 2001			
9 9Compare DM and PCM <u>APRIL?MAY 2011. NOV/DEC</u> BTL5 2010. Refer Notes BTL2 10 11.Compare analog and digital modulation. <u>APRIL?MAY 2011</u> BTL2		-	
2010. Refer Notes BTL2 10		"Principles of Communication Systems" 3/e, TMH 2007	
10 BTL2 11.Compare analog and digital modulation. APRIL?MAY 2011	9	9Compare DM and PCM <u>APRIL?MAY 2011. NOV/DEC</u>	BTL5
11.Compare analog and digital modulation. <u>APRIL?MAY 2011</u>		2010. Refer Notes	
APRIL?MAY 2011	10		BTL2
		11.Compare analog and digital modulation.	
Refer Notes		APRIL?MAY 2011	
		Refer Notes	

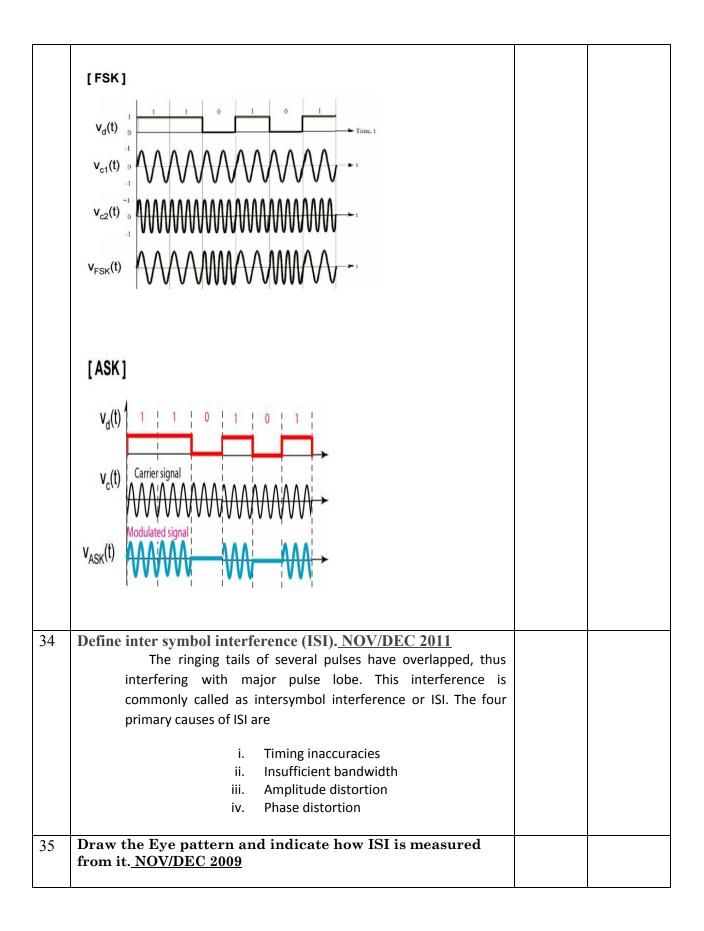
UNIT III

DIGITAL MODULATION AND TRANSMISSION

Phase shift keying – BPSK, DPSK, QPSK – Principles of M-ary signaling M-ary PSK & QAM Comparison, ISI – Pulse shaping – Duo binary encoding – Cosine filters – Eye pattern, equalizers

S.	Question	Course	Blooms
No.		Outcome	Taxanomy Level
1	What is Shannon limit for information capacity? <u>NOV/DEC</u> 2011 NOV/DEC 2012		BTL1
	$I=B \log_2[1+S/N]$		
	Where, I= information capacity (bps)		
	B= bandwidth		
	S/N=signal to noise power ratio		
	(unit less)		
2	What is binary phase shift keying? <u>NOV/DEC 2011 NOV/DEC</u> 2012 With Binary phase shift keying two phases are possible for the carrier. One phase represents a logic 1 and the other phase represents a logic 0 As the input digital signal changes state (from 1to180		BTL1
3	What are the advantages of QPSK? <u>APRIL?MAY 2010</u> , <u>APRIL?MAY 2011 NOV/DEC 2012</u> a.All signal points placed on circumference of circle b.Circuit is simple c.Noise immunity is high. d.Error probability is less then AQSK		BTL1
4	Draw ASK and PSK waveforms for a data stream 1010101. <u>APRIL?MAY 2011, APRIL?MAY 2010 NOV/DEC2015</u> 1. Sketch the waveform representation of ASK, FSK, PSK for NRZ coded binary sequence and represent also each case mathematically.		BTL2

5	Define information capacity. <u>N</u>	OV/DEC 2010,,NOV/DEC2009 ndent symbols that can be carried	BTL1
	through a system in a given unit	indent symbols that can be carried	
6		bit rate and baud for a FSK	BTL2
	system? <u>NOV/DEC 2010</u>		
	_	of change at the input to the	
		(f_b) and has the unit of bits per	
	second (bps).		
7	Draw the phasor diagram of Q	PSK <u>NOV/DEC 2009</u>	BTL1
		Q I oswot coswottsip.wot	
	ດ cosuct-sinuct 1 0 sin(wct+135)	os w c t cos w c t + sin w c t 1 1 ✓ sin(w c t + 45)	
		Sin(0001 + 45)	
	-sin wc t	sin wct	
	G I -coswct-sinwct	Q I	
	sin(ωc t -135)	-cos wc t +sin wc t 0 1 sin (wc t -45)	
	Compare binary PSK with QPS	cos wct	BTL1
8	BPSK	QPSK	DILI
	1. One bit forms a symbol.	Two bits form a symbol.	
	2. Two possible symbols	Four possible symbols.	
	3. Minimum bandwidth is	Minimum bandwidth is	
	twice of f _b	equal to f_b .	
	4. Symbol duration = Tb.	Symbol duration = 2Tb.	
9	. Bring out the difference betwe	BTL1	
	DPSK	BPSK	
	1. It does not need a carrier	It needs a carrier at receiver	
	at its receiver		


	 2. Bandwidth reduced compared to BPSK 3.Probability of error or bit error rate more than BPSK 4. Error propagation more, since it uses two bits for its reception 	More bandwidth. Comparatively low Comparatively low, since it uses only single bit	
	5. Noise interference more	Comparatively low	
10	Define carrier recovery. s the process of extracting a phase receiver signal. It is also called as		a BTL1
11	iii. Minimum transı iv. Minimum chanı v. Minimum circui	rate ability of symbol error mitted power. nel bandwidth.	g BTL1
12	What are the advantages of M- i. M-ary sign time. Bandwidth requirement of M-ary	haling schemes transmit bits at a	BTL1
13	. Draw the block diagram of BH 2012		BTL1

BPSK transmitter	Buffer	
14 Sketch the QPSK signal APRIL/MAY 2015	for the binary sequence 11001100.	BTL1
APRIL/MAY 2015 QPSK Bandwidth f _p	PSK signal in terms of bandwidth. $f_{a}=f_{b/}2.$ $=f_{b/}4$	BTL1 BTL1
When the information signarameters (amplitude, phase	gnal is digital and any one of the se or frequency) of the analog carrier is information signal is called digital	DILI
17 What is information capac	ity?	BTL1

	It is the number of independent symbols th through a system in a given unit of time .	at can be carried	
18	Give the expression for Shannon limit fo capacity.	r information	BTL1
	$I=B \log_2[1+S/N]$		
	Where, I= information	on capacity (bps)	
	B= bandwidt	h	
	S/N=signal t (unit less)	o noise power ratio	
19	Give the Nyquist formulation for channe	l capacity.	BTL2
	$f_b = 2B \log_2 M$		
	Where, f _b -channel capacity	(bps)	
	B-minimum Nyquist bandw	idth (Hz)	
	M- number of discrete level	or voltage levels	
20	What are Antipodal signals? In BPSK, the two symbols are transm following signals	itted with the help of	BTL5
	Symbol '1' => s_1 (t)	$= \sqrt{2P} \cos\left(2\pi f_0 t\right)$	
	Symbol '0' => $s_2(t)$	$= \sqrt{2P} \cos\left(2\pi f_0 t + \pi\right)$	
	Here observe that above two relative phase shift of 180 ⁰ . Su antipodal signals.	-	
21	Define minimum shift keying <u>NOV/DE</u> Minimum shift keying uses two orthogon and '1' in such a way the c two frequencies is minimu abrupt change in the ampli signal is continuous and smo	al signal to transmit '0' ifference between these m. Hence, there is no tude and the modulated	BTL1
22	Give the difference between standard FS FSK		BTL1
	FSK	MOR	

	BPSK 1. One bit forms a symbol. 2. Two possible symbols 3. Minimum bandwidth is	Two bits form a symbol. Four possible symbols. Minimum bandwidth is	
26	Compare binary PSK with QP BPSK	SK. QPSK	BTL1
	called baud rate. Baud= $1/t_s$, where, t_s - time of one		
25	that the system becomes error probability increases Define Baud rate.	simple, but the drawback is	that BTL2
	detection does not need re	nvelope) detection: This type eceiver carrier to be phase loc The advantage of such a system	cked
	phase locked with the detection is done by corr	ier generated at the receive carrier at the transmitter. elating received noisy signal r. The coherent detection i	The and
24	Differentiate coherent and none	<u> </u>	BTL1
23	What are the advantages of M- i. M-ary sign time. Bandwidth requirement of M-ary	aling schemes transmit bits at	
	 2. Bandwidth (BW) = 4f_b 3. Has discontinuities when phase changes from 0 to 1 or 1 to 0. 	$BW = f_b/2$ Phase discontinuities are removed by smooth phase transition.	
	1. The two frequencies are integer multiple of base band frequency and at the same time orthogonal.	Difference between two frequencies minimum and at the same time they are orthogonal.	

27	Define peak frequency deviation for FSK. Peak frequency deviation (Δf) is the half the difference between either the mark and space frequency. (Δf)= fm-fs /2.	BTL1
28	Define bit rate.In digital modulation, the rate of change at the input to the modulator is called the bit rate (f_b) and has the unit of bits per second (bps)	BTL1
29	Define QAM. Quadrature amplitude modulation is a form of digital modulation where the digital information is contained in both the amplitude and phase of the transmitted carrier.	BTL1
30	What do you mean by ASK? ASK (Amplitude Shift Keying) is a modulation technique which converts digital data to analog signal. In ASK, the two binary values(0,1) are represented by two different amplitudes of the 	BTL1
	0 binary 0	
31	Why is FSK and PSK signals are preferred over ASK signals.NOV/DEC2015. ASK is very susceptible to noise interference – noise usually	
	(only) affects the amplitude, therefore ASK is the modulation technique most affected by noise	
32	For a 8 PSK system operating with an information bit rate of 24 Kbps. Determine bandwidth efficiency? . NOV/DEC 2016 Bandwidth efficiency=fb/3=24/3=8 Bandwidth efficiency=8	
33	. Sketch the digitally modulated waveforms for the binary data 110101 using ASK ,FSK	
	NOV/DEC2015	

	Optimum sampling time	
36	What is an eye pattern?	
	The performance of a digital transmission system can be measured	
	by displaying the received signal on an oscilloscope and triggering	
	the time base at data rate. Thus, all waveform combinations are	
	superimposed over adjacent signaling intervals. Such a display is	
	called eye pattern or eye diagram PART-B	
1	s the principle of operation of FSK transmitter. (8) <u>NOV/DEC</u>	BTL5
	2011 APRIL/MAY 2013, NOV/DEC 2015, Nov/Dec 2016	
	Refer Page No373 in H Taub, D L Schilling, G Saha,	
	"Principles of Communication Systems" 3/e, TMH 2007	
2	Write a note on QPSK.modulator&demodulator. Draw its	BTL5
	phasor and constellation	
	diagram .Explain bandwidth consideration of	
	QPSK.NOV/DEC 2011, APRIL?MAY 2011, NOV/DEC	
	2010,NOV/DEC 2009, APRIL/MAY2015,NOV/DEC2015	
	Refer Page No381 H Taub, D L Schilling, G Saha,	
	"Principles of Communication Systems" 3/e, TMH 2007	
3	s the principle of operation of FSK receiver. (8) <u>NOV/DEC</u>	 BTL5
	2011, NOV/DEC 2015 Nov/Dec 2016	
	Refer Page No374	
	H Taub, D L Schilling, G Saha, "Principles of	
	Communication Systems" 3/e, TMH 2007	
4	Write a note on DPSK. (8) NOV/DEC 2011 APRIL/MAY 2013	BTL5
	Refer Page No407 in H Taub, D L Schilling, G Saha,	
	"Principles of Communication Systems" 3/e, TMH 2007	
5	What is known as Binary phase shift keying? Discuss in detail	BTL5
	the BPSK transmitter and Receiver and also obtain the	
	minimum double sided Nyquist bandwidth. (16 Marks)	
	<u>APRIL?MAY 2010, APRIL?MAY 2011</u>	

aha, TMH 2007 he truth 2011, aha, TMH 2007 e Costas . (8 Marks) 2 2010	BTL5 BTL2
he truth 2011, aha, TMH 2007 e Costas . (8 Marks)	
<u>2011,</u> aha, ГМН 2007 e Costas . (8 Marks)	
<u>2011,</u> aha, ГМН 2007 e Costas . (8 Marks)	
aha, FMH 2007 e Costas . (8 Marks)	BTL2
FMH 2007 e Costas . (8 Marks)	BTL2
e Costas 7. (8 Marks)	BTL2
. (8 Marks)	BTL2
<u> </u>	
bandwidth	BTL5
	DILJ
-	
01 2 KUPS.	
lag of	
007	
//DEC 2015.	BTL6
erage energy	
equired for	
through	
	bandwidth ency of 49 of 2 kbps. des of 007 //DEC 2015. erage energy required for through

UNIT IV

INFORMATION THEORY AND CODING 9

Measure of information – Entropy – Source coding theorem – Shannon–Fano coding, Huffman Coding, LZ Coding – Channel capacity – Shannon-Hartley law –

Shannon's limit – Error control codes – Cyclic codes, Syndrome calculation – Convolution Coding, Sequential and Viterbi decoding .

S.	Question	Course	Bloo
N.	Question	Outco	ms
0.		me	Taxan
0.		me	omy
			Level
1			BTL1
	What is hamming distance? The hamming distance between two code vectors is equal to the number of elements in which they differ. For example, let the two code words be, X = (101) and Y= (110). These two code words differ in second and third bits. Therefore the hamming distance between X and Y is two		
2			BTL1
2	Define code efficiency. The code efficiency is the ratio of message bits in a block to the transmitted bits for that block by the encoder i.e., Code efficiency= (k/n) k=message bits n=transmitted bits.		DILI
3			BTL1
	What is meant by systematic and non-systematic codes? In a Systematic block code, message bits appear first and then check bits. In a non-systematic code, message and check bits cannot be identified in the code vector.		
4			BTL1
	What is meant by linear code? A code is linear if modulo-2 sum of any two code vectors produces another code vector. This means any code vector can be expressed as linear combination of other code vectors.		
5			BTL1
	What are the error detection and correction capabilities of hamming codes? The minimum distance (dmin) of hamming codes is "3. Hence it can be used to detect double errors or correct single errors. Hamming codes are basically linear block codes with dmin =3.		
6			BTL2
	 What is meant by cyclic codes? When a binary code is said to be cyclic codes.?<u>Nov/Dec 2016</u> Cyclic codes are the subclasses of linear block codes. They have the property that a cyclic shift of one codeword produces another code word. A binary code is said to be a cyclic codes it it exhibits two fundamental properties. 		
L	1	1	1

	 linearity property : the sum of any two code words iin the code is also a code word. cyclic property: Any cyclic shift of a codeword in the code is also a codeword. 	
7	How syndrome is calculated in Hamming codes and cyclic codes? In hamming codes the syndrome is calculated as, S=YHT Here Y is the received vector and HT.is the e transpose of parity check matrix	BTL1
8	What is difference between block codes and convolutional codes? Block codes takes k number of bits simultaneously form n-bit code vector. This code vector is also called block. Convoluctional code takes one message bits at a time and generates two or more encoded bits. Thus convolutional codes generate a string of encoded bits for input message string.	BTL1
9	Define constraint length in convolutional code? Constraint length is the number of shift over which the single message bit influence the encoder output. It is expressed in terms of message bits	BTL1
10	Define free distance and coding gain. Free distance is the minimum distance between code vectors. It is also equal to minimum weight of the code vectors. Coding gain is used as a basis of comparison for different coding methods. To achieve the same bit error rate the coding gain is defined as, A = (Eb /No)encoded (Eb /No)coded For convolutional coding, the coding gain is given as, A = rdf/2 Here r is the code rate and df is the free distance	BTL1
11	What is convolution code? Fixed number of input bits is stored in the shift register & they are combined with the help of mod 2 adders. This operation is equivalent to binary convolution coding	BTL1
12	What is meant by syndrome of linear block code? The non zero output of the produce YHT is called syndrome & it is used to detect error in y. Syndrome is denoted by S & given as, S=YHT	BTL1
13	are the advantages & Disadvantages of convolutional codes? Advantages:	BTL1

	The decoding delay is small in convolutional codes since they operate o smaller blocks of data.	
	The storage hardware required by convolutional decoder is less since the	
	block sizes are smaller.	
	Disadvantages:	
	•Convolutional codes are difficult to analyze since their analysis is complex.	
	·Convolutional codes are not developed much as compared to block codes	
14	Convolutional codes are not developed inden as compared to brock codes	BTL1
	Define sates of encoder?	
	The constraint length of the given convolutional encoder is K=2. Its rate	
	is1/2 means for single message bit input, two bits x1 and x2 are encoded	
	at the output. S1 represents the input message bit and S2 stores the	
	previous message bit. Since only one previous message bit is stored, this	
	encoder can have states depending upon this stored message bit. Let S	
	represent,	
	S2=0 state a and $S2=1$ state b	
15	Define constraint length in convolutional codes?	BTL1
	. Define constraint length in convolutional codes?	
	Constraint length is the number of shifts over which the single message	
	bit can influence the encoder output. This is expressed in terms of	
	message bits.	
16	An event has six possible outcomes with probabilities	BTL1
10	$\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32},\frac{1}{32}$. Find the entrophy of the system <u>APRIL/MAY</u>	DILI
	2015	
17	What is mutual information? <u>APRIL/MAY 2015</u>	BTL1
	It measures the amount of information that can be obtained about one	
	random variable by observing another. It is important in communication	
	where it can be used to maximize the amount of information shared	
	between sent and received signals.	
18	Define code redundancy.	BTL1
	It is the measure of redundancy of bits in the encoded message sequence.	

19	Define rate of information transmission across the channel.	BTL1
	Dt = [H(X) - H(X/Y)]r bits/sec	
20	Define bandwidth efficiency.	BTL1
	The ratio of channel capacity to bandwidth is called bandwidth efficiency	
21	What is the capacity of the channel having infinite bandwidth? C = 1.44 (S/N_0)	BTL1
22	23.Define a discrete memoryless channel.	BTL1
	For the discrete memoryless channels, input and output, both are discrete random variables. The current output depends only upon current input for such channel	
23	Find entropy of a source emitting symb ls x, y, z with probabilities of 1/5, 1/2, 1/3 respectively. p1 = 1/5, p2 = 1/2, p3 = 1/3.	
	= 1.497 bits/symbol	
24	An alph bet set contains 3 letters A,B, C transmitted with probabilities of 1/3, ¹ / ₄ , 1/4. Find entro py	Band widt h (B)
25	Write the properties of information If there is more uncertainty about the message, information carried is also more.	BTL1
	If receiver knows the message being transmitted, the amount of information carried is zero.	
	If I_1 is the information carried by message m_1 , and I_2 is the information carried by m_2 , then amount of information carried compontely due to m_1 and m_2 is I_1+I_2	
26	Define channel capacity of discrete memoryless channel NOV/DEC2015	BTL1
	The channel capacity of a discrete memoryless channel is $C = \max X I(X; Y), (1)$ where X is the random variable describing input distribution, Y	

	describes the output distribution and the maximum is taken over all possible input distributions X.	
27	Find the entropy of the sourse alphapet { s0,s1,s2} with respective probabilities {1/4,1/4,1/2} <u>NOV/DEC 2016.</u>	BTL1
28	Calculate the amount of information if $p_k = \frac{1}{4}$	BTL5
	Amount of information : $I_k = log_2 (1/p_k)$ = $log_{10} 4$ $Log_{10} 2$ = 2 bits	
29	Define code variance	BTL1
	Variance is the measure of variability in codeword lengths. It should be as small as possible	
30	Properties of entropy:	BTL1
	Entropy is zero if the event is sure or it is impossible	
	When $p_k = 1/M$ for all the "M" symbols, then the symbols are equal.	
	PART-B	
1	Explain Huffman coding with exampleRefer Page No 578 in H Taub, D L Schilling, G Saha, "Principlesof Communication Systems" 3/e, TMH 2007	BTL2
2	Explain Shanon Fano coding. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	BTL5
3	Explain Linear block codes with example Refer Page No 632 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	BTL5
4	Explain cyclic codes with exampleRefer Page No 641 in H Taub, D L Schilling, G Saha, "Principlesof Communication Systems" 3/e, TMH 2007	BTL5
5	Explain convolutional coding.Refer Page No 654 inH Taub, D L Schilling, G Saha, "Principles of CommunicationSystems" 3/e, TMH 2007	BTL2

6	Explain how viterbi decoding procedure is used for decoding convolutional codes. <u>APRIL/MAY2015</u>	BTL5
	Refer Page No 668 in H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007	
7	 Derive the expression for channel capacity of a continuous channel. Comment on the trade off between SNR and capacity. <u>APRIL/MAY2015.</u> H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007 	BTL5
8	Five sourse messages are probable to appear as m1=0.4, 0.15, 0.15,0.15,0.15 .Find coding efficiency using Shannons Fano coding and Huffman coding and also Compare the efficiency. Nov/Dec 2016 Refer notes.	BTL5
9	Explain the concept of code generation and decoding of correlation codes. <u>Nov/Dec 2016</u> Refer Notes.	BTL5
10	The generator polynomial of (15,11) Hamming code is given by 1+X+X2. Determine encoder and syndrome calculator for this code using systametic codes. <u>Nov/Dec 2016.</u> Refer Notes	BTL2
11	A data bit sequence consists of the following strings of bits 10 11 10 10 .Analyze and draw the nature of waveform transmitted by BPSK transmitter. <u>Nov/Dec 2016</u> Notes.	BTL5

UNIT V

SPREAD SPECTRUM AND MULTIPLE ACCESS

PN sequences – properties – m-sequence – DSSS – Processing gain, Jamming – FHSS – Synchronisation and tracking – Multiple Access – FDMA, TDMA, CDMA,

S.	Question	Course	Blooms
No		Outco	Taxano
•		me	my Level

1	Direct sequend keying	ad spectrum techniques. <u>NC</u> ce spread spectrum with cohe		BTL1
2	What is CDM In code division spreading code	op spread spectrum IA? <u>NOV/DEC 2011</u> on multiple access ,each subs e(PN sequence),thereby pern hannel all of the time.	6	BTL2
3			trum modulation?	BTL1
4	APRIL/MAY Processing gai by the use of s	sing gain in spread spectru 2010, APRIL?MAY 2011 in is defined as the gain in Si pread spectrum . It is defin pread spectrum signal over a	gnal to noise Ratio obtained ed as the gain achieved by the	BTL1
5	(Jamming	tive jamming power and pr g margin) _{db} = (processing gain $/N_o)_{min}$ minimum value need v of error.	$h_{db} - 10 \log_{10} (E_b / N_o)_{min}$	BTL1
6	NOV/DEC 20 The type of s		e carrier hops randomly from	BTL1
7	Compare slov	w and fast frequency hopping	ng.	BTL1
		Slow Frequency Hopping 1.More than one symbols are transmitted per frequency hop. 2.Chip rate is equal to symbol rate.	Fast Frequency HoppingMore than one frequencyhops are required totransmit one symbol.	

8	What are the two different techniques used in speech coding for wireless communication?	BTL1
	i. Multi-pulse excited Linear Predictive Coding (LPC).ii. Code-excited LPC	
9	What are the two function of fast frequency hopping?1. Spread Jammer over the entire measure of the spectrum of transmitted signal.2. Retuning the Jamming signal over the frequency band of transmitted signal	BTL1
10	What are the features of code Division multiple Accesses? 1. It does not require external synchronization networks.	BTL1
	2. CDMA offers gradual degradation in performance when the no. of users is increased But it is easy to add new user to the system.	
11	Write some features of TDMA?	BTL1
	*In TDMA, no. of time slots depends upon modulation technique ,available bandwidth	
	*Data transmission occurs in bursts	
	It uses different time slots for transmission and reception, then duplexers are not	
	required	
	*Adaptive equalization is necessary	
	*Guard time should be minimized	
12	Write some features of CDMA?	BTL5
	*In CDMA system, many users share the same frequency either TDD or FDD may be used	
	*Channel data rate is high	
	*Multipath fading may be substantially reduced	
	*CDMA uses co –channel cells, it can use macroscopic spatial diversity to provide soft hand Off.	
13	What is near far effect in a CDMA system? <u>APRIL/MAY 2015</u>	BTL1

		1
	The near-far problem is a condition in which a receiver captures a strong signal and thereby makes it impossible for the receiver to detect a weaker signal. ^[11]	
	The near-far problem is particularly difficult in <u>CDMA</u> systems, where transmitters share transmission frequencies and transmission time.	
14	What are Walsh codes.	BTL5
	Walsh codes are orthogonal codes obtained from Hadamard matrices They are used in CDMA to separate the users	
15	on the three most commonly used multiple access techniques.	BTL4
	<u>Nov/Dec 2016</u>	
	division multiple access	
	uency division multiple access	
	e division multiple access.	
16	vill you generate PNsequence.	BTL1
	feedback shiftregister PN sequences are generated.	
17	Write some advantages of TDMA?	BTL5
	Data transmission occurs in bursts	
	It uses different time slots for transmission and reception, then duplexers are not	
18	Write some advantages of of CDMA	BTL4
	Multipath fading may be substantially reduced	
	*CDMA uses co –channel cells, it can use macroscopic spatial diversity to provide soft hand Off.	
19	What is frequency hopping spread spectrum?	BTL1
	The type of spread spectrum in which the carrier hops randomly from one frequency to another is called frequency hop spread spectrum	
20	What is the important applications of Spread spectrum?	BTL5
	Millitary applications	
21	What are spread spectrum techniques	BTL4

	Direct sequence spread spectrum with coherent Binary phase shift keying Frequency hop spread spectrum	
22	Define code division multipleaccess. In code division multiple access ,each subscriber is assigned a distinct spreading code(PN sequence),thereby permitting the subscriber full access to the channel all of the time.	BTL1
23	What is processing gain?	BTL5
	Processing gain is defined as the gain in Signal to noise Ratio obtained by the use of spread spectrum . It is defined as the gain achieved by the processing a spread spectrum signal over an unspread signal.	
24	What is effective jamming power.	BTL4
25	Jamming margin) _{db} = (processing gain) _{db} - $10\log_{10}(E_b/N_o)_{min}$ Which oscillator is used in DS spread spectrum?	BTL2
	Voltage controlled oscillator(VCO) is used	
1	PART B	BTL2
	Explain the principle of DS spread spectrum technique.with coherent binaryPSK. (8) <u>NOV/DEC 2011, APRIL/MAY 2010,</u> <u>APRIL?MAY 2011, NOV/DEC 2010, NOV/DEC 2009</u> Refer Page No310 in S. Haykin "Digital Communications" John Wiley 2005	
2	Explain the salient features of wireless communication. (8) <u>NOV/DEC 2011</u> Page no 312 in S. Haykin "Digital Communications" John Wiley 2005	BTL5
3	Describe the frequency hopping spread spectrum technique in detail. (8) <u>NOV/DEC 2011, NOV/DEC 2009</u> Refer Page No318 S. Haykin "Digital Communications" John Wiley 2005	BTL5

4	Explain the basic principle of TDMA. (8) NOV/DEC 2011	BTL5
-	Refer Page No320 in S. Haykin "Digital Communications" John	DILJ
	Wiley 2005	
	Whey 2005	
5	What is a Pseudo noise sequence? How it is generated? What are the	BTL5
	properties of Pseudo noise sequence? (8 Marks <u>) APRIL/MAY</u> 2010, APRIL?MAY2011,NOV/DEC2010	
	Refer Page No322 in S. Haykin "Digital Communications" John	
	Wiley 2005	
6	. Describe the application of CDMA in wireless communication	BTL5
	systemList the advantages of TDMA over CDMA	
	APRIL/MAY2010,NOV/DEC2010, APRIL?MAY 2011	
	Refer Page No301 in S. Haykin "Digital Communications" John	
	Wiley 2005	
7	Explain the near- far problem in spread spectrum modulation? (6	BTL2
,	Marks <u>) APRIL/MAY 2010</u> 7.	D122
	Page No 315 in	
	S. Haykin "Digital Communications" John Wiley 2005	
8		BTL5
	8Write note on coding of speech for wireless communication. APR	
	<u>2011</u> (6)	
	Refer Page No325 S. Haykin "Digital Communications" John	
	Wiley 2005	