Jeppiaar Nagar, Rajiv Gandhi Salai – 600 119

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

VI SEMESTER

ME6604 – Gas Dynamics and Jet Propulsion

Regulation – 2013

Vision of Institution

To build Jeppiaar Engineering College as an institution of academic excellence in technological and management education to become a world class university.

Mission of Institution

- To excel in teaching and learning, research and innovation by promoting the principles of scientific analysis and creative thinking.
- To participate in the production, development and dissemination of knowledge and interact with national and international communities.
- To equip students with values, ethics and life skills needed to enrich their lives and enable them to meaningfully contribute to the progress of society.
- To prepare students for higher studies and lifelong learning, enrich them with the practical and entrepreneurial skills necessary to excel as future professionals and contribute to Nation's economy.

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.				
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.				
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations				
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.				
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.				
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.				
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.				
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.				
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.				
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.				
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.				
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.				

DEPARTMENT OF MECHANICAL ENGINEERING

VisionoftheDepartment

To create excellent professionals in the field of Mechanical Engineering and to uplift the quality of technical education on par with the International Standards.

Department Mission

1. To reinforce the fundamentals of Science and Mathematics to Mechanical Engineering and critically and relatively investigate complex mechanical systems and processes.

2. To engage in the **production**, **expansion** and **practice** of advanced engineering applications through knowledge sharing activities by interacting with global communities and industries.

3. To **equip** students with **engineering ethics**, **professional roles**, **corporate social responsibility** and life skills and **apply** them for the betterment of society.

4. To promote higher studies and lifelong learning and entrepreneurial skills and develop excellent professionals for empowering nation's economy.

PEO's

- 1. To enrich the technical knowledge of design, manufacturing and management of mechanical systems and develop creative and analytical thinking in research.
- 2. To relate, strengthen and develop the theoretical knowledge of the Mechanical Engineering by exhibiting various concepts applied through diverse industrial exposures and experts' guidance.
- **3.** Facilitate the students to communicate effectively on complex social, professional and engineering activities with strict adherence to ethical principles.
- 4. Create awareness for independent and life long learning and develop the ability to keep abreast of modern trends and adopt them for personal technological growth of the nation.

PSO's

- 1. To understand the basic concept of various mechanical engineering field such as design, manufacturing, thermal and industrial engineering.
- 2. To apply the knowledge in advanced mechanical system and processes by using design and analysis techniques.
- **3.** To develop student's professional skills to meet the industry requirements and entrepreneurial skills for improving nation's economy stronger.

COURSE OUTCOME

	Student will be able to understand the basic principles of
C314.1	compressible fluid flow with varying area and wide range of its
	application in aircraft systems
	Student will be able to understand the basic principles on shock
C214.2	waves and its effects on flow properties and its applications on
C314.2	constant area duct with friction-without heat transfer and vice-
	versa
	Student will be able to apply the basic principles of variation of
C314.3	flow properties across the normal and oblique shock waves
	with its application in air-craft engine
	Student will be able to apply the basic principles of various
C314.4	combustion statergy for propulsion applied in different types of
	jet engine
	Student will be able to apply the basic principles of space
C314.5	propulsion through the study of propellents, rocket engines and
	relations of escape velocity

Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers

GAS DYNAMICS AND JET PROPULSION

UNIT II FLOW THROUGH DUCTS

Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties.

UNIT III NORMAL AND OBLIQUE SHOCKS

Governing equations – Variation of flow parameters across the normal and oblique shocks – Prandtl – Meyer relations – Applications..

UNIT IV JET PROPULSION

Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operating principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines.

UNIT V SPACE PROPULSION

Types of rocket engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity – Applications – space flights.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Anderson, J.D., "Modern Compressible flow", 3 rd Edition, McGraw Hill, 2003.

2. Yahya, S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited, New Delhi, 1996.

REFERENCES:

1.Hill. P. and C. Peterson, "Mechanics and Thermodynamics of Propulsion", Addison – Wesley Publishing company, 1992.

2. Zucrow. N.J., "Aircraft and Missile Propulsion", Vol.1 & II, John Wiley, 1975.

3. Zucrow. N.J., "Principles of Jet Propulsion and Gas Turbines", John Wiley, New York, 1970.

4. Sutton. G.P., "Rocket Propulsion Elements", John wiley, New York, 1986,.

5. Shapiro. A.H.," Dynamics and Thermodynamics of Compressible fluid Flow", John wiley, New York, 1953.

6. Ganesan. V., "Gas Turbines", Tata McGraw Hill Publishing Co., New Delhi, 1999.

10

9

6

10

10

7. Somasundaram. PR.S.L., "Gas Dynamics and Jet Propulsions", New Age International Publishers, 1996.

8. Babu. V., "Fundamentals of Gas Dynamics", ANE Books India, 2008.

9. Cohen. H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group Ltd., 1980.

Jeppiaar Nagar, Rajiv Gandhi Salai – 600 119 DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

SUBJECT : ME6604 – Gas Dynamics and Jet Propulsion

YEAR /SEM:III /VI

UNIT I

BASIC CONCEPTS AND ISENTROPIC FLOWS

Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers

PART – A					
CO Mapping : C314.1					
Q. No	Questions	BT Level	Competence	РО	
1	Express the stagnation enthalpy in terms of static enthalpy and velocity of flow.	BTL-3	Applying	PO1,PO2	
2	Explain the meaning of stagnation state with example.	BTL-2	Understanding	PO1,PO2, PO3	
3	Distinguish between static and stagnation pressures.	BTL-4	Analyzing	PO1,PO2	
4	Differentiate between the static and stagnation temperatures.	BTL-4	Analyzing	PO1,PO2	
5	What is the use of Mach number?	BTL-1	Remembering	PO1	
6	What is Crocco number?	BTL-1	Remembering	PO1	
7	Give expression of P/P0 for an isentropic flow through a duct.	BTL-3	Applying	PO1,PO2	
8	What are the different regions of compressible flow?	BTL-4	Analyzing	PO1,PO2	
9	Define M* and give the relation between M and M*[BTL-1	Remembering	PO1	
10	A plane travels at a speed of 2400Km/hr in an atmosphere of 5 degree, find the Mach angle?	BTL-4	Analyzing	PO1,PO2,PO3, PO4	
11	Define Mach angle and Mach wedge.	BTL-1	Remembering	PO1	
12	What is meant by isentropic flow with variable area?	BTL-1	Remembering	PO1	
13	Define Mach cone.	BTL-1	Remembering	PO1,PO2	
14	What is characteristic Mach number?	BTL-1	Remembering	PO1	
15	Distinguish between Mach wave and normal shock?	BTL-4	Analyzing	PO1,PO2	
16	Define zone action and zone of silence.	BTL-1	Remembering	PO1	
17	Define adiabatic process.	BTL-1	Remembering	PO1	
18	What is meant by transonic flow?	BTL-1	Remembering	PO1, PO2	

Q. No	Questions	BT Level	Competence	РО
19	What is meant by hypersonic flow?	BTL-1	Remembering	PO1, PO2,PO10
20	Distinguish between nozzle and diffuser?	BTL-4	Analyzing	PO1,PO2
21	What is Impulse function ?	BTL-1	Remembering	PO1,PO2
22	Differentiate between adiabatic flow and diabatic flow ?	BTL-4	Analyzing	PO1,PO2
23	State the expression for dA/A as a function of Mach number ?	BTL-5	Evaluating	PO1,PO2,PO3
24	Give the expression for T/To and T/T* for isentropic flow through variable area interms of Mach number ?	BTL-5	Evaluating	PO1,PO2,PO3
25	When does the maximum mass flow occur for an isentropic flow with variable area?	BTL-5	Evaluating	PO1,PO2,PO3
26	Write the equation for efficiency of the diffuser.	BTL-4	Analyzing	PO1,PO2
27	What is impulse function and give its uses?	BTL-4	Analyzing	PO1,PO2
28	State the necessary conditions for chocked flow to occur in a nozzle.	BTL-5	Evaluating	PO1,PO2,PO3
29	What is meant by normal shock as applied to compressible flow?	BTL-3	Applying	PO1,PO2,PO3
30	Define strength of a shock wave.	BTL-1	Remembering	PO1
31	What is the effect of Mach number on compressibility?	BTL-5	Evaluating	PO1,PO2,PO3
	PART – B &	k C		
1	An air craft flies at a velocity of 700Kmph in an atmosphere where the pressure is 75kPa and temperature is 5°C. Calculate the Mach number and stagnation properties	BTL-5	Evaluating	PO1,PO2,PO3
2	Air expands isentropically through the convergent nozzle from constant inlet conditions $P_0=4bar$, $T_0 = 550k$. Exit area of nozzle is $1000cm^2$. Determine the exit velocity and mass flow rate for the following two cases at exit. (i) M=1 (ii)M=0.85	BTL-5	Evaluating	PO1,PO2,PO3
3	 (i) Difference between transonic flow and hypersonic flow (ii) Derive the expression for pressure coefficient equation for compressible flow (iii) Name the different regions of compressible fluid flow 	BTL-4	Analyzing	PO1,PO2,PO3, PO5, PO6,PO9, PO12,
4	 (i)Derive the expression for the mass flow rate in terms of Mach number (NOV/DEC 2014) (ii)A nozzle in a wind tunnel gives a test –section Mach number of 2.0. Air enters the nozzle from a large reservoir at 0.69 bar and 310K. The crosssectional area of the throat is 1000cm². Determine the following quantities for the tunnel for one dimensional isentropic flow: a. Pressures, temperatures and velocities at the throat and test sections, b. Area of cross-section of the test section c. Mass flow rate and Power required to drive the compressor 	BTL-5	Evaluating	PO1,PO2,PO3, PO4

5	Air flows through a nozzle which has inlet areas of 0.001m^2 . If the air has a velocity of 80m/s a temperature of 301K and a pressure of 700kPa at the inlet section and a pressure of 250kPa at the exit find the mass flow rate through the nozzle and assuming one -dimensional isentropic flow the velocity at the exit section of the nozzle. A gas flows through a restricted passage with a most of 850 m/s.	BTL-5	Evaluating	PO1,PO2,PO3, PO4
6	speed of 850 m/s .its local temperature is 1650 K; its specific heat ratio k and gas constant R are 1.25 and 250 J/kg K respectively. Calculate the local sonic velocity and Mach number.	BTL-5	Evaluating	PO1,PO2,PO3
7	A supersonic dliffuser, diffuses air in an isentropic flow from a Mach number of 3 to a Mach number of 1.5, the static conditions of air at inlet are 70 kPa and -7°C. If the mass flow rate of air is125 kg/s, determine (i)Stagnation conditions, (ii) Area at throat and exit. (iii) Static Conditions of air at exit.	BTL-5	Evaluating	PO1,PO2,PO3
8	(i).Discuss the changes of Mach number in CD nozzle under various back pressure.(ii)An airplane is travelling while you are observing from the ground.How will you know whether it is subsonic or supersonic? Explain.(iii)How fluid stagnation states will change if the fluid flow in diffuser follows an adiabatic process?	BTL-5	Evaluating	PO1,PO2,PO3
9	Air flows through a convergent-divergent (CD) nozzle. At some section in the nozzle, pressure =2bar, velocity=170m/s and temperature=200°C and cross sectional area =1000 mm ² .Assuming isentropic flow conditions, determine: (i) stagnation temperature and stagnation pressure (ii) sonic velocity and Mach number at this section (iii) velocity , Mach number and flow area at outlet section where pressure is 1.1 bar (iv) pressure, temperature, velocity and flow area at throat section.	BTL-5	Evaluating	PO1,PO2,PO3
E l a serve	UNIT II FLOW	THROUGH	DUCTS	
r iows variati	inrough constant area ducts with heat transfer	r (kayleigh	now) and Frictio	n (ranno 110w) –
	$\frac{PART - A}{PART - A}$	Ι		
	Questions	BT Level	Competence	РО
1	What are the assumptions made for fanno flow?	BTL-4	Analyzing	PO2,PO3
2	Differentiate Fanno flow and Rayleigh flow?	BTL-4	Analyzing	PO1, PO2, PO3
3	Explain chocking in Fanno flow?	BTL-2	Understanding	PO1, PO2, PO3
4	Explain the difference between Fanno flow and Isothermal flow?	BTL-4	Analyzing	PO1,PO2
5	Write down the ratio of velocities between any two sections in terms of their Mach number in a fannoflow ?	BTL-5	Evaluating	PO1,PO3,PO4
6	Write down the ratio of density between any two section in terms of their Mach number in a fanno	BTL-5	Evaluating	PO1,PO2,PO4

	flow?			
7	What are the three equation governing Fanno flow?	BTL-5	Evaluating	PO1,PO2
8	Give the expression to find increase in entropy for Fanno flow?	BTL-5	Evaluating	PO1,PO2
9	Give two practical examples where the Fanno flow occurs?	BTL-4	Analyzing	PO1,PO2
10	What is Rayleigh line and Fanno line?	BTL-1	Remembering	PO1,PO4
11	What are the assumptions of Fanno flow?	BTL-4	Analyzing	PO1,PO2
12	Write down expression to find increase in entropy for Fanno flow.	BTL-5	Evaluating	PO1,PO4
13	Define fanning"s coefficient of skin friction	BTL-1	Remembering	PO1,PO2,PO4
14	Define oblique shock.	BTL-1	Remembering	PO1
15	Define Fanno line.	BTL-1	Remembering	PO1
16	Define isothermal flow with friction.	BTL-1	Remembering	PO1
17	Give the applications of isothermal flow with friction.	BTL-3	Applying	PO1
18	State the assumptions made to derive the equations for isothermal flow.	BTL-4	Analyzing	PO1,PO4
19	Give the assumptions made in Rayleigh flow	BTL-4	Analyzing	PO1,PO2
20	Write the continuity equation	BTL-5	Evaluating	PO1,PO2
21	Give two practical examples for Rayleigh flow	BTL-4	Analyzing	PO1,PO2
22	Define fanning's coefficient of skin friction	BTL-1	Remembering	PO1,PO2
23	Write down the expression for the length of duct in terms of the two mach number M1 and M2 for a flow through a constant area duct with the influence of friction.	BTL-5	Evaluating	PO1,PO2,PO4
24	Write down the ratio of pressure between any two section in terms of their mach number in a Fanno flow.	BTL-5	Evaluating	PO1,PO2
25	Write down the expression for the temperature ratio between two sections in terms of Mach numbers for flow in a constant area duct with friction	BTL-5	Evaluating	PO1,PO2
26	Write down the expression for the pressure ratio of two section interms of mach number in Rayeligh flow.	BTL-5	Evaluating	PO1,PO2,PO4
27	What is the value of Mach number of air at the maximum point in Rayleigh heating process.	BTL-4	Analyzing	PO1,PO4
28	Shown a normal shock in h-s diagram with the help of Rayleigh line and Fanno line.	BTL-6	Creating	PO1,PO2,PO4
29	Give fanno line in $h - s$ diagram with isentropic stagnation line and show various mach number regions.	BTL-6	Creating	PO1,PO4
30	Give the effect of increasing the flow length after reaching critical condition in a fanno flow.	BTL-4	Analyzing	PO1,PO4
31	List the governing equations that useful to describe the Rayleigh flow.	BTL-3	Applying	PO1,PO2
	PART – B	& C		
1	The stagnation temperature of air is raised from	BTL-5	Evaluating	PO1,PO2,

	85°C to 376°C in a heat exchanger. If the inlet Mach number is 0.4. Determine the final Mach			
	number and percentage drop in pressure.			
2	Air at Po=11bar, To=420K enters at 45mm diameter pipe at a Mach number of 3 and the friction co-efficient for the pipe surface is 0.001. if the mach number at exit is 0.8. Determine (i) Mass flow rate (ii) Length of the pipe	BTL-4	Analyzing	PO1,PO2
3	Prove the variation of flow parameter and the maximum possible heat transfer $Q_{max} = C_p T * \frac{(1 - M^2)^2}{2(1 + Y)M^2)}$	BTL-5	Evaluating	PO1,PO2,PO4
4	 (a)A circular duct of 35cm diameter passes gas at Mach number of 2.0. The static pressure and temperature are 1 bar and 410k respectively. A normal shock occurs at a Mach number of 1.4 and the exit Mach number is 1. If the co-efficient of friction is 0.02, calculate: (i)length of the duct upstream and downstream of the shock wave (ii)mass flow rate of the gas and (iii)change of entropy for upstream of the shock, across the shock and downstream of the shock, across the shock. Take Y=1.3 and R=0.285kJ/kgK (b)Explain the difference between Fanno flow and Isothermal flow 	BTL-5	Evaluating	PO1,PO2,
5	The condition of gas in a combustor at entry is $P_1=0.343$ bar, $T_1=310$ K, $C_1=60$ m/sec.Determine the Mach number, pressure, temperature and velocity at the exit if the increase in stagnation enthalpy of the gas between entry and exit is 1172.5 kJ/kg.TakeCp= 1.005 kJ/kgK, $\Im = 1.4$.	BTL-5	Evaluating	PO1,PO2,
6	Air flows out of a pipe with a diameter of $0.3m$ at a rate of $1000m^3/min$ at a pressure and temperature of $150kPa$ and $293K$ respectively. If the pipe is 50m long, find assuming that f=0.005, the Mach number at the exit, the inlet pressure and the inlet temperature.	BTL-5	Evaluating	PO1,PO2,
7	Air (γ = 1.4) flows into a constant-area insulated duct with a Mach number of 0.20. For a duct diameter of 1 cm and friction coefficient of 0.02, determine the duct length required to reach Mach 0.60. Determine the length required to attain Mach 1. Finally, if an additional 75 cm is added to the duct length needed to reach Mach 1, while the initial stagnation conditions are maintained, determine the reduction in flow rate that would occur.	BTL-5	Evaluating	PO1,PO2,PO4
8	(i) In which configuration of Figure (a) or (b], will the high-pressure tank empty faster? Explain.	BTL-5	Evaluating	PO1,PO2,PO4

	High pressure tank (a) High pressure tank (b)			
	(ii) The stagnation temperature of air is raised from 85°C to 376°C in a heat exchanger. If the inlet Mach number is 0.4, determine the final Mach number and			
9	(i) Prove that the Mach numbers at the maximum enthalpy and maximum entropy points on the Rayleigh line are $1/\sqrt{\gamma}$ and 1.0 respectively. (ii)Show the h=constant and s =constant lines at these points on the Rayleigh line on the h-s and p-v planes. (Nov'17)	BTL-5	Evaluating	PO1,PO2,PO4
	UNIT III NORMAL A	AND OBLIQ	UE SHOCKS	
Gover Mever	ning equations – Variation of flow parameters ac relations – Applications.	cross the nor	mal and oblique s	shocks – Prandtl –
	PART -	A		
CO M	apping : C314.3	I	1	1
O.No	Ouestions	BT Level	Competence	PO
		DILEVE	Competence	10
1	What is mean by shock wave?	BTL-1	Remembering	PO1
1 2	What is mean by shock wave? What is mean by Normal shock?	BTL-1 BTL-1	Remembering Remembering	PO1 PO1
$ \begin{array}{c} 1\\ 2\\ 3 \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?	BTL-1 BTL-1 BTL-1	Remembering Remembering Remembering	PO1 PO1 PO1
$ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?	BTL-1 BTL-1 BTL-1 BTL-4	Remembering Remembering Remembering Analyzing	PO1 PO1 PO1 PO1
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5 \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?Shock waves cannot develop in subsonic flow?Why?	BTL-1 BTL-1 BTL-1 BTL-4 BTL-4	RememberingRememberingRememberingAnalyzingAnalyzing	PO1 PO1 PO1 PO1 PO1 PO1,PO4
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6 \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?Shock waves cannot develop in subsonic flow?Why?Define compression and rarefaction shock?	BTL-1 BTL-1 BTL-1 BTL-4 BTL-4 BTL-4	RememberingRememberingRememberingAnalyzingAnalyzingRemembering	PO1 PO1 PO1 PO1 PO1,PO4 PO1
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?Shock waves cannot develop in subsonic flow?Why?Define compression and rarefaction shock?State the necessary conditions for a normal shockto occur in compressible flow?	BTL-1 BTL-1 BTL-1 BTL-4 BTL-4 BTL-4 BTL-1 BTL-1	RememberingRememberingRememberingAnalyzingAnalyzingRememberingAnalyzing	PO1 PO1 PO1 PO1 PO1,PO4 PO1 PO1
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?Shock waves cannot develop in subsonic flow?Why?Define compression and rarefaction shock?State the necessary conditions for a normal shockto occur in compressible flow?Give the difference between normal and oblique shock?	BTL-1 BTL-1 BTL-1 BTL-4 BTL-4 BTL-4 BTL-1 BTL-4 BTL-4	RememberingRememberingRememberingAnalyzingAnalyzingRememberingAnalyzingRememberingAnalyzingAnalyzing	P01 P01 P01 P01 P01,P04 P01 P01 P01 P01
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?Shock waves cannot develop in subsonic flow?Why?Define compression and rarefaction shock?State the necessary conditions for a normal shockto occur in compressible flow?Give the difference between normal and oblique shock?What are the properties change across a normal shock?	BTL-1 BTL-1 BTL-1 BTL-4 BTL-4 BTL-4 BTL-4 BTL-4 BTL-4 BTL-4	RememberingRememberingRememberingAnalyzingAnalyzingRememberingAnalyzingRememberingAnalyzingUnderstanding	P01 P01 P01 P01 P01,P04 P01 P01 P01 P01 P01 P01
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \hline 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?Shock waves cannot develop in subsonic flow?Why?Define compression and rarefaction shock?State the necessary conditions for a normal shockto occur in compressible flow?Give the difference between normal and oblique shock?What are the properties change across a normal shock?What is Prandtl – Meyer relation?	BTL-1 BTL-1 BTL-1 BTL-4 BTL-4 BTL-4 BTL-4 BTL-4 BTL-4 BTL-2 BTL-1	RememberingRememberingRememberingAnalyzingAnalyzingRememberingAnalyzingUnderstandingRemembering	P01 P01 P01 P01 P01,P04 P01 P01 P01 P01 P01 P01 P01 P01 P01,P02 P01,P02 P01,P02
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?Shock waves cannot develop in subsonic flow?Why?Define compression and rarefaction shock?State the necessary conditions for a normal shockto occur in compressible flow?Give the difference between normal and oblique shock?What are the properties change across a normal shock?What is Prandtl – Meyer relation?Define strength of shock wave.	BTL-1 BTL-1 BTL-1 BTL-4 BTL-4 BTL-4 BTL-4 BTL-1 BTL-4 BTL-1 BTL-1 BTL-1 BTL-2 BTL-1 BTL-1	RememberingRememberingRememberingAnalyzingAnalyzingAnalyzingAnalyzingAnalyzingUnderstandingRememberingRememberingRemembering	P01 P01 P01 P01 P01,P04 P01 P01 P01 P01 P01 P01 P01 P01 P01,P02 P01,P02 P01,P02 P01,P02 P01,P01
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?Shock waves cannot develop in subsonic flow?Why?Define compression and rarefaction shock?State the necessary conditions for a normal shockto occur in compressible flow?Give the difference between normal and oblique shock?What are the properties change across a normal shock?What is Prandtl – Meyer relation?Define strength of shock wave.Is the flow through a normal shock an equilibrium one.	BTL-1 BTL-1 BTL-1 BTL-4 BTL-4 BTL-4 BTL-4 BTL-4 BTL-4 BTL-1 BTL-4 BTL-1 BTL-2 BTL-1 BTL-1 BTL-1 BTL-1	RememberingRememberingRememberingAnalyzingAnalyzingRememberingAnalyzingUnderstandingRememberingRememberingAnalyzing	P01 P01 P01 P01 P01 P01,P04 P01 P01 P01 P01 P01 P01 P01,P02 P01,P02 P01,P02 P01,P02 P01,P02 P01,P02
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ \end{array} $	What is mean by shock wave?What is mean by Normal shock?What is oblique shock?What are applications of moving shock wave ?Shock waves cannot develop in subsonic flow?Why?Define compression and rarefaction shock?State the necessary conditions for a normal shockto occur in compressible flow?Give the difference between normal and oblique shock?What are the properties change across a normal shock?What is Prandtl – Meyer relation?Define strength of shock wave.Is the flow through a normal shock an equilibrium one.Calculate the strength of the shock waves when normal shock appears at M=2.	BTL-1 BTL-1 BTL-1 BTL-4 BTL-4 BTL-4 BTL-4 BTL-4 BTL-4 BTL-1 BTL-4 BTL-4 BTL-4 BTL-4 BTL-5	RememberingRememberingRememberingAnalyzingAnalyzingAnalyzingAnalyzingUnderstandingRememberingRememberingAnalyzingUnderstandingRememberingRememberingRememberingRememberingRememberingRememberingRememberingRememberingRememberingAnalyzing	P01 P01 P01 P01 P01 P01,P04 P01 P01 P01 P01 P01 P01 P01,P02 P01,P02 P01,P02 P01,P02 P01,P02 P01,P02 P01,P02

15	What are expansion wave?	BTL-1	Remembering	PO1
16	What are compression wave?	BTL-1	Remembering	PO1
17	How the Mach number before and after the occurrence of a normal shock are related?	BTL-4	Analyzing	PO1,PO2,PO4
18	What are applications of moving shock wave?	BTL-3	Applying	PO1
19	What is meant by normal shock as applied to compressible flow?	BTL-4	Analyzing	PO1
20	Define oblique shock where it occurs.	BTL-1	Remembering	PO1,PO2
21	Write the equation for efficiency of a diffuser	BTL-5	Evaluating	PO1,PO3
22	Write down the Rankine-Hagoniot equation	BTL-5	Evaluating	PO1,PO2
23	Give the expression for T_y/T_x across the normal shock.	BTL-5	Evaluating	PO1,PO2,PO3
24	How to determine deflection angle θ .	BTL-5	Evaluating	PO1
25	What is mean by detached shock wave	BTL-1	Remembering	PO1
26	How do the various flow properties behave during expansion waves?	BTL-4	Analyzing	PO1,PO3
27	What is the condition of before and after shock?	BTL-4	Analyzing	PO1,PO2,PO3
28	Describe about Multiple Shock Waves	BTL-2	Understanding	PO1
29	What are the components of the velocity in oblique shock	BTL-2	Understanding	PO1
30	How the disturbances get changed	BTL-4	Analyzing	PO1,PO2,PO3
31	Mention the useful applications of shock wave.	BTL-3	Applying	PO1,PO3
	PART – B	& C		
1	 A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density 	BTL-5	Evaluating	PO1,PO2,PO4
2				

3	Derive the expression for Rankine-Hugoniot	рті <i>5</i>	Evoluting	
	equation (Density ratio across the shock)	DIL-5	Evaluating	101,102,103
4	(a)What Is oblique shock waves? And what are			
	the assumptions are used for oblique shock flow?			
	(b)Oblique shock waves occur at the leading edge			
	of a symmetrical wedge. Air has a Mach number			
	of 2.1 and deflection angle (δ) of 15°. Determine			PO1,PO2,
	the following for strong and weak waves.	BTL-5	Evaluating	PO3,
	I. Wave angle			,
	I. Pressure ratio			
	Temperature ratio and			
	Down stream Mash number			
5	Λ as at a pressure of $340m$ her temperature of			
5	A gas at a pressure of 540m bar, temperature of 355K and entry Mach number of 1.4 is expanded			
	isentropically to 140m bar Calculate the			
	following:	BTL-5	Evaluating	PO1,PO2,
	Deflection angle	DIL-3		
	i. Final mach number			
	Final temperature of the gas. Take $\forall =1.3$.			
6	A gas ($y=1.3$) at p ₁ =345mbar, T ₁ =350K and			
_	$M_1=1.5$ is to be isentropically expanded to			
	138mbar.			
	Determine	BTL-5	Evaluating	PO1,PO2,PO4
	i. The deflection angle		C	
	. Final Mach number			
	i. The temperature of the gas.			
7	State and prove Prandtl-Meyer relation for a	RTI -5	Evoluating	PO1,PO2,
	normal shock.	DIL-3	Evaluating	
8	A gas at a pressure of 340 mbar, temperature of			
	355 K and entry Mach number of 1.4 is expanded			
	isentropic ally to 140mbar. Calculate the	BTL-5	Evaluating	PO1,PO2,
	following (i) deflection angle, (ii) final mach		Litututing	PO3
	number, (iii) Final temperature of the gas. Take			
	γ=1.3.			
9	The stagnation pressure and temperature of air at			
	the entry of a nozzle are Sbar and S00K			
	respectively. The exit Mach number is 2 where a			
	normal snock occurs. Calculate the following	рті <i>е</i>	Evolution	
	quantities before and after the snock; static and	D1L-3	Evaluating	r01,r02,r04
	stagnation temperatures and pressures, air velocities and mach number. What are the veloce			
	of stagnation pressure loss and increase in entropy			
	across the shock?			
	actoss the shoek:			

UNIT IV JET PROPULSION
Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operating
principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and
turbo prop engines.
PART – A

CO Ma	CO Mapping : C314.4					
Q. No	Questions	BT Level	Competence	РО		
1	What is thrust co-efficient?	BTL-1	Remembering	PO1,PO2		
2	Define propulsive efficiency?	BTL-1	Remembering	PO1,PO2		
3	What is thrust or drag?	BTL-1	Remembering	PO1		
4	Define Effective Speed ratio.	BTL-1	Remembering	PO1,PO2		
5	Define specific thrust.	BTL-1	Remembering	PO1		
6	What is thrust specific fuel consumption(TSFC)?	BTL-1	Remembering	PO1,PO2		
7	Define specific impulse.	BTL-1	Remembering	PO1		
8	What are the main parts of Ramjet engine?	BTL-4	Analyzing	PO1		
9	Give the expression for the thrust developed b a turbojet engine.	BTL-5	Evaluating	PO1,PO2		
10	Define overall efficiency.	BTL-1	Remembering	PO1,PO2		
11	What is the type of compressor used in turbo jet? Why?	BTL-4	Analyzing	PO1,PO4		
12	Define bye-pass ratio.	BTL-1	Remembering	PO1,PO2		
13	What is turboprop unit?	BTL-1	Remembering	PO1		
14	What is thrust augmentation?	BTL-1	Remembering	PO1		
15	Why ramjet engine does not require a compressor and a turbine?	BTL-4	Analyzing	PO1,PO3		
16	What is scram jet?	BTL-1	Remembering	PO1		
17	Define the principle of Ram jet engine.	BTL-1	Remembering	PO1,PO3		
18	Give the components of a turbo jet.	BTL-4	Analyzing	PO1,PO3		
19	Give the difference between pulse jet and ram jet engine.	BTL-4	Analyzing	PO1		
20	Give the difference between turbojet and ram jet engine.	BTL-4	Analyzing	PO1		
21	What is the difference between turbo prop engine and turbo jet engine.	BTL-4	Analyzing	PO1,PO2		
22	What is ram effect?	BTL-1	Remembering	PO1		
23	Differentiate between pressure thrust and momentum thrust.	BTL-4	Analyzing	PO1,PO2		
24	Why after burners are used in turbojet engine?	BTL-4	Analyzing	PO1,PO3		
25	Why a ram jet engine does not require a compressor and a turbine?	BTL-4	Analyzing	PO1,PO2,PO3		
26	What are the factors affecting the actual efficiency of the propeller?	BTL-4	Analyzing	PO1,PO2,PO3		
27	Define Thrust grading.	BTL-1	Remembering	PO1,PO2		
28	What factors make the efficiency of a propeller?	BTL-4	Analyzing	PO1,PO2		
29	Define mean aerodynamic chord	BTL-1	Remembering	PO1		
30	What are the various types of drag?	BTL-2	Understanding	PO1		
31	Why axial flow compressors are preferred	BTL-4	Analyzing	PO1,PO2,PO4		

	over centrifugal compressors in jet engines?			
	PART – B	& C		
1	Explain with the neat sketches the principle of operation of (i) Turbofan engine and (ii) Turbojet engine	BTL-6	Creating	PO1,PO2, PO3
2	An aircraft propeller flies at a speed of 440kmph. The diameter of the propeller is 4.1m and the speed ratio is 0.8. The ambient conditions of air at the flight altitude are T=255K and P=0.55bar. find the following Thrust, Thrust power and Propulsive efficiency.	BTL-5	Evaluating	PO1,PO2
3	Derive the expression for the jet thrust propeller thrust, propulsive efficiency, thermal efficiency, overall efficiency and the optimum value of the flight to jet speed ratio for a turbojet engine.	BTL-5	Evaluating	PO1,PO2, PO4
4	A ram jet engine propels an aircraft at a Mach number of 1.4 and at an altitude of 6000m. The diameter of the inner diffuser at entry is 40 cm and the calorific value of the fuel is 43MJ/kg. The stagnation temperature at the nozzle entry is 1500K. The properties of the combustion gases are same as those of air.(\forall =1.4, R=287J/kgk). i. Determine the following: ii. The efficiency of the ideal cycle, iii. Flight speed iv. Air flow rate v. Diffuser pressure ratio vii. Nozzle pressure ratio viii. Nozzle pressure ratio viii. Nozzle jet Mach number ix. Propulsive efficiency and Thrust. Assume, Diffuser efficiency, η_D =0.92, Combustion efficiency, η_B =0.97 and Nozzle jet efficiency, η_N =(or) η_j =0.95 Stagnation pressure loss in the combustion chamber=0.02P ₀₂ .	BTL-5	Evaluating	PO1,PO2, PO3,PO4
5	Derive the following relation for aircraft engine Flight to jet speed ratio $\sigma = 1 - \frac{F}{m_a c_j}$ Thrust in a turbojet engine $F = m_a (c_i - u) = m_a (c_i - u) + (n_a - n_a) A$	BTL-5	Evaluating	PO1,PO2
6	An aircraft flies at 90 km/hr. One of its turbojet	BTL-5	Evaluating	PO1,PO2,

	engines takes in 40kg/s of air and expands the			PO3
	gases to the ambient pressure. The air-fuel ratio			
	43 MI/kg For maximum thrust power			
	determine, Jet velocity, Thrust, Specific thrust,			
	Thrust power and Propulsive thermal and overall			
	efficiencies.			D 01
7	Explain turbo-prop propulsion engines with suitable Diagrams	BTL-6	Creating	PO1, PO3
8	A ranjet engine operates at $M = 1.2$ at an altitude of 6500 m. The diameter of inlet diffuser at entry is 50cm and the stagnation temperature at the nozzle entry is 1500K.The calorific value of the fuel used is 40 MJ/kg. The properties of the combustion gases are same those of air($\gamma = 1.4$, R =287 J/kgK).The velocity of the air at the diffuser exit is negligible, calculate:(i) the efficiency of the ideal cycle,(ii) Flight speed, (iii) Air flow rate, (iv)Diffuser pressure ratio, (v) FueI air ratio ,(vi) Nozzle jet Mach number. The efficiencies of the diffuser = 0.9,combustor = 0.98 and the nozzle= 0.96	BTL-5	Evaluating	PO1,PO2
	1. (i) Discuss the function and need of			
	afterburner in jet engines.			
	(ii) Derive the thrust equation for turbo-			
	prop engine.			
9	(iii)Draw the following performance	BTL-2	Understanding	PO1,PO2,PO4
	curve for turbo-prob ,turbofan and			
	turbojet engines: Propulsive efficiency			
	Vs Flight Speed (Nov'17)			
10	Mach 2 aircraft engine employs a subsonic inlet diffuser of area ratio 3. A normal shock is formed just upstream of the diffuser inlet. The free stream conditions upstream of the diffuser are p=10 bar,T=300K. Determine (i) Mach number, pressure and temperature at the diffuser exit,(ii)Diffuser efficiency including the shock. Assume isentropic flow in the diffuser downstream of the shock.	BTL-5	Evaluating	PO1,PO2, PO3
Tvr	UNIT V SPA bes of rocket engines – Propellants-feeding system	UE PROPUL	LSIUN	- Theory of rocket
	nulsion Dorformance study Staging Term	inol and aba	radoristia valasit	- Incory of Tocket
	pulsion – remaine study – staging – remi	mai anu cha		y – Applications –
spa	ce mgnts.			
PART – A				
CO Ma	apping : C314.5			
Q.No	Questions	BT Level	Competence	PO

1	Define Rocket propulsion.	BTL-1	Remembering	PO1
2	Explain the performance of the rocket engine.	BTL-2	Understanding	PO1.PO2
3	Define specific propellant consumption	BTL-1	Remembering	PO1.PO3
4	Define thrust for a rocket engine and how it is produced.	BTL-1	Remembering	PO1
5	What are the types of rocket engines?	BTL-2	Understanding	PO1
6	What is over expanded nozzle?	BTL-1	Remembering	PO1
7	Compare solid and liquid propellant rockets.	BTL-4	Analyzing	PO1,PO2
8	What are the types of liquid propellants used in rocket engines?	BTL-2	Understanding	PO1,PO12
9	What are the types of propellant feed system?	BTL-2	Understanding	PO1,PO12
10	What are the basic combustion processes?	BTL-2	Understanding	PO12
11	What are the advantages of solid propellant rocket engine?	BTL-2	Understanding	PO1
12	What are the disadvantages of solid propellant rocket engine?	BTL-2	Understanding	PO1,PO3
13	What is the limitation of hybrid rocket engine?	BTL-2	Understanding	PO1,PO4
14	What are the advantages of hybrid rocket engine?	BTL-2	Understanding	PO1,PO3
15	Define heterogeneous propellants.	BTL-1	Remembering	PO1
16	Define homogenous propellants.	BTL-1	Remembering	PO1
17	Differentiate jet propulsion and rocket propulsion (or) differentiate between air breathing and rocket propulsion?	BTL-4	Analyzing	PO1,PO2
18	What is monopropellant?	BTL-1	Remembering	PO1
19	What is mono-propellants? Give example.	BTL-1	Remembering	PO1
20	What is bipropellant?	BTL-1	Remembering	PO1
21	Classify the rocket engines based on sources of energy employed?	BTL-4	Analyzing	PO1,PO12
22	What is specifying impulse of rocket?	BTL-1	Remembering	PO1,PO3
23	Define specific consumption?	BTL-1	Remembering	PO1
24	What is weight flow co-efficient?	BTL-1	Remembering	PO1,PO2
25	What is IWR?	BTL-1	Remembering	PO1
26	Name some oxidizers used in rockets.	BTL-2	Understanding	PO1
27	Name few advantages of liquid propellant rockets over solid propellant rockets.	BTL-2	Understanding	PO1,PO3
28	What is inhibitors?	BTL-1	Remembering	PO1
29	Give the important requirements of rocket engine fuels.	BTL-4	Analyzing	PO1
30	What is meant by restricted burning in rockets?	BTL-1	Remembering	PO1,PO3
	PART – B	& C		
1	List the main components of Liquid Propellant Rocket Engine and explain .	BTL-4	Analyzing	PO1,PO3
2	A rocket engine has the following data:			
	Effective jet velocity=1200m/s	рті <i>5</i>	Evaluating	PO1,PO2,PO3
	Flight to jet speed ratio=0.82	BTL-5		
	Oxidizer flow rate=3.4kg/s			

	Fuel flow rate=1.2kg/s			
	Heat of reaction per kg of the exhaust			
	gases =2520kJ/kg			
	Calculate the following, Thrust, Specific impulse, Propulsive efficiency, Thermal efficiency and Overall efficiency.			
3	Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines.	BTL-2	Understanding	PO1,PO3,PO12
4	Describe briefly the important applications of			
	rocket propulsion in the following fields			
	i. Aircrafts	DTI 1	Understanding	DO1 DO2 DO12
	ii. Military	DIL-2		P01,P03,P012
	iii. Space			
	iv. Scientific			
5	(a)Describe with schematic diagram the principle			
	of working and construction of a magneto			
	hydrodynamic rocket engine. (NOV/DEC 2014)			
	 (b)In the rocket engine, propellant flow rate is 5.2 kg/s, nozzle exit diameter is 9cm , nozzle exit pressure is 1.02bar, ambient pressure is 1.013bar, thrust chamber pressure is 22bar and thrust is 7.2 kN. Calculate the following Effective jet velocity Actual jet velocity Specific impulse and Specific propellant 	BTL-6	Creating	PO1,PO2, PO3,PO12
6	 (a) what are the advantages and disadvantages of liquid propellant rocket engine? (NOV/DEC 2014) (b) A rocket has the following data: combustion chamber pressure 36bar, combustion chamber temperature =3600K, Oxidizer flow rate = 41kg/s. Mixure ratio=5 and Ambient pressure =585N/m². Determine: i. Nozzle throat area 	BTL-2	Understanding	PO1,PO2, PO3,PO4

	ii. Thrust			
	iii. Thrust coefficient,			
	iv. Characteristic velocity and			
	v. Exit velocity of exhaust			
	gases.			
	Take ^y =1.3. and R=287J/kg K			
7	Calculate the thrust, specific impulse, propulsive efficiency, thermal and overall effciencies of a rocket engine from the following data; Effective jet velocity = 1250 m/s, Flight to jet speed ratio = 0.8, oxidizer flow rate=3.5kg/s,fuel flow rate=1kg/s, heat of reaction of exhaust gases = 2,500 kJ/ks	BTL-5	Evaluating	PO1,PO2, PO4
8	A spacecraft's engine ejects mass at a rate of 30 kg/s with an exhaust velocity of 3100 m/s.The pressure at the nozzle exit is 5kPa and the exit area is 0.7 m ² .what is the thrust of the engine in a vacuum?	BTL-5	Evaluating	PO1,PO2
9	A rocket nozzle has a throat area of 18cm ² and combustion chamber pressure of 25bar. If the specific impulse is 127.42 s and weight flow rate (iii) Specific propellant consumption (iv) Characteristics velocity.	BTL-5	Evaluating	PO1,PO2,PO4
10.	Describe with the aid of illustrative diagrams of any two arrangements of solid propellant grains employed for restricted and unrestricted burning. Indicate the directions of burning and flow of gases.	BTL-5	Evaluating	PO1, PO3,PO4

BASIC CONCEPTS AND ISENTROPIC FLOWS

	UNIT I BASIC CONCEPTS AND ISENTROPIC FLOWS
Energy and m	omentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone
– Effect of Ma	ach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers
	PART – A
1. Expre	ss the stagnation enthalpy in terms of static enthalpy and velocity of flow. (NOV/DEC
2009)	
In an a	diabatic flow $q = 0$. Therefore energy equation becomes,
$h_1 + c_1$	$\frac{1}{2}^{2}/2 + gZ_{1} = h_{2} + c_{2}^{2}/2 + gZ_{2} + W_{1}$
Adiaba	atic energy equation is
$h_0 = h$	$+ 1/2c_2^2$
2. Explai	in the meaning of stagnation state with example. (Nov/DEC 2010)
The sta	ate of fluid attained by isentropically decelerating it to zero velocity at zero elevation is referred
as stag	nation state. E.g. Fluid in a reservoir or in a settling chamber.
3. Distin	guish between static and stagnation pressures. (APR/MAY2015)
In stag	gnation pressure state the velocity of the flowing fluid is zero whereas in the static pressure, the
fluid v	elocity is not equal to zero
4. Differ	entiate between the static and stagnation temperatures.
The ac	ctual temperature of the fluid in a particular state is known as static temperature whereas the
temper	rature of the fluid when the fluid velocity is zero at zero elevation known as stagnation
temper	rature $T_o = T + c^2 / 2C_p$
5. What	is the use of Mach number? (NOV/DEC2008, APR/MAY2015)

	Mach number is defined as the ratio between the local fluid velocity to the velocity of sound. Mach
	number M=c/a. It is used for the analysis of compressible fluid flow problems. Critical mach number is
	a dimensionless number at which fluid velocity is equal to its sound velocity. $M_{criti} = (c/a) - 1$
6.	What is Crocco number? (Nov'16)
	It is a non-dimensional fluid velocity which is defined as the ratio of fluid velocity to its maximum
	fluid velocity, $Cr=C/C_{max}$
7.	Give expression of P/P_0 for an isentropic flow through a duct.
	The expression is $P/P_0 = 1/\{[1+(\gamma - 1)/2] M^2\} \gamma^{-1}$
8.	What are the different regions of compressible flow? (APR/MAY2010)
	1. Subsonic region 2. Supersonic region 3. Hypersonic region 4. Transonic region
9.	Define M^* and give the relation between M and M^{*l} (NOV/DEC2008)
	It is a non-dimensional mach number and is defined by the ratio between the local fluid velocity to its
	critical velocity of sound, $M^* = c/a^*$
10	A plane travels at a speed of 2400Km/hr in an atmosphere of 5 degree, find the Mach angle?
	C=2400/3.6=666.67
	T=278K
	$M = c/\sqrt{\gamma RT} = 1.9947$
	$\alpha = \sin^{-1} (1/M) = 30.0876^{\circ}$
11	. Define Mach angle and Mach wedge. (APR/MAY2011)
	Mach angle is formed when an object is moving with supersonic speed. The wave propagation and
	changes are smooth. When an object is moving with hypersonic speed the changes are abrupt is shown
	in figure. Hence for a supersonic flow over two dimensional object "mach wedge" is used instead of
	"mach cone".
12	2. What is meant by isentropic flow with variable area? (MAY/JUNE2014)
	A steady one dimensional isentropic flow in a variable area passages is called "variable area flow". The
	heat transfer is negligible and there are no other ir-reversibilities due to fluid friction.
10	
1.	B. Define Mach cone.
	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone.
13	 B. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. What is characteristic Mach number? (APR/MAY2010)
13	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$
14	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock?
13	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are
13	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves
13	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right
13	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock
	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence.
	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is the state of the flow.
	5. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 5. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence.
	5. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 5. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence.
	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 5. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0
	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow?
	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma-1)/2 + M^2 (\gamma-1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach
	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma-1)/2 + M^2 (\gamma-1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2
	5. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 5. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2 9. What is meant by hypersonic flow? (APR/MAY 2011)
	5. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 6. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2 9. What is meant by hypersonic flow? (APR/MAY 2011) In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater the surround of the surface of the surface process. In the process flow, fluid velocity is much greater than sound velocity. Mach number is always greater the surface process. Mathematical process flow fluid velocity is much greater than sound velocity. Mach number is always greater the surface process. In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater the surface process. In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater the surface process. In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater the process. In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater the surface process. In the surface process flow fluid velocity is much
	3. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2 9. What is meant by hypersonic flow? (APR/MAY 2011) In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater than 5 10. Distinuities and the surrounding of the surface of the shore is always greater than 5 10. Distinuities and the surface of the
	5. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 4. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma-1)/2 + M^2 (\gamma-1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 5. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2 9. What is meant by hypersonic flow? (APR/MAY 2011) In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater than 5 10. Distinguish between nozzle and diffuser? (MAY/JUNE 2014) Note that the function of the function
	5. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. 5. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma-1)/2 + M^2 (\gamma-1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 5. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2 9. What is meant by hypersonic flow? (APR/MAY 2011) In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater than 5 10. Distinguish between nozzle and diffuser? (MAY/JUNE 2014) Nozzle: It is a device which is used to increase the velocity and decrease the pressure of fluids. Different between of fluids.
	b. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma-1)/2 + M^2 (\gamma-1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 5. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2 9. What is meant by hypersonic flow? (APR/MAY 2011) In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater than 5 9. Distinguish between nozzle and diffuser? (MAY/JUNE 2014) Nozzle: It is a device which is used to increase the velocity and decrease the pressure of fluids. Diffuser: It is a device which is used to increase the pressure and decrease the velocity of fluids.
	b. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. i. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma-1)/2 + M^2 (\gamma-1)]^{1/2}$ 5. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2 9. What is meant by hypersonic flow? (APR/MAY 2011) In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater than 5 1. Distinguish between nozzle and diffuser? (MAY/JUNE 2014) Nozzle: It is a device which is used to increase the pressure and decrease the pressure of fluids. Diffuser: It is a device which is used to increase the pressure and decrease the velocity of fluids. 1. What is Impulse function ?
	b. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. c. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma-1)/2 + M^2 (\gamma-1)]^{1/2}$ c. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock 6. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. 7. Define adiabatic process. In an adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 8. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2 9. What is meant by hypersonic flow? (APR/MAY 2011) In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater than 5 9. Distinguish between nozzle and diffuser? (MAY/JUNE 2014) Nozzle:It is a device which is used to increase the velocity and decrease the pressure of fluids. Diffuser:It is a device which is used to increase the pressure and decrease the velocity of fluids. 1. What is Impulse function ? The sum of pressure force (pA) and impulse force (ρAc^2) gives Impulse function (F)
	b. Define Mach cone. Tangents drawn from the source point on the spheres define a conical surface referred to as Mach cone. J. What is characteristic Mach number? (APR/MAY2010) $M^* = [M^2 (\gamma - 1)/2 + M^2 (\gamma - 1)]^{1/2}$ J. Distinguish between Mach wave and normal shock? Mach wave: The lines at which the pressure difference is concentrated and which generate cone are called mach lines or mach waves Normal shock: A shock wave is nothing but a steep finite pressure wave. When the shock wave is right angle to the flow, it is called normal shock D. Define zone action and zone of silence. The region inside the Mach cone is called the zone of action an the region outside the Mach cone is termed as the zone of silence. J. Define adiabatic process. In an adiabatic process. In an adiabatic process. In an adiabatic process. In an adiabatic process there is no heat transfer between the system and the surrounding, Q=0 3. What is meant by transonic flow? If the fluid velocity is close to the speed of sound that type of flow is called as transonic flow. Mach number is between 0.8 and 1.2 9. What is meant by hypersonic flow? (APR/MAY 2011) In hypersonic flow, fluid velocity is much greater than sound velocity. Mach number is always greater than 5 9. Distinguish between nozzle and diffuser? (MAY/JUNE 2014) Nozzle:It is a device which is used to increase the pressure and decrease the pressure of fluids. Diffuser:It is a device which is used to increase the pressure and decrease the velocity of fluids. 1. What is Impulse function ? The sum of pressure force (pA) and impulse force (ρAc^2) gives Impulse function (F) $F = pA + \rho ac^2$

	<u>Diabatic flow</u> :Flow in a constant area duct with heat transfer and without friction is known as diabatic
	flow (Rayleigh flow)
	Adiabatic flow: Flow in a constant area duct with friction and without heat transfer is known as
	adiabatic flow (Fanno flow).
23.	State the expression for dA/A as a function of Mach number ?
	$dA/A = dp/\rho c^2 [1-M^2]$
24.	Give the expression for T/To and T/T* for isentropic flow through variable area interms of Mach
	number ?
	$T_0/T = 1 + [Y - 1/2]M^2$
	To/T = 1
25.	When does the maximum mass flow occur for an isentropic flow with variable area?
_0.	Mass flow rate will be maximum at throat section where the Mach number is one
26	Write the equation for efficiency of the diffuser
20.	Diffuser efficiency – static pressure rise in actual process/ static pressure rise in ideal process
	Diffuser efficiency – static pressure rise in actual process/ static pressure rise in ideal process \mathbf{D}_{i} \mathbf{D}_{i} \mathbf{D}_{i}
27	r2-r1/r2-r1 What is impulse function and size its uses?
27.	what is impulse function and give its uses:
	Impulse function is defined as the sum of pressure force and inertia force. Impulse function $F=Pressure$
	force ρA + inertia force ρAc^2 . Since the unit of both the quantities is same as unit of force, it is very
	convenient for solving jet propulsion problems. The thrust exerted by the flowing fluid between two
	sectons can be obtained by using change in impulse function.
28.	State the necessary conditions for chocked flow to occur in a nozzle.
	The necessary conditions for this flow to occur in a nozzle is the nozzle exit pressure ratio must be
	equal to the critical pressure ratio where the mach number M=1.
29.	What is meant by normal shock as applied to compressible flow?
	Compression wave front being normal to the direction of compressible fluid flow. It occurs when the
	flow is decelerating from supersonic flow. The fluid properties jump across the normal shock.
30.	Define strength of a shock wave. (APR/MAY2010, NOV/DEC2009)
	Strength of a shock wave is defined as the ratio of increase in static pressure across the shock to the
	inlet static pressure.
	Strength of shock = $(P_y - P_x)/P_x$
31.	What is the effect of Mach number on compressibility? (Nov'17)
1.	For low speed, or subsonic conditions, the Mach number is less than one, $M \le 1$ and the square of the
	Mach number is very small. Then the left hand side of the equation is very small, and the change in
	density is very small. For the low subsonic conditions, compressibility can be ignored.
2.	As the speed of the object approaches the speed of sound, the flight Mach number is nearly equal to
	one. $M = 1$, and the flow is said to be transonic. If the Mach number is near one, the square of the Mach
	number is also nearly equal to one. For transonic flows, the change in density is nearly equal to the
	change in velocity and compressibility effects can not be ignored
3	As the speed increases beyond the speed of sound, the flight Mach number is greater than one $M > 1$
5.	1 and the flow is said to be supersonic or hypersonic. For supersonic and hypersonic flows, the density
	changes faster than the velocity changes by a factor equil to the square of the Mach number
	Compressibility offects become more important with bicker Mesh symplers
	Compressibility effects become more important with figher Mach numbers.
	PART – B & C
1 A n	air craft flies at a velocity of 700Kmph in an atmosphere where the pressure is 75kPa and
1.All	rature is 5° C. Calculate the Mach number and stagnation properties (ADD/MAV 2015)
temper	rature is 5°C. Calculate the Mach humber and stagnation properties (Ar KMA 1 2015)
Ref: Fun	ndamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya Pg.No: 90
2. A	ir expands isentropically through the convergent nozzle from constant inlet conditions P _a =4bar.
$T_0 = 55$	50k. Exit area of nozzle is 1000 cm ² . Determine the exit velocity and mass flow rate for the following
two cas	ses at exit. (APR/MAY 2015)
	(i) M=1
	(;;)M_0 05

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya Pg.No: 93

3.

- i. Difference between transonic flow and hypersonic flow
- ii. Derive the expression for pressure co-efficient equation for compressible flow
- iii. Name the different regions of compressible fluid flow (NOV/DEC 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 42

4. (i)Derive the expression for the mass flow rate in terms of Mach number (NOV/DEC 2014)

(ii)A nozzle in a wind tunnel gives a test –section Mach number of 2.0. Air enters the nozzle from a large reservoir at 0.69 bar and 310K. The cross-sectional area of the throat is 1000cm². Determine the following quantities for the tunnel for one dimensional isentropic flow:

- d. Pressures, temperatures and velocities at the throat and test sections,
- e. Area of cross-section of the test section
- f. Mass flow rate and
- g. Power required to drive the compressor (NOV/DEC 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 93

5. Air flows through a nozzle which has inlet areas of 0.001m². If the air has a velocity of 80m/s a temperature of 301K and a pressure of 700kPa at the inlet section and a pressure of 250kPa at the exit find the mass flow rate through the nozzle and assuming one -dimensional isentropic flow the velocity at the exit section of the nozzle. (MAY/JUNE 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 93

6. A gas flows through a restricted passage with a speed of 850 m/s .Its local temperature is 1650 K; its specific heat ratio k and gas constant R are 1.25 and 250 J/kg K respectively. Calculate the local sonic velocity and Mach number. (Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 50

7. A supersonic diffuser, diffuses air in an isentropic flow from a Mach number of 3 to a Mach number of 1.5, the static conditions of air at inlet are 70 kPa and -7°C. If the mass flow rate of air is125 kg/s, determine (i)Stagnation conditions, (ii) Area at throat and exit. (iii) Static Conditions of air at exit. (Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 101

8. (i).Discuss the changes of Mach number in CD nozzle under various back pressure.(ii)An airplane is travelling while you are observing from the ground. How will you know whether it is subsonic or supersonic? Explain.(iii)How fluid stagnation states will change if the fluid flow in diffuser follows an adiabatic process? (Nov'17)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 84

9. Air flows through a convergent-divergent (CD) nozzle. At some section in the nozzle, pressure =2bar, velocity=170m/s and temperature=200°C and cross sectional area =1000 mm².Assuming isentropic flow conditions, determine: (i) stagnation temperature and stagnation pressure (ii) sonic velocity and Mach number at this section (iii) velocity , Mach number and flow area at outlet section where pressure is 1.1 bar (iv) pressure, temperature, velocity and flow area at throat section. (Nov'17)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 93

UNIT IIFLOW THROUGH DUCTSFlows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) –

1 a	
	PART – A
1.	What are the assumptions made for fanno flow? (APR/MAY2014,NOV/DEC2014)
	One dimensional steady flow. Flow takes place in constant sectional area. There is no heat transfer The
	gas is perfect with constant specific heats.
2.	Differentiate Fanno flow and Rayleigh flow? (NOV/DEC2009)
	Rayleigh flow :Flow in a constant area duct with heat transfer and without friction is known as
	Rayleighs flow.
	Fanno Flow: Flow in a constant area duct with friction and without heat transfer is known as Fanno
	flow.
3.	Explain chocking in Fanno flow? (Nov'16)
	In a fanno flow, subsonic flow region, the effect of friction will increase the velocity and Macl
	number and to decrease the enthalpy and pressure of the gas. In supersonic flow region, the effect o
	friction will decrease the velocity and Mach number and to increase the enthalpy and pressure of th
	gas. In both cases entropy increases up to limiting state where the Mach number is one(M=1) and it i
	constant afterwards. At this point flow is said to be chocked flow.
4.	Explain the difference between Fanno flow and Isothermal flow? (NOV/DEC2009)
	Fanno Flow Isothermal Flow Flow in a constant area duct with friction and without heat transfer i
	known as fanno flow. Flow in a constant area duct with friction and the heat transfer is known a
	isothermal flow. Static temperature is not constant Static temperature remains constant
5.	Write down the ratio of velocities between any two sections in terms of their Mach number in
	fanno flow ?
	$C_2/C_1 = M_2/M_1 \left[1 + [\gamma - 1/2] M_1^{-\gamma 2}/[1 + [\gamma - 1/2] M_2^{-\gamma 2}] \right]^{\gamma_2}$
6.	Write down the ratio of density between any two section in terms of their Mach number in
	fanno flow?
	$\rho_2 / \rho_1 = M_1 / M_2 \left[1 + \left[\gamma - 1/2 \right] M_2^{-1} \right]^{\gamma_2} / \left[1 + \left[\gamma - 1/2 \right] M_1^{-1} \right]^{\gamma_2}$
7.	What are the three equation governing Fanno flow?
	Energy equation, continuity equation and equation of state.
8.	Give the expression to find increase in entropy for Fanno flow?
	$\frac{(S_2 - S_1)}{R} = \ln M_2 / M_1 \left[1 + \left[\gamma - 1/2 \right] M_1^2 \right]^{(\gamma + 1)/2} (\gamma^{-1}) \left[1 + \left[\gamma - 1/2 \right] M_2^2 \right]^{(\gamma + 1)/2} (\gamma^{-1})$
9.	Give two practical examples where the Fanno flow occurs? (NOV/DEC2014)
	Flow in air breathing engines Flow in refrigeration and air conditioning Flow of fluids in long pipes.
10	. What is Rayleigh line and Fanno line? (NOV/DEC2009)
	Rayleigh line: Flow in a constant duct area with heat transfer and without friction is described by
	curve is known as Rayleigh line.
	Fanno Line: Flow in a constant duct area without heat transfer and with friction is described by a curv
	is Fanno line
11	. What are the assumptions of Fanno flow?
	One dimensional steady flow Flow takes place in constant sectional area There is no heat transfer Th
	gas is perfect with constant specific heats
12	. Write down expression to find increase in entropy for Fanno flow.
	$(S_2 - S_1)/R = \ln M_1/M_2$
13	. Define fanning"s coefficient of skin friction
	It is the ratio between wall shear stress and dynamic head
	F = wall shear stress/dynamic head
14	. Define oblique shock. (APR/MAY2011)
	Also mention where it occurs. The shock wave which is inclined at an angle to the two dimensional
	flow direction is called as oblique shock. When the flow is supersonic, the oblique shock occurs at th
	corner due to the turning of supersonic flow.
15	. Define Fanno line.
	The locus of the state which satisfy the continuity and energy equation for a frictional flow is known a
	fanno line.

16. Define isothermal flow with friction.
A steady one dimensional flow with friction and heat transfer in a constant area duct is called
isothermal flow with friction.
17. Give the applications of isothermal flow with friction.
In long ducts where sufficient time is available for the heat transfer to occur and therefore the
temperature may remain constant.
18. State the assumptions made to derive the equations for isothermal flow.
One dimensional flow with friction and heat transfer Constant area duct Perfect gas with constant
specific heats and molecular weights Isothermal flow
19. Give the assumptions made in Rayleigh flow (APR/MAY2010,2014)
One dimensional flow without friction and heat transfer Constant area duct Perfect gas with constant
specific heats and molecular weights Absence of body forces.
20. Write the continuity equation
$C_1/C_2 = 0_2/0_1$
21 Give two practical examples for Ravleigh flow (APR/MAY2010)
Flow in combustion chamber
Flow in regenerators
Flow in heat exchangers
Flow in intercoolers
Pilow in intercoordis.
22. Define familing S coefficient of skill includi
It is ratio between wan snear stress and dynamic nead
F=wall shear stress/Dynamic nead
23. Write down the expression for the length of duct in terms of the two mach number M_1 and M_2 for
a flow through a constant area duct with the influence of friction.
$4fL/D = [4fI/D]M_1 - [4fI/D]M_2$
24. Write down the ratio of pressure between any two section in terms of their mach number in a Fanno
flow.
$P_2/P_1 = M_1/M_2[[1+(Y-1)/2M_1^2]/[1+(Y-1)/2M_1^2]]^{1/2}$
25. Write down the expression for the temperature ratio between two sections in terms of Mach
numbers for flow in a constant area duct with friction
$T_1/T_2 = [1 + (y-1)/2M_1^2]/[1 + (y-1)/2M_2^2]$
26. Write down the expression for the pressure ratio of two section interms of mach number in
Rayeligh flow. (Nov'16)
$P_2/P_1 = (1 + {}^{y}M_1^2)/(1 + {}^{y}M_2^2)$
27. What is the value of Mach number of air at the maximum point in Rayleigh heating process.
At maximum point in Rayeligh curve, the value of mach number is one.
28. Shown a normal shock in h-s diagram with the help of Rayleigh line and Fanno line.
$h = h$ P_{or} P_{oy}
ⁿ ox ⁿ oy
∕ o _x ∕ o _y
P _w
y M<1
M<1 R
F M=1
h Not
Revlaich line
Rayleign Inte
Px X Fanna line
P _x Fanno line
P _x Fanno line
P3 Fanno line 8
P3 Fanno line 8

at the exit, the inlet pressure and the inlet temperature. (MAY/JUNE 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 245

7. Air (γ = 1.4) flows into a constant-area insulated duct with a Mach number of 0.20. For a duct diameter of 1 cm and friction coefficient of 0.02, determine the duct length required to reach Mach 0.60. Determine the length required to attain Mach 1. Finally, if an additional 75 cm is added to the duct length needed to reach Mach 1, while the initial stagnation conditions are maintained, determine the reduction in flow rate that would occur. (Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 238 8. (i) In which configuration of Figure (a) or (b], will the high-pressure tank empty faster? Explain.

(ii) The stagnation temperature of air is raised from 85° C to 376° C in a heat exchanger. If the inlet Mach number is 0.4, determine the final Mach number and percentage drop in pressure.(Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 266

9. (i) Prove that the Mach numbers at the maximum enthalpy and maximum entropy points on the Rayleigh line are $1/\sqrt{\gamma}$ and 1.0 respectively.

(ii)Show the h=constant and s =constant lines at these points on the Rayleigh line on the h-s and p-v planes. (Nov'17)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 250

	UNIT III NORMAL AND OBLIQUE SHOCKS
Gover	ning equations – Variation of flow parameters across the normal and oblique shocks – Prandtl –
Meyer	relations – Applications.
	PART – A
1.	What is mean by shock wave? (APR/MAY2010)
	A shock wave nothing but a steep finite pressure wave. The shock wave may be described as a
	compression wave front in a subsonic flow field across which there is abrupt change in flow properties.
2.	What is mean by Normal shock?
	When the shock wave at right angle to the flow it is called normal shock.
3.	What is oblique shock? (NOV/DEC2010, 2014APR/MAY2015)
	When the shock wave is inclined at an angle to the flow it is called oblique shock.
4.	What are applications of moving shock wave ?
	It is used in Jet engines, Shock tubes, Supersonic wind tunnel and Practical admission turbines

5. Shock waves cannot develop in subsonic flow? Why?
In subsonic flow the velocity of fluid is less tan the velocity of sound .Due to this reason, deceleration
is not possible in subsonic flow so shock waves cannot develop in subsonic flow.
6. Define compression and rarefaction shock?
A shock wave which is at a higher pressure than the fluid into which it is moving is called a
compression wave. The shock wave which is at a lower pressure than the fluid into which it is moving
is called a expansion shock wave or rarefaction shock wave.
7. State the necessary conditions for a normal shock to occur in compressible flow?
1. The compression wave is to be at right angle to the compression flow 2. Flow should be supersonic
8. Give the difference between normal and oblique shock?(APR/MAY2011.NOV/DEC2014)
In Normal Shock, the wave is right angle to the Flow and its is a one dimensional flow In oblique
shock. Shock wave is inclined at an angle to the flow and it is a two dimensional flow.
9. What are the properties change across a normal shock ?
1. Stagnation pressure decreases 2. Stagnation temperature remains const 3. Static pressure and
temperature increase
10. What is Prandtl – Meyer relation? (APR/MAY2011, 2015)
It is the basis of other equation for shock waves. It gives the relationship between the gas velocities
before and after the normal shock and the critical velocity of sound.
11 Define strength of shock wave (NOV/DEC2008 2009)
It is defined as the ratio of difference in downstream and unstream shock pressures to unstream shock
pressure It is denoted by (Pv-Px)/Px
12 Is the flow through a normal shock an equilibrium one
No. Since the fluid properties like pressure, temperature and density are changed during normal shock
13 Calculate the strength of the shock ways when normal shock annears at M-2
Strength of shock – (P - P)/P. For Normal shocks table for My=2 and y=1.4. Py/Py = 4.5. Therefore
strength $-4.5 - 1 - 3.5$
5000000000000000000000000000000000000
P /P = $(2y/y+1) \times M^2 - [(y-1)/y+1)]$
$\frac{1}{y_1} \frac{y_1}{x_1} \frac{(2y_1+1)x_1y_1}{(1+1)(1+1)}$ 15 What are expansion wave?
A wave which is at a lower pressure than the fluid in to which it is moving is called an expansion wave
or refraction wave
16 What are compression wave?
A wave which is at a higher pressure than the fluid in to which it is moving is called compression wave
17 How the Mach number before and after the accurrence of a normal shock are related?
Much number after the normal shock – M 2 – (2/N-1)+M $^2/(2N/N-1)$ +M 2 -1
18 What are applications of moving shock wave?
It is used in lat anging shock tubes supersonic wind tunnel Practical admission turbines
10 What is meant by normal shock as applied to compressible flow?
Compression wave front being normal to the direction of compressible fluid flow. It
occurs when the flow is decelerating from supersonic flow. The fluid properties jump across the
normal shock
20 Define ablique sheek where it ecours (NOV/DEC2010)
The shock wave which is inclined at an angle to the two dimensional flow direction is
colled as oblique shock. When the flow is supersonic, the oblique shock occurs at the corner due to the
turning of supersonic flow
21. Write the equation for officiancy of a diffusor
21. Write the equation for enciency of a unitset $p_{-} = (T_{-}/T_{-})[D_{OV}/D_{OV}]^{3-1/3} + 1/((N_{-}1)/2)M_{-}^{2})$
$I_{D} = (I_{0} / I_{1}) [I_{0} / I_{0} / I_{0}] - I_{0} [(2 - 1) / 2] I_{0} I_{1})$
22. Write down the Rankine-Hagoniot equation
$\rho_v / \rho_x = [1 + (\frac{y}{1} + \frac{1}{2} - 1) * P_v / P_x] / (\frac{y}{1} + \frac{1}{2} - 1) + P_v / P_x$
23. Give the expression for T_v/T_x across the normal shock. (Nov'17)
$T_{v}/T_{x} = [(2^{v}/2^{-1})M_{x}^{2} - 1] [1 + (\frac{v}{2} - 1/2)M_{x}^{2}] / [M_{x}^{2}/2(\frac{v}{2} - 1)^{*}(\frac{v}{2} + 1)^{2}]$
24. How to determine deflection angle θ .
This angle is usually determined by the shape of the object causing the shock waves

25. What is mean by detached shock wave
If we put a rather blunt body in a supersonic flow, we won't get an (attached) oblique shock wave.
Instead, we will get a detached shock wave.
26. How do the various flow properties behave during expansion waves?
In a shock wave the pressure, density and temperature increase. In an expansion wave it is exactly
opposite: they all decrease.
27. What is the condition of before and after shock?
The properties of this shock wave vary along the shock wave. At the front of the shock wave, the wave
angle β is 90°. So we have a normal shock wave there. Behind this shock wave, the flow is subsonic.
28. Describe about Multiple Shock Waves
This flow has been deflected towards the wall by an angle θ . Since the flow can't go through the wall, it
needs to be deflected the other way, by the same angle θ . To accomplish this, there will be a new shock
wave.
29. What are the components of the velocity in oblique shock
Two components of this velocity: The component normal to the shock wave ul and the component
tangential to the shock wave w ₁
30. How the disturbances get changed
When the airplane flies at a subsonic velocity ($V < a$), the disturbances can move upstream.
If the airplane, however, flies at a supersonic speed ($V > a$), the disturbances can not
31. Mention the useful applications of shock wave. (Nov'16)
The capability of shock waves to generate non-linear pressure and temperature spikes in the medium of
propagation finds very interesting applications in variety of areas such as medicine, biological sciences,
material processing, manufacturing, and microelectronic industries.
PART – B & C
2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal
2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock.
 A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. i. Mach number
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. i. Mach number ii. Pressure
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. i. Mach number ii. Pressure iii. Temperature
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015)
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015)
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015)
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Temperature Speed of the sound Jet velocity Density (APR/MAY 2015)
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times avit area and the static pressure at evit is 0.4 times the stagnation pressure at the
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentronic expect through the shock. Determine:
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 3. A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 3. A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 3. A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 3. A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and The area of cross section of the nozzle at the section of nozzle where the normal shock occurs
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 3. A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number Mx and My The area of cross section of the nozzle at the section of nozzle where the normal shock occurs (MAY/JUNE 2014)
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and The area of cross section of the nozzle at the section of nozzle where the normal shock occurs (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 3. A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and The area of cross section of the nozzle at the section of nozzle where the normal shock occurs (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 Derive the expression for Rankine-Hugoniot equation (Density ratio across the shock)
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 3. A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and The area of cross section of the nozzle at the section of nozzle where the normal shock occurs (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 4. Derive the expression for Rankine-Hugoniot equation (Density ratio across the shock) (NOV/DEC 2014)
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 3. A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number Mx and My The static pressure and The area of cross section of the nozzle at the section of nozzle where the normal shock occurs (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 Derive the expression for Rankine-Hugoniot equation (Density ratio across the shock) (NOV/DEC 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:144
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Pressure Temperature Speed of the sound Jet velocity Pressure Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and The area of cross section of the nozzle at the section of nozzle where the normal shock occurs (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 Derive the expression for Rankine-Hugoniot equation (Density ratio across the shock) (NOV/DEC 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:144 (a)What Is oblique shock wayes? And what are the assumptions are used for oblique shock flow?
 A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and The area of cross section of the nozzle at the section of nozzle where the normal shock occurs (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 Derive the expression for Rankine-Hugoniot equation (Density ratio across the shock) (NOV/DEC 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:144 (a) What Is oblique shock waves? And what are the assumptions are used for oblique shock flow?
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and The area of cross section of the nozzle at the section of nozzle where the normal shock occurs MAY/JUNE 2014) Ref:Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 Ref:Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 Ref:Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 Ref:Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:144 Ref:
 2. A jet of air at 270K and 0.7bar has an initial Mach number of 1.9. If it passes through a normal shockwave, determine the following for downstream of the shock. Mach number Pressure Pressure Temperature Speed of the sound Jet velocity Density (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:161 A normal shock occurs in the diverging section of a convergent-divergent air nozzle. The throat area is 1/3 times exit area and the static pressure at exit is 0.4 times the stagnation pressure at the entry. The flow is throughout isentropic expect through the shock. Determine: Mach number M_x and M_y The static pressure and The area of cross section of the nozzle at the section of nozzle where the normal shock occurs (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 The area of cross section of the nozzle at the section of nozzle where the normal shock occurs (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:165 Derive the expression for Rankine-Hugoniot equation (Density ratio across the shock) (NOV/DEC 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya,Pg.No:144 4. (a)What Is oblique shock waves? And what are the assumptions are used for oblique shock flow? (NOV/DEC 2014) (b)Oblique shock waves occur at the leading edge of a symmetrical wedge. Air has a Mach number of 2.1 and deflection angle (\delta) of 15°. Determine the following for strong and weak waves.

- ii. Pressure ratio
- iii. Density ratio
- iv. Temperature ratio and
- v. Down stream Mach number. (NOV/DEC 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:174, 177 & 204

5. A gas at a pressure of 340m bar, temperature of 355K and entry Mach number of 1.4 is expanded isentropically to 140m bar. Calculate the following:

- iv. Deflection angle
- v. Final mach number
- vi. Final temperature of the gas. Take ½=1.3. (APR/MAY 2015)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:207

6. A gas (½=1.3) at p₁=345mbar,T₁=350K and M₁=1.5 is to be isentropically expanded to 138mbar. Determine

- iv. The deflection angle
- v. Final Mach number
- vi. The temperature of the gas. (MAY/JUNE 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:207

7. State and prove Prandtl-Meyer relation for a normal shock. (Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:139

8. A gas at a pressure of 340 mbar, temperature of 355 K and entry Mach number of 1.4 is expanded isentropic ally to 140mbar. Calculate the following (i) deflection angle, (ii) final mach number, (iii) Final temperature of the gas. Take γ =1.3. (Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:207

9. The stagnation pressure and temperature of air at the entry of a nozzle are 5bar and 500K respectively. The exit Mach number is 2 where a normal shock occurs. Calculate the following quantities before and after the shock; static and stagnation temperatures and pressures, air velocities and mach number. What are the values of stagnation pressure loss and increase in entropy across the shock? (Nov'17)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:173

UNIT IV JET PROPULSION

Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operating principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines.

PART – A

1. What is thrust co-efficient? (NOV/DEC2009)

It is the ratio of the thrust to the thrust force. $Cf = F/po A^*$

2. Define propulsive efficiency? (NOV/DEC2009, APR/MAY2015, MAY/JUNE 2015)

It is ratio of the propulsive power to the power output of the engine ηp =propulsive power/power output of the engine.

3. What is thrust or drag?

The force which propels the aircraft towards at an given speed is called as thrust or propulsive force. This thrust mainly depends on the velocity of gases at the exit of the nozzle.

4. Define Effective Speed ratio.

The ratio of flight speed to jet velocity is known	as effective speed ratio. $\Sigma = u/c_i$
5. Define specific thrust.	
The thrust developed per unit mass flow rate is k	nown as specific thrust
(Fsp) = F/m.	
6. What is thrust specific fuel consumption(TSFC)?	
It is defined as the ratio of fuel consumption rate	per unit thrust.
7. Define specific impulse.	
The thrust developed per unit weight flow rate is	known as specific impulse.
Isp = F/W	
8. What are the main parts of Ramjet engine?	
The main parts of Ramjet engine are, Supersonic	c diffuser, subsonic diffuser, combustion chamber and
discharge nozzle.	
9. Give the expression for the thrust developed b a t	urbojet engine.
Thrust $F = m. cj - m.a u$	
10. Define overall efficiency.	
It is the ratio of propulsive power to the power in	nput to the engine.
$\eta o =$ Propulsive power / power input to the engin	
11. What is the type of compressor used in turbo jet	? Why? (NOV/DEC2010, APR/MAY2015)
Rotary compressor is used in turbojet engine due	to its high thrust and high efficiency.
12. Define bye-pass ratio.(APR/MAY2010)	
Bye-pass ratio is defined as the ratio of mass fi	low passing through the fan, via bye pass duct to the
mass flow passing through the core itself	
13. What is turboprop unit?	ing In this type, a typical which is youd to drive the
Turboprop engine is very similar to turbojet eng	gine. In this type, a turbine which is used to drive the
compressor and propeller.	
14. what is thrust augmentation? (NOV/DEC2009)	not fuel is humt in the tail nine between the turbing
avbaust section and entrance section of the exhau	that needs to be the second of
15 Why remiet anging does not require a compress	user and a turbina? (MAV/IIINE 2014 NOV/DEC
15. Why ramjet engine does not require a compres	sor and a turbine: (MA1/JUNE 2014, NOV/DEC
In ramiet engine due to supersonic and subsor	nic diffuser the static pressure of air is increased to
ignition pressure. So there is no need of compress	sor and turbine
16 What is scram jet?	
A supersonic combustion ramiet engine is known	as scramiet
17 Define the principle of Ram jet engine.	
The principle of jet engine is obtained from	the application of Newton's law of
motion. We know that when a fluid is	accelerated, a force is required to produce this
acceleration is the fluid and at the same time, the	ere is an equal and opposite reaction force of the fluid
on the engine is known as the thrust, and ther	efore the principle of jet propulsion is based on the
reaction principle.	
18. Give the components of a turbo jet.	
i. Diffuser, ii. Mechanical compressor, iii. Combustio	n chamber, iv. Turbine & Exhaust nozzle.
19. Give the difference between pulse jet and ram je	t engine.
PULSE JET	RAM JET
a) Mechanical valve arrangements	a) Works without the aid of any
are used during combustion.	mechanical device and needs no
b) The stagnation temperature at the	moving parts.
diffuser exit is comparatively less.	b) Since the mach number in Ram
	jet engine is supersonic, the
	stagnation temperature is very
	high.
20 Circo the difference hotmoon tool - ist and it	ongino
20. Give the difference between turbojet and ram jet	engine.

	TURBO JET	RAM JET	0
	a) Compressor and turbine are	a) Compressor and turbine are not	
	used.	used but diffuser and nozzle are	
		used.	
	b) Lower thrust and propulsive	b) It provides high thrust per unit	
	efficiency at lower speeds.	weight.	
	 c) Construction cost is more. 	c) In the absence of rotating	
		simple and cheap	
		simple and encap.	-
21. What is t	he difference between turbo prop eng	gine and turbo jet engine.	_
	TURBO – PROP	TURBO - JET	
	a) The specific fuel consumpt	a) TSFC is comparatively higher at	
	based on thrust is low.	lower speeds and altitudes.	
	b) Propulsive efficiency within	b) Propulsive efficiency is low.	
	range of operation is higher.		
	c) On account of higher thrust at I	ow c) Take – off role is longer and	
	speeds the take-off role is short a	and requiring longer run way.	
	requiring shorter runway.		
	d) Use of centrifugal compres	sor d) Lower Frontal area.	
	stages increases the frontal area.		
	e) Higher weight per unit thrust.	e) Lower weight per unit thrust.	
22. What is r	am effect?		
When	an aircraft flies with high velocity,	the incoming air is compressed to high	
pressu	re without external work at the expense	of velocity energy is known as "ram effect"	•
23. Different	iate between pressure thrust and mor	mentum thrust. (Nov'16)	
Pressu	re thrust is mainly depends on the dif	fference in pressure between the nozzle	
exit pr	ressure and the ambient pressure and is	given by	
Pressi	re thrust = (P e - P a) A		
Mome	entum thrust depends on the difference	in velocity between the aircraft velocity	
and iet	t velocity is given by	in verseity between the unertait verseity	
Mom	pentum thrust $-m(c_i - u)$ where		
P -	= nozzle evit pressure		
D -	- ambient pressure		
	- amount pressure		
A = A	ist valuative and		
$C_j =$	- Jet velocity and		
u = Ic	orward speed of aircraft		
24. Why afte	er burners are used in turbojet engine	?? (Nov'16)	
Exhau	st gases from the turbine have large q	uantity of oxygen, which can support the	combustion of
additio	onal fuel. Thus if a suitable burner i	s installed between the turbine and exhau	st nozzle, a
consid	erable amount of fuel can be burne	d in this section to produce temperatures	entering the
nozzle	e as high as 1900°C. The increased	d temperature greatly augments the exhaus	t gas velocity,
and he	ence provides the thrust increase.		
25. Why a ra	m jet engine does not require a comp	pressor and a turbine?	
In gen	eral, the speed of a ram jet engine is sur	personic (the range of Mach number) is	
verv h	igh. At this flight speed the contribu	tion of the compressor to the total static p	ressure rise is
insigni	ificant. Hence, arm jet engine does not	require compressor and turbine.	
morgin		require compressor and taronie.	
26. What are	e the factors affecting the actual effici	ency of the propeller?	
a) Th	rust is not uniform over the disc due to	losses at root and tip of blades. b) There is	loss of energy
du	e to the rotation of the slip stream of rea	al fluid. c) Losses due to skin friction drag a	s the fluid is a
rea	ol one		is the mana is a
27 Dafina T	hrust aradina		
The re	tio of change of thrust to torque with re	dius is called thrust grading	
	tors make the efficiency of a manual	nus is canco unusi grading	
2δ . what fac	tions make the enficiency of a propelle		··
It is de	ependent on Forward velocity Thrust of	propeller Rotational Speed Torque exerted	by engine
29. Define m	ean aerodynamic chord		

The mean aerodynamic chord is defined as the chord length that when multiplied by the wing area, the dynamic pressure and the moment coefficient about the aerodynamic Centre yields the value of the aerodynamic moment about the airplane's aerodynamic Centre.

30. What are the various types of drag?

Parasite drag, skin friction drag, wave drag, form drag, pressure drag, interference drag etc.

31. Why axial flow compressors are preferred over centrifugal compressors in jet engines? Nov'17)

Axial flow compressors are typically used at applications with low differential pressure (head) requirements and high flow rates. Contrary to centrifugal compressors, axial flow compressors do not change the direction of the gas: the gas typically enters and exits the compressor in an axial direction (parallel to the axis of rotation).. Axial compressors have relatively high peak efficiency. On the other hand, their efficiency is good over a narrow rotational speed range.

PART – B & C

1. Explain with the neat sketches the principle of operation of (i) Turbofan engine and (ii) Turbojet engine. (APR/MAY 2015, Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 364 & 363

2. An aircraft propeller flies at a speed of 440kmph. The diameter of the propeller is 4.1m and the speed ratio is 0.8. The ambient conditions of air at the flight altitude are T=255K and P=0.55bar. find the following Thrust, Thrust power and Propulsive efficiency. (APR/MAY 2015)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No: 394

3. Derive the expression for the jet thrust propeller thrust, propulsive efficiency, thermal efficiency, overall efficiency and the optimum value of the flight to jet speed ratio for a turbojet engine.(NOV/DEC 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:373

4. A ram jet engine propels an aircraft at a Mach number of 1.4 and at an altitude of 6000m. The diameter of the inner diffuser at entry is 40 cm and the calorific value of the fuel is 43MJ/kg. The stagnation temperature at the nozzle entry is 1500K. The properties of the combustion gases are same as those of air.(\forall =1.4, R=287J/kgk).

- x. Determine the following:
- xi. The efficiency of the ideal cycle,
- xii. Flight speed
- xiii. Air flow rate
- xiv. Diffuser pressure ratio
- xv. Fuel air ratio
- xvi. Nozzle pressure ratio
- xvii. Nozzle jet Mach number
- xviii. Propulsive efficiency and
- xix. Thrust. Assume, Diffuser efficiency, $\eta_D=0.92$, Combustion efficiency, $\eta_B=0.97$ and Nozzle jet efficiency, $\eta_N=(or)\eta_j=0.95$ Stagnation pressure loss in the combustion chamber=0.02P₀₂. (NOV/DEC 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion E	3y S.M.Yahya, Pg.No:391
5. Derive the following relation for aircraft engine	
Flight to jet speed ratio $\sigma = 1 - \frac{F}{m_a c_i}$	
Thrust in a turbojet engine	
$F = m_a(c_j - u) = m_a(c_e - u) + (p_e - p_a)A_e$	(MAY/JUNE 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:373

6. An aircraft flies at 90 km/hr. One of its turbojet engines takes in 40kg/s of air and expands the gases to the ambient pressure. The air-fuel ratio is 50 and the lower calorific value of the fuel is 43 MJ/kg. For maximum thrust power determine, Jet velocity, Thrust, Specific thrust, Thrust power and Propulsive thermal and overall efficiencies. (MAY/JUNE 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:388 7. Explain turbo-prop propulsion engines with suitable Diagrams. (Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:363

8. A ramjet engine operates at M = 1.2 at an altitude of 6500 m. The diameter of inlet diffuser at entry is 50cm and the stagnation temperature at the nozzle entry is 1500K. The calorific value of the fuel used is 40 MJ/kg. The properties of the combustion gases are same those of air(γ = 1.4, R =287 J/kgK). The velocity of the air at the diffuser exit is negligible, calculate:(i) the efficiency of the ideal cycle,(ii) Flight speed, (iii) Air flow rate, (iv)Diffuser pressure ratio, (v) FueI air ratio ,(vi) Nozzle jet Mach number. The efficiencies of the diffuser = 0.9, combustor = 0.98 and the nozzle = 0.96 (Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:395

9. (i) Discuss the function and need of afterburner in jet engines.

(ii) Derive the thrust equation for turbo-prop engine.

(iii)Draw the following performance curve for turbo-prob ,turbofan and turbojet engines: Propulsive efficiency Vs Flight Speed (Nov'17)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:373&377

10. Mach 2 aircraft engine employs a subsonic inlet diffuser of area ratio 3. A normal shock is formed just upstream of the diffuser inlet. The free stream conditions upstream of the diffuser are p=10 bar,T=300K. Determine (i) Mach number , pressure and temperature at the diffuser exit,(ii)Diffuser efficiency including the shock. Assume isentropic flow in the diffuser downstream of the shock. (Nov'17)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:Refer 3 unit

UNIT V SPACE PROPULSION

Types of rocket engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity – Applications – space flights. PART – A

1. Define Rocket propulsion.

If the propulsion unit contains its own oxygen supply for combustion purposes, the system is known as "Rocket propulsion".

2. Explain the performance of the rocket engine.

In rocket engine, if the speed is increased, the propulsive efficiency is increased and reaches the maximum value of one. Then propulsive efficiency is decreased with increase in speed ratio.

3. Define specific propellant consumption

The propellant consumption rate per thrust is called as specific propellant consumption

4. Define thrust for a rocket engine and how it is produced.

The force that propels the rocket at a given velocity is known as thrust. This is produced due to the change in momentum flux of the outgoing gases as well as the difference between

the nozzle exit pressure and the ambient pressur	e.
--	----

5. What are the types of rocket engines? (APR/MAY2015)

- Rocket engines are classified in the following manner.
- a) On the basis of source of energy employed
 - i. Chemical rockets,
 - ii. Solar rockets
 - iii. Nuclear rockets and
 - iv. Electrical rockets
- b) On the basis of propellants used
 - i. Liquid propellant
 - ii. Solid propellant
 - iii. Hybrid propellant rockets.

6. What is over expanded nozzle?

It is a nozzle which discharges fluid at exit pressure lower than external pressure, because the exit area is too large.

SOLID PROPELLANT LIQUID PROPELLANT a) Solid fuels and oxidizers are used in rocket engines a) Liquid fuels and oxidizers are used. b) Generally stored in combustion chamber (both oxidizer and fuel). b) Separate oxidizer and fuel tanks are used for storing purposes. c) Burning in the combustion chamber is uncontrolled rate. b) Controlled rate. 8. What are the types of liquid propellants used in rocket engines? i. Mono propellants ii. Bi – propellants si. Dia propellants si. Bi – propellants 9. What are the types of propellant feed system? Gas pressure feed system Gas pressure feed system? 10. What are the basic combustion processes? injection A Atomization • Atomization • Mixing • lignition • Chemical reaction between fuel and oxidizer. c 11. What are the advantages of solid propellant rocket engine? simple in design and construction • Less vibration due to absence of moving parts • Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine • Low specific impulse • Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? It what are the advantages of hybrid rocket engine? 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer • High load capacity 9. Speed regulation is possible by regulating the supply of ox	7. Compare solid and	liquid propellant rockets. (N	ov'17)	а.
a) Solid fuels and oxidizers are used in rocket engines a) Liquid fuels and oxidizers are used. b) Generally stered in combustion chamber (both oxidizer and fuel). b) Separate oxidizer and fuel tanks are used for storing purposes. c) Burning in the combustion chamber is uncontrolled rate. b) Controlled rate. c) Mono propellants c) Controlled rate. ii. Bi – propellants c) Controlled rate. gas pressure feed system Gas pressure feed system Pump feed system monization • Atomization Mixing • Ignition c Chemical reaction between fuel and oxidizer. 11. What are the davantages of solid propellant rocket engine? • Simple in design and construction • Less maintenance 12. What are the disadvantages of solid propellant rocket engine? • It is difficult to stop the engine • Low specific impulse • Decrease of speed is not possible 13. What are the advantages of hybrid rocket engine? • It is difficult to stop the engine • Low specific impulse • Decrease of speed is not possible 13. What are the advantages of hybrid rocket engine? • Speed regulation is possible by regulating the supply of oxidizer • High hoad capacity <th>÷</th> <th>SOLID PROPELLANT</th> <th>LIQUID PROPELLANT</th> <th></th>	÷	SOLID PROPELLANT	LIQUID PROPELLANT	
 in rocket engines b) Generally stored in combustion chamber (both oxidizer and fuel). c) Burning in the combustion chamber is uncontrolled rate. b) Separate oxidizer and fuel tanks are used for storing purposes. c) Controlled rate. c) Controlled rate. c) Mont are the types of liquid propellants used in rocket engines? i. Mono propellants g. What are the types of propellant feed system? Gas pressure feed system Pump feed system 10. What are the basic combustion processes? i. Injection Atomization Mixing i. Ignition C. Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? i. Simple in design and construction i. Less wibration due to absence of moving parts i. Less maintenance 12. What are the disadvantages of solid propellant rocket engine? i. It is difficult to stop the engine i. Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? i. High fuel capacity High fuel density 		a) Solid fuels and oxidizers are used	a) Liquid fuels and oxidizers are	
 b) Generally stored in combustion chamber (both oxidizer and fue). c) Burning in the combustion chamber is uncontrolled rate. b) Separate oxidizer and fuel tanks are used for storing purposes. c) Controlled rate. c) Controlled rate. c) Mhat are the types of liquid propellants used in rocket engines? i. Mono propellants ii. Bi – propellants 9. What are the types of propellant feed system? Gas pressure feed system Pump feed system 10. What are the basic combustion processes? Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle crosion cannot be avoided. High hoad capacity High hoad capacity High hoad capacity 		in rocket engines	used.	
chamber (both oxidizer and fue). are used for storing purposes. c) Burning in the combustion c) Controlled rate. chamber is uncontrolled rate. c) Controlled rate. s. What are the types of liquid propellants used in rocket engines? i. Mono propellants ii. Bi – propellants ii. Bi – propellant feed system? Gas pressure feed system gas pressure feed system Pump feed system iii. Bi – propellant feed system? 10. What are the basic combustion processes? injection Atomization Mixing ignition c.Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less wibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? It ki fibult to stop the nozzle erosion cannot be avoided. 1. What are the advantages of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot b		b) Generally stored in combustion	b) Separate oxidizer and fuel tanks	
c) Burning in the combustion chamber is uncontrolled rate. c) Controlled rate. 8. What are the types of liquid propellants used in rocket engines? i. Mono propellants ii. Bi – propellants nocket engines? 9. What are the types of propellant feed system? Gas pressure feed system Pump feed system nocket engines? 10. What are the basic combustion processes? Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. nocket engine? 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance nocket engine? 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. not he hybrid rocket engine? In the hybrid rocket engine? In the hybrid rocket engine? 14. What are the advantages of hybrid rocket engine? I High foad capacity Speed regulation is possible by regulating the supply of oxidizer 14. What are the advantages of hybrid rocket engine? High foad capacity High fuel density		chamber (both oxidizer and fuel).	are used for storing purposes.	
chamber is uncontrolled rate. 8. What are the types of liquid propellants used in rocket engines? i. Mono propellants ii. Bi – propellants 9. What are the types of propellant feed system? Gas pressure feed system Pump feed system 10. What are the basic combustion processes? Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 14. What are the advantages of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer Hi		c) Burning in the combustion	c) Controlled rate.	
 8. What are the types of liquid propellants used in rocket engines? i. Mono propellants ii. Bi – propellants 9. What are the types of propellant feed system? Gas pressure feed system Pump feed system 10. What are the basic combustion processes? Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What are the advantages of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 		chamber is uncontrolled rate.		
 i. Mono propellants ii. Bi – propellants 9. What are the types of propellant feed system? Gas pressure feed system Pump feed system 10. What are the basic combustion processes? Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What are the advantages of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High fuel density 	8. What are the types	of liquid propellants used in F	rocket engines?	·
 ii. Bi – propellants 9. What are the types of propellant feed system? Gas pressure feed system Pump feed system 10. What are the basic combustion processes? Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. . <l< td=""><td>i. Mono p</td><td>propellants</td><td>C</td><td></td></l<>	i. Mono p	propellants	C	
 9. What are the types of propellant feed system? Gas pressure feed system Pump feed system 10. What are the basic combustion processes? Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less wibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	ii. Bi – pr	ropellants		
 5. what are the types of propenant feed system? Gas pressure feed system 10. What are the basic combustion processes? Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? It he hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	0. What are the types	of propellant food aveter?		
Pump feed system 10. What are the basic combustion processes? • Injection • Atomization • Mixing • Ignition • Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? • Simple in design and construction • Less vibration due to absence of moving parts • Less maintenance 12. What are the disadvantages of solid propellant rocket engine? • It is difficult to stop the engine • Low specific impulse • Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. · · High load capacity • High fuel density	9. what are the types	d system		
 10. What are the basic combustion processes? Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	Pump feed system	m		
 Injection Atomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? High load capacity High fuel density 	10. What are the basic	c combustion processes?		
 Adomization Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. High load capacity High fuel density 	• Injection	F		
 Mixing Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. . 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	 Atomization 			
 Ignition Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	 Mixing 			
 Chemical reaction between fuel and oxidizer. 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	• Ignition			
 11. What are the advantages of solid propellant rocket engine? Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	Chemical react	ion between fuel and oxidizer.		
 Simple in design and construction Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	11. What are the adv	antages of solid propellant ro	cket engine?	
 Less vibration due to absence of moving parts Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	 Simple in designation 	n and construction		
 Less maintenance 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	 Less vibration of 	due to absence of moving parts		
 12. What are the disadvantages of solid propellant rocket engine? It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	Less maintenan	ice		
 It is difficult to stop the engine Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	12. What are the disa	dvantages of solid propellant	rocket engine?	
 Low specific impulse Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. . 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	• It is difficult to s	top the engine		
 Decrease of speed is not possible 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	 Low specific imp 	pulse		
 13. What is the limitation of hybrid rocket engine? In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	• Decrease of spee	d is not possible		
In the hybrid rocket engine, the nozzle erosion cannot be avoided. 14. What are the advantages of hybrid rocket engine? • Speed regulation is possible by regulating the supply of oxidizer • High load capacity • High fuel density	13. What is the limitat	tion of hybrid rocket engine?		
 14. What are the advantages of hybrid rocket engine? Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	In the hybrid roc	ket engine, the nozzle erosion c	annot be avoided.	
 Speed regulation is possible by regulating the supply of oxidizer High load capacity High fuel density 	14. What are the adva	antages of hybrid rocket engir	ne?	
 High load capacity High fuel density 	• Speed reg	gulation is possible by regulatin	g the supply of oxidizer	
• High fuel density	• High load	d capacity		
	• High fuel	density		

Lighter compared to liquid propellant rockets
15 Define heterogeneous propellants
In heterogeneous propellants solid propellants plastics, polymers and polyvinylchloride are used as
fuels. Nitrates and perchlorates are used as oxidizer.
16. Define homogenous propellants.
In homogenous propellants solid propellants nitroglycerine and nitrocellulose are used. It combines the
properties of fuels and oxidizer
17. Differentiate jet propulsion and rocket propulsion (or) differentiate between air breathing and
rocket propulsion? (NOV/DEC2009)
Jet propulsion Rocket propulsion Oxygen required for combustion purpose is taken from the
atmosphere Oxygen is filled in a tank in the rocket engine itself and used for combustion purpose
Altitude limitation No altitude limitation Flight speed always less than jet velocity. Flight speed can be
greater than jet velocity Reasonable efficiency Low efficiency expect at extremely high flight speed
10 What is manufactor and an and a provention of the state of the stat
18. What is monopropenant: (APR/MAY 2015) Give one example for that? The liquid propellant both the fuel and exidizer in a single chemical is
known as a Mono propallant. It is stable at permal ambient conditions and liberates thermal chemical
energy on heating. Example: Nitroglycerine and Nitro methane
10 What is mono-propellants? Give evample
A liquid propellant which contains both the fuel and oxidizer in a single chemical is known as "mono
propellant" e.g.
Hydrogen peroxide Hydrazine. Nitroglycerine and Nitromethane, etc.
20. What is bipropellant?
If the fuel and oxidizer are different from each other in its chemical nature, the propellant is called the
bipropellant. Example: Liquid oxygen –gasoline and Hydrogen peroxide – hydrazine
21. Classify the rocket engines based on sources of energy employed?
On the basis of source of energy employed rocket engine is classified as: Chemical rocket engines
Solar rocket engines Nuclear rocket engines Electrical rocket engines
22. What is specifying impulse of nocket?
The thrust developed by unit weight flow rate of the propellant is known as specific impulse.
Isp =F/Wp
23. Define specific consumption?: $\cdots (A^T)^{n-1} \mathcal{C}^T$]
The propellant consumption rate per unit thrust is known as specific propellant consumption.
SPC = Wp/F
24. What is weight flow co-efficient?
It is the ratio of propellant flow rate to the throat force.
$Cw = wp/poA^*$
25. What is IWK?
IWR (impulse to weight ratio) is the ratio of total impulse of the focket to the total weight of the focket. IWR = I total/W/total
26 Nama soma avidizars usad in rackats (Nav'16)
A liquid propellant which contains the fuel and oxidizer in separate units is known as
bi-propellant. The commonly used bi-propellant combinations are:
OXIDIZER FUEL
a) Liquid oxygen a) Gasoline
b) Hydrogen peroxide b) Liquid bydrogen
c) Nitrogen tetroxide c) UDMH
d) Nitrie soid
u) Multe actu

27. Name few advantages of liquid propellant rockets over solid propellant rockets.
(APK/MAY2011,NOV17) i. Liquid propallant can be raused or recharged. Honce it is economical
i. Increase or decrease of speed is possible when it is in operation
iii Storing and transportation is easy as the fuel and oxidizer are kent separately
iv. Specific impulse is very high.
28. What is inhibitors? (MAY/JUNE2014)
Inhibitors are used to regulate (or prevent) the burning of propellant at some sections.
29. Give the important requirements of rocket engine fuels.
i. It must be able to produce a high chamber temperature. It should have a high calorific
value per unit of propellant.
ii. It should not chemically react with motor system including tanks, piping, valves and
injection nozzles
30. What is meant by restricted burning in rockets?
In this case, the inhibition material (or) restrictions prevent the propellant grain from
surfaces are prevented from burning
surfaces are prevented from burning.
PART – B & C
1. List the main components of Liquid Propellant Rocket Engine and explain . (APR/MAY 2015)
Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:404
2. A rocket engine has the following data:
Effective jet velocity=1200m/s
Flight to jet speed ratio=0.82
()vidizer flow rate=3.4kg/s
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases -2520k I/kg
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following Thrust Specific impulse Propulsive efficiency Thermal efficiency
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency, (APR/MAY 2015)
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015)
Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015)
 Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following, Thrust, Specific impulse, Propulsive efficiency, Thermal efficiency and Overall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid
 Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following, Thrust, Specific impulse, Propulsive efficiency, Thermal efficiency and Overall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 & 457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines (MAY/IUNE 2014)
 Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following, Thrust, Specific impulse, Propulsive efficiency, Thermal efficiency and Overall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014)
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409
Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts
 Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 & 457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vi. Military
Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vi. Military vii. Space (MAY/JUNE 2014)
Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 & 457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vii. Military viii. Space viii. Scientific (MAY/JUNE 2014)
Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vi. Military vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:431
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 & 457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vii. Military vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields vi. Military viii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:431
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 & 457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vi. Military vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:431 5. (a)Describe with schematic diagram the principle of working and construction of a magneto brahedunamic mediat anging (MOY/DEC 2014)
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &4457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vi. Military vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields vii. Military viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:431 5. (a)Describe with schematic diagram the principle of working and construction of a magneto hydrodynamic rocket engine. (NOV/DEC 2014) (h)In the rocket engine. monellant flow rate is 5 2 ka/s nozzle exit diameter is 9 cm nozzle exit pressure
 Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vi. Military vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:431 5. (a)Describe with schematic diagram the principle of working and construction of a magneto hydrodynamic rocket engine. (NOV/DEC 2014) (b)In the rocket engine, propellant flow rate is 5.2 kg/s, nozzle exit diameter is 9cm , nozzle exit pressure is 1.02bar, ambient pressure is 1.013bar, thrust chamber pressure is 22bar and thrust is 7.2 kN
Fuel flow rate=1.2kg/s Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vii. Military vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields vi. Military vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:431 5. (a)Describe with schematic diagram the principle of working and construction of a magneto hydrodynamic rocket engine. (NOV/DEC 2014) (b)In the rocket engine, propellant flow rate is 5.2 kg/s, nozzle exit diameter is 9cm , nozzle exit pressure is 1.02bar, ambient pressure is 1.013bar, thrust chamber pressu
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vii. Military viii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion in the following fields v. Aircrafts vi. Military viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:431 5. (a)Describe with schematic diagram the principle of working and construction of a magneto hydrodynamic rocket engine. (NOV/DEC 2014) (b)In the rocket engine, propellant flow rate is 5.2 kg/s, nozzle exit diameter is 9cm , nozzle exit pressure is 1.013bar, thrust chamber pressure is 22bar and thrust is 7.2 kN. Calculate the following v. Effective jet velocity v. Effective jet veloci
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 & 457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vi. Military vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion in the following fields v. Aircrafts vi. Military viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:431 5. (a)Describe with schematic diagram the principle of working and construction of a magneto hydrodynamic rocket engine. (NOV/DEC 2014) (b)In the rocket engine, propellant flow rate is 5.2 kg/s, nozzle exit diameter is 9cm , nozzle exit pressure is 1.02bar, ambient pressure is 1.013bar, thrust chamber pressure is 22bar and thrust is 7.2 kN. Calculate the following v. Effective jet velocity vi. Actual jet
Fuel flow rate=1.2kg/s Heat of reaction per kg of the exhaust gases =2520kJ/kg Calculate the following,Thrust,Specific impulse,Propulsive efficiency,Thermal efficiency andOverall efficiency. (APR/MAY 2015) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:452 &457 3. Explain the working principles of a Turbo-pump feed system with a schematic diagram for liquid propellant rocket engines. (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields v. Aircrafts vii. Military vii. Space viii. Scientific (MAY/JUNE 2014) Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:409 4. Describe briefly the important applications of rocket propulsion in the following fields vi. Military vii. Space viii. Scientific (MAY/JUNE 2014) 8. (a)Describe with schematic diagram the principle of working and construction of a magneto hydrodynamic rocket engine. (NOV/DEC 2014) (b)In the rocket engine, propellant flow rate is 5.2 kg/s, nozzle exit diameter is 9cm , nozzle exit pressure is 1.013bar, thrust chamber pressure is 22bar and thrust is 7.2 kN. Calculate the following v. Effective jet velocity vi. Actual jet velocity vi. Specific impulse and

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:403 & 448

6. (a)What are the advantages and disadvantages of liquid propellant rocket engine? (NOV/DEC 2014) (b)A rocket has the following data: combustion chamber pressure 36bar, combustion chamber temperature =3600K, Oxidizer flow rate = 41kg/s. Mixure ratio=5 and Ambient pressure =585N/m². Determine:

- vi. Nozzle throat area
- vii. Thrust
- viii. Thrust coefficient,
- ix. Characteristic velocity and
- x. Exit velocity of exhaust gases.

 Take ½=1.3. and R=287J/kg K
 (NOV/DEC 2014)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:413& 458

7. Calculate the thrust, specific impulse, propulsive efficiency, thermal and overall effciencies of a rocket engine from the following data; Effective jet velocity = 1250 m/s, Flight to jet speed ratio = 0.8, oxidizer flow rate=3.5kg/s, fuel flow rate=1kg/s, heat of reaction of exhaust gases = 2,500 kJ/ks (Nov'16)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:457

8. A spacecraft's engine ejects mass at a rate of 30kg/s with an exhaust velocity of 3100m/s.The pressure at the nozzle exit is 5kPa and the exit area is 0.7m² .what is the thrust of the engine in a vacuum? (Nov'17)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:448

9. A rocket nozzle has a throat area of 18cm² and combustion chamber pressure of 25bar. If the specific impulse is 127.42 s and weight flow rate (iii) Specific propellant consumption (iv) Characteristics velocity. (Nov'17)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahya, Pg.No:458

10. Describe with the aid of illustrative diagrams of any two arrangements of solid propellant grains employed for restricted and unrestricted burning. Indicate the directions of burning and flow of gases. (Nov'17)

Ref: Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion By S.M.Yahyas, Pg.No:419