JEPPIAAR ENGINEERING COLLEGE

Jeppiaar Nagar, Rajiv Gandhi Salai – 600 119

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

IV SEMESTER

MA6451 - Probability and Random Processes

Regulation - 2013(Batch: 2016 - 2020)

Academic Year 2018 – 19

Prepared by

Mr.R.Rajarajan ,Assistant Professor/S&H Mrs.K.Subashini,Assistant , Assistant Professor/S&H

JEPPIAAR ENGINEERING COLLEGE

Jeppiaar Nagar, Rajiv Gandhi Salai – 600 119

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

QUESTION BANK

SUBJECT : EC6404 – Linear Integrated Circuits

YEAR /SEM: II /IV

UNIT I : BASICS OF OPERATIONAL AMPLIFIERS

Current mirror and current sources, Current sources as active loads, Voltage sources, Voltage References, BJT Differential amplifier with active loads, Basic information about op-amps – Ideal Operational Amplifier - General operational amplifier stages -and internal circuit diagrams of IC 741, DC and AC performance characteristics, slew rate, Open and closed loop configurations.

	PART-A					
CO Map	ping : C213.1					
Q.NO	Questions	BT Level	Competence	РО		
1.	Draw the dc transfer characteristics of a BJT differential amplifier and define differential mode input voltage	BTL-3	Applying	PO1		
2.	Write down the characteristics of ideal operational amplifier?	BTL-4	Analyzing	PO1		
3.	Why is the current mirror circuit used in differential amplifier stages?	BTL-2	Understanding	PO1		
4.	Differentiate the ideal and practical characteristics of an op-amp	BTL-3	Analyzing	PO1		
5.	Draw the circuit diagram of a symmetrical emitter coupled differential amplifier.	BTL-3	Applying	PO1		
6.	Draw the Internal Block diagram of Op – Amp	BTL-3	Applying	PO1		
7.	An operational amplifier has a slew rate of $4v/\mu s$.Determine the maximum frequency of operation to produce distortion less output swing of 12V	BTL-6	Creating	PO1,PO2		
8.	What is the cause for slew rate and how it can be made faster?	BTL-2	Understanding	PO1.PO2.PO3		
9.	Define input bias current and input offset current of an operational amplifier	BTL-1	Remembering	PO1		
10.	A differential amplifier has a differential voltage gain of 2000 and a common mode gain of 0.2.Determine the CMRR in dB	BTL-6	Creating	PO1,PO2		
11.	Define Slew rate and what causes slew rate?	BTL	Remembering	PO1		
12.	Define CMRR of an operational amplifier?	BTL	Remembering	PO1		
13.	What is current mirror?	BTL-2	Understanding	PO1		

14.	Explain the limitation of current mirror circuits?	BTL-2	Understanding	PO1
	Draw the circuit of a Widlar current source and write			DO1
15.	the exp for its output current	BTL-3	Applying	PO1
16.	Define Thermal Drift	BTL-1	Remembering	PO1
17.	What is an operational amplifier?	BTL-2	Understanding	PO1
18.	What are the AC characteristics of an op-amp?	BTL-2	Understanding	PO1
19.	What are the DC characteristics of an op-amp? Give the typical values for an IC741?	BTL-2	Understanding	PO1,PO2
20.	When does the op-amp behave as a switch?	BTL-2	Understanding	PO1
21.	In response to square wave input, the output of an op- amp changed from $-3V$ to $+3V$ over a time interval of 0.25µs. Determine the slew rate of the op-amp.	BTL-6	Creating	PO1,PO2,
22.	Define integrated circuit.	BTL-1	Remembering	PO1
23.	What are the advantages of integrated circuits over discrete components?	BTL-2	Understanding	PO1
24.	What are the disadvantages of integrated circuits?	BTL-2	Understanding	PO1
25.	What is meant by monolithic IC	BTL-2	Understanding	PO1
26.	What are the two requirements to be met for a good current source?	BTL-2	Understanding	PO1,PO2
27.	List the various methods of realizing high input resistance in a differential amplifier	BTL-2	Understanding	PO1
28.	Mention two advantages of active load over passive load in an operational amplifier	BTL-4	Analyzing	PO1
29.	What is active load? Where it is used and why?	BTL-2	Understanding	PO1
30.	Define supply voltage rejection ratio (SVRR)	BTL-1	Remembering	PO1,PO2
31.	Define input offset voltage	BTL-1	Remembering	PO1
32.	Define Frequency Response	BTL-1	Remembering	PO1
33.	Define unity gain bandwidth of a Op-Amp	BTL-1	Remembering	PO1
	Define unity gain bandwidth of a Op-Amp PART B &C		Remembering	
		BT	Remembering Competence	PO1 PO
33. Q.NO	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier			
33.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation	BT Level	Competence	РО
33. Q.NO	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance	BT Level BTL-2	Competence Understanding	PO PO1
33. Q.NO 1.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate	BT Level BTL-2 BTL-3 BTL-2 BTL-3	Competence Understanding Applying Understanding Applying	PO1 PO1 PO1 PO1 PO1,PO2
33. Q.NO 1.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate i)With a schematic diagram, explain the effect of R _E on CMRR in differential amplifier	BT Level BTL-2 BTL-3 BTL-2 BTL-3 BTL-3	Competence Understanding Applying Understanding Applying Understanding	PO1 PO1 PO1 PO1,PO2 PO1
33. Q.NO 1. 2.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate i)With a schematic diagram, explain the effect of R _E on CMRR in differential amplifier ii)Discuss about the methods to improve CMRR	BT Level BTL-2 BTL-3 BTL-2 BTL-3 BTL-2 BTL-2 BTL-3	Competence Understanding Applying Understanding Applying Understanding Applying	PO1 PO1 PO1 PO1,PO2 PO1 PO1
33. Q.NO 1. 2.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate i)With a schematic diagram, explain the effect of R _E on CMRR in differential amplifier ii)Discuss about the methods to improve CMRR i)With simple schematic of differential amplifier	BT Level BTL-2 BTL-3 BTL-2 BTL-3 BTL-3	Competence Understanding Applying Understanding Applying Understanding	PO1 PO1 PO1 PO1,PO2 PO1
33. Q.NO 1. 2.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate i)With a schematic diagram, explain the effect of R _E on CMRR in differential amplifier ii)Discuss about the methods to improve CMRR i)With simple schematic of differential amplifier ii)Briefly Explain about constant current source	BT Level BTL-2 BTL-3 BTL-2 BTL-3 BTL-2 BTL-3 BTL-2 BTL-2 BTL-2	Competence Understanding Applying Understanding Applying Understanding Applying Understanding Understanding Understanding	PO1 PO1 PO1 PO1,PO2 PO1 PO1
33. Q.NO 1. 2. 3.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate i)With a schematic diagram, explain the effect of R _E on CMRR in differential amplifier ii)Discuss about the methods to improve CMRR ii)With simple schematic of differential amplifier ii)Briefly Explain about constant current source ii)Briefly explain the techniques used for frequency	BT Level BTL-2 BTL-3 BTL-2 BTL-3 BTL-2 BTL-3 BTL-2	Competence Understanding Applying Understanding Applying Understanding Applying Understanding Understanding	PO PO1 PO1 PO1 PO1,PO2 PO1 PO1 PO1 PO1 PO1
33. Q.NO 1. 2. 3.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate i)With a schematic diagram, explain the effect of R _E on CMRR in differential amplifier ii)Discuss about the methods to improve CMRR i)With simple schematic of differential amplifier ii)Briefly Explain about constant current source i)Briefly explain the techniques used for frequency compensation ii)How do the open loop gain and the closed loop gain	BT Level BTL-2 BTL-3 BTL-2 BTL-2 BTL-3 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	Competence Understanding Applying Understanding Applying Understanding Applying Understanding Understanding Understanding Understanding	PO PO1 PO1 PO1 PO1,PO2 PO1 PO1 PO1
33. Q.NO 1. 2. 3. 4. 5.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii)With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate i)With a schematic diagram, explain the effect of R _E on CMRR in differential amplifier ii)Discuss about the methods to improve CMRR i)With simple schematic of differential amplifier ii)Briefly Explain about constant current source i)Briefly explain the techniques used for frequency compensation ii)How do the open loop gain and the closed loop gain of an op-amp differ?	BT Level BTL-2 BTL-3 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	Competence Understanding Applying Understanding Applying Understanding Understanding Understanding Understanding Understanding Understanding	PO PO1 PO1 PO1 PO1,PO2 PO1 PO1 PO1 PO1 PO1 PO1 PO1
33. Q.NO 1. 2. 3. 4.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate i)With a schematic diagram, explain the effect of R _E on CMRR in differential amplifier ii)Discuss about the methods to improve CMRR i)With simple schematic of differential amplifier ii)Briefly Explain about constant current source i)Briefly explain the techniques used for frequency compensation ii)How do the open loop gain and the closed loop gain	BT Level BTL-2 BTL-3 BTL-2 BTL-2 BTL-3 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	Competence Understanding Applying Understanding Applying Understanding Applying Understanding Understanding Understanding Understanding	PO PO1 PO1 PO1 PO1,PO2 PO1 PO1 PO1 PO1 PO1
33. Q.NO 1. 2. 3. 4. 5.	PART B &C Questions i)With a help of a block diagram ,explain the various stages present in an operational amplifier ii)Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear operation i)What is the input and output voltage and current offsets? How are they compensated? ii) With neat diagram derive the AC performance close loop characteristics of Op-Amp to discuss on the circuit Bandwidth, Frequency response and slew rate i)With a schematic diagram, explain the effect of R _E on CMRR in differential amplifier ii)Discuss about the methods to improve CMRR i)With simple schematic of differential amplifier ii)Briefly Explain about constant current source i)Briefly explain the techniques used for frequency compensation ii)How do the open loop gain and the closed loop gain of an op-amp differ? With a neat diagram Explain the input side of the	BT Level BTL-2 BTL-3 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	Competence Understanding Applying Understanding Applying Understanding Understanding Understanding Understanding Understanding Understanding	PO PO1 PO1 PO1 PO1,PO2 PO1 PO1 PO1 PO1 PO1 PO1 PO1 PO1

	its operation. Also discuss about how current ratio can be improved in the basic current mirror. Sketch the improved circuit and explain			
9.	i)Define and explain slew rate. What is full power bandwidth? Also explain the method adopted to improve slew rate	BTL-2	Understanding	PO1
	ii)Define output off set voltage. Explain methods to nullify offset voltage	BTL-2	Understanding	PO1
10.	Explain in detail wilson current source and widlar current source and derive necessary equations	BTL-2	Understanding	

UNIT II : APPLICATIONS OF OPERATIONAL AMPLIFIERS Sign Changer, Scale Changer, Phase Shift Circuits, Voltage Follower, V-to-I and I-to-V converters, adder, subtractor, Instrumentation amplifier, Integrator, Differentiator, Logarithmic amplifier, Antilogarithmic amplifier, Comparators, Schmitt trigger, Precision rectifier, peak detector, clipper and clamper, Low-pass, high-pass and band-pass Butterworth filters.

PART-A					
CO Map	ping : C213.2				
Q.NO	Questions	BT Level	Competence	РО	
1.	State the limitations of an ideal integrator.	BTL-1	Remembering	PO1	
2.	How will you realize a peak detector using a precision rectifier?	BTL-5	Evaluating	PO1	
3.	What is the need for converting a first order filter into a second order filter?	BTL-2	Understanding	PO1	
4.	How is the current characteristic of a PN junction employed in a Log amplifier?	BTL-5	Evaluating	PO1	
5.	For the op-amp shown in figure determine the voltage gain $2K \qquad \qquad$	BTL-6	Creating	PO1,PO2	
6.	Draw the circuit diagram of a peak detector with waveforms.	BTL-3	Applying	PO1	
7.	Give any four applications of comparators.	BTL-1	Remembering	PO1	
8.	What is hysteresis and mention the purpose of hysteresis in a comparator?	BTL-2	Understanding	PO1	
9.	What is the difference between normal rectifier and precision rectifier?	BTL-2	Understanding	PO1	
10.	Plot the transfer characteristics of the circuit shown in figure 2 .The op-amp saturates at +/-12V $\bigvee_{in} \underbrace{\downarrow}_{2k\Omega}$ Figure 2	BTL-3	Applying	PO1,PO2	
11.	Define inverting amplifier and draw the circuit?	BTL-1	Remembering	PO1	
12.	Define non-inverting amplifier and draw the circuit?	BTL-1	Remembering	PO1	
13.	What is meant by voltage follower?	BTL-2	Understanding	PO1	

1.	Explain ii) What is instrumentation amplifier? Draw a system	BTL-3	Applying	PO1
	i)For performing differentiation in an operational amplifier, integrator is preferred to differentiator-	BTL-2	Understanding	PO1
Q.NO	PART:B & C	BT Level	Competence	РО
	Figure 1			
	V _{in} -10 V			
35.	+10 V +1.5V	BTL-6	Creating	PO1,PO2
	Determine the output voltage for the circuit shown in figure 1 when (a)Vin=-2V (b)Vin=3V			
34.	Draw the circuit diagram of differentiators and give its output equation	BTL-3	Applying	PO1,PO2
33.	Draw the circuit diagram of a schmitt trigger	BTL-3	Applying	PO1,PO2
32.	negative in a precision diode. Give an application of an Inverting Amplifier	BTL-3	Applying	PO1
31.	Give the output voltage when V _i is positive and	BTL-3	Applying	PO1
30.	What are the main drawbacks of ideal integrator circuit?	BTL-2	Understanding	PO1
29.	What are the steps to be followed while designing a good differentiator?	BTL-2	Understanding	PO1
28.	What are the main drawbacks of ideal differentiator?	BTL-2	Understanding	PO1
27.	Define precision half wave rectifier with diagram?	BTL-1	Remembering	PO1
26.	What is Precision rectifier?	BTL-2	Understanding	PO1
25.	State the disadvantages of passive filters?	BTL-2	Understanding	PO1
24.	Mention the characteristics of Instrumentation amplifier?	BTL-4	Analyzing	PO1
23.	Mention two application of Schmitt trigger?	BTL-4	Analyzing	PO1
22.	performed by an operational amplifier? Explain the current to voltage convertor?	BTL-2	Understanding	PO1
21.	operational amplifier? Mention two linear and two non- linear operations	BTL-4	Analyzing	PO1
20.	Derive the expression for voltage gain of an inverting	BTL-5	Evaluating	PO1
19.	An ac signal has got a magnitude of 0.1 volt peak to peak. Suggest a suitable half wave rectifier for this signal.	BTL-4	Analyzing	PO1,PO2
18.	Draw the circuit of a voltage follower using op-amp and prove that its gain is exactly equal to unity	BTL-3	Applying	PO1
17.	Explain the voltage to current convertor	BTL-2	Understanding	PO1
16.	For the op-amp shown in figure, determine the voltage gain.	BTL-3	Applying	PO1
15.	Draw the circuit diagram of an op-amp differential amplifier. Mention its o/p equation	BTL-3	Applying	PO1
14.	Draw the circuit diagram of an op-amp integrator. Mention its applications	BTL-3	Applying	PO1

2.	Explain the operation of differentiator and integrator with relevant waveforms and equations	BTL-1	Understanding	PO1
3.	i) What is a precision rectifier? Explain the working of Full wave precision rectifier?	BTL-2	Understanding	PO1
5.	ii) Write short notes on Clipper and clamper circuits	BTL-2	Remembering	PO1
	i)Draw the circuit of a second order Butterworth active low pass filter and derive its transfer function	BTL-3	Applying	PO1
4.	ii) Design a second order active low pass filter for a cut-off frequency of 1 KHz.	BTL-6	Creating	PO1,PO2
	i) Briefly explain the working principle of Schmitt trigger.	BTL-2	Understanding	PO1
5.	ii) Design a wide band pass filter having f_L =400 Hz f_H =2kHz and pass band gain of 4.Find the value of Q of the filter	BTL-6	Creating	PO1,PO2
6.	With a circuit diagram discuss the following applications of op-amp. a.Voltage to current converter. b.Precision rectifier.	BTL-3	Applying	PO1
7.	Explain the working of 3 op-amp Instrumentation amplifier?	BTL-2	Understanding	PO1
8.	Explain the working of Log amplifier and antilog amplifier?	BTL-2	Understanding	PO1
9.	i) Explain the operation of current to voltage converterii) Differentiate between low pass ,high pass ,band pass and band reject filter. Sketch the frequency plot	BTL-2	Understanding	PO1

UNIT III ANALOG MULTIPLIER AND PLL

Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell – Variable transconductance technique, analog multiplier ICs and their applications, Operation of the basic PLL, Closed loop analysis, Voltage controlled oscillator, Monolithic PLL IC 565, application of PLL for AM detection, FM detection, FSK modulation and demodulation and Frequency synthesizing

	PART-A					
CO Map	ping : C213.3					
Q.NO	Questions	BT Level	Competence	РО		
1.	Define capture range of a PLL?	BTL-1	Remembering	PO1		
2.	How are square root and square of a signal obtained with multiplier Circuit	BTL-5	Evaluating	PO1		
3.	How is frequency stability obtained in a PLL by use of a VCO?	BTL-5	Evaluating	PO1		
4.	Draw the block diagram of PLL for AM detection?	BTL-3	Applying	PO1		
5.	What is a four-quadrant multiplier?	BTL-2	Understanding	PO1		
6.	Calculate the lock range and the capture range of the PLL	BTL-6	Creating	PO1		
7.	The lock range of a certain general purpose PLL with a free running frequency of 50MHz is specified to be +/- 10% what is its lock range?	BTL-5	Evaluating	PO1,PO2		
8.	What are the essential building blocks of a PLL?	BTL-2	Understanding	PO1		
9.	What is a two quadrant multiplier?	BTL-2	Understanding	PO1		
10.	What is compander?	BTL-2	Understanding	PO1		
11.	State why the phase detector output in a PLL should be followed by a low pass filter?	BTL-4	Analyzing	PO1		
12.	Draw the block diagram of a multiplier using log and antilog amplifiers.	BTL-3	Applying	PO1		

Without in fire success source in a single of	DTI 0	I Indoneto a dia o	DO1
		· · · · · · · · · · · · · · · · · · ·	PO1
			PO1
		0	PO1
			PO1
		· · · · · · · · · · · · · · · · · · ·	PO1
**			PO1
			PO1
			PO1
Define free running mode.	BTL-1	Remembering	PO1
What are the advantages of variable transconductance	DTI 2	Understanding	PO1
technique?	DIL-2	Understanding	POI
With reference to a VCO, define voltage to frequency	DTI 1	Damanaharing	DO1
conversion factor Kv.	BIL-I	Remembering	PO1
Draw the relation between the capture ranges and			
	BTL-3	Applying	PO1
	BTL-4	Analyzing	PO1
			PO1
			PO1
	BTL-2		PO1
	2122	enderstanding	101
	ВТ		РО
		Competence	10
With neat diagram explain the design of (i)			201
circuit using PLL IC 565	BTL-2	Understanding	PO1
i) Discuss the principle of operation of NE 565 PLL	BTL-1	Understanding	PO1
		8	-
	BTL-5	Evaluating	PO2
		8	
	BTL-2	Understanding	PO1
	D12 2	enderstanding	101
	BTL-2	Understanding	PO1
expressions for lock in range and capture range			
		Onderstanding	101
i) With neat simplified internal diagram			101
i) With neat simplified internal diagram explain the working principle of Operational	BTL-2	Understanding	PO1
i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA)			PO1
i) With neat simplified internal diagramexplain the working principle of OperationalTransconductance Amplifier(OTA)ii) Explain the application of VCO for FM	BTL-2	Understanding	
i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA)ii) Explain the application of VCO for FM generation			PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 	BTL-2	Understanding	PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 566 voltage controlled oscillator. Also derive an 	BTL-2 BTL-2	Understanding Understanding	PO1 PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 566 voltage controlled oscillator. Also derive an expression for the frequency of the output waveform 	BTL-2	Understanding	PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 566 voltage controlled oscillator. Also derive an expression for the frequency of the output waveform generated 	BTL-2 BTL-2	Understanding Understanding	PO1 PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 566 voltage controlled oscillator. Also derive an expression for the frequency of the output waveform generated Explain the working principle of four quadrant 	BTL-2 BTL-2 BTL-2	Understanding Understanding Understanding	PO1 PO1 PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 566 voltage controlled oscillator. Also derive an expression for the frequency of the output waveform generated 	BTL-2 BTL-2	Understanding Understanding	PO1 PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 566 voltage controlled oscillator. Also derive an expression for the frequency of the output waveform generated Explain the working principle of four quadrant 	BTL-2 BTL-2 BTL-2 BTL-2	Understanding Understanding Understanding Understanding	PO1 PO1 PO1 PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 566 voltage controlled oscillator. Also derive an expression for the frequency of the output waveform generated Explain the working principle of four quadrant variable form transconductance multiplier 	BTL-2 BTL-2 BTL-2	Understanding Understanding Understanding	PO1 PO1 PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 566 voltage controlled oscillator. Also derive an expression for the frequency of the output waveform generated Explain the working principle of four quadrant variable form transconductance multiplier Draw the analog multiplier IC and explain its features 	BTL-2 BTL-2 BTL-2 BTL-2	Understanding Understanding Understanding Understanding	PO1 PO1 PO1 PO1
 i) With neat simplified internal diagram explain the working principle of Operational Transconductance Amplifier(OTA) ii) Explain the application of VCO for FM generation With suitable block diagram explain the operation of 566 voltage controlled oscillator. Also derive an expression for the frequency of the output waveform generated Explain the working principle of four quadrant variable form transconductance multiplier Draw the analog multiplier IC and explain its features and Explain the application of analog multiplier IC 	BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	Understanding Understanding Understanding Understanding Understanding	PO1 PO1 PO1 PO1 PO1
	technique? With reference to a VCO, define voltage to frequency conversion factor Kv. Draw the relation between the capture ranges and lock range in a PLL. Mention two applications of analog multiplier VCO is called as V-F converter why? Define FSK What is the need for frequency synthesizer PART:B & C With neat diagram explain the design of (i) Frequency Synthesizer (ii) Frequency Division circuit using PLL IC 565 i) Discuss the principle of operation of NE 565 PLL circuit ii) How can PLL be modeled as a frequency multiplier? Explain the Application of PLL as AM detection, FM detection and FSK demodulation Explain the basic blocks of PLL and determine	Draw the basic block diagram of PLL?BTL-3What is amplitude modulation?BTL-2Define voltage to frequency conversion factor kv?BTL-1Give two application of PLL?BTL-2What is a voltage-controlled oscillator?BTL-2What are the merits of companding?BTL-2List the applications of OTA:BTL-4Mention some areas where PLL is widely usedBTL-4Define lock-in range of a PLLBTL-1Define lock-in range of a PLLBTL-1Define free running mode.BTL-1What are the advantages of variable transconductance technique?BTL-2With reference to a VCO, define voltage to frequency conversion factor Kv.BTL-3Draw the relation between the capture ranges and lock range in a PLL.BTL-3Mention two applications of analog multiplierBTL-4VCO is called as V-F converter why?BTL-2Define FSKBTL-2What is the need for frequency synthesizerBTL-2With neat diagram explain the design of (i) Frequency Synthesizer (ii) Frequency Division circuit using PLL IC 565BTL-2i) How can PLL be modeled as a frequency multiplier?BTL-1BTL-5BTL-5Explain the Application of PLL as AM detection, FM detection and FSK demodulationBTL-2Explain the basic blocks of PLL and determine EXplain the basic blocks of PLL and determineBTL-2	Draw the basic block diagram of PLL?BTL-3ApplyingWhat is amplitude modulation?BTL-2UnderstandingDefine voltage to frequency conversion factor kv?BTL-1RememberingGive two application of PLL?BTL-2UnderstandingWhat is a voltage-controlled oscillator?BTL-2UnderstandingWhen an amplifier is also called an error amplifier?BTL-2UnderstandingWhat are the merits of companding?BTL-2UnderstandingList the applications of OTA:BTL-4AnalyzingMention some areas where PLL is widely usedBTL-4AnalyzingDefine lock-in range of a PLLBTL-1RememberingDefine lock-in range of a variable transconductance technique?BTL-1RememberingWhat are the advantages of variable transconductance technique?BTL-2UnderstandingWith reference to a VCO, define voltage to frequency conversion factor Kv.BTL-1RememberingDraw the relation between the capture ranges and lock range in a PLL.BTL-2UnderstandingMention two applications of analog multiplierBTL-2UnderstandingVCO is called as V-F converter why?BTL-2UnderstandingPART:B & CUnderstandingWith neat diagram explain the design of (i) Frequency SynthesizerBTL-2UnderstandingWith neat diagram explain the design of (i) i Discuss the principle of operation of NE 565 PLL circuitBTL-1UnderstandingWith neat diagram explain the design of (i) Discuss the principle of operation of NE 565 PLL <br< td=""></br<>

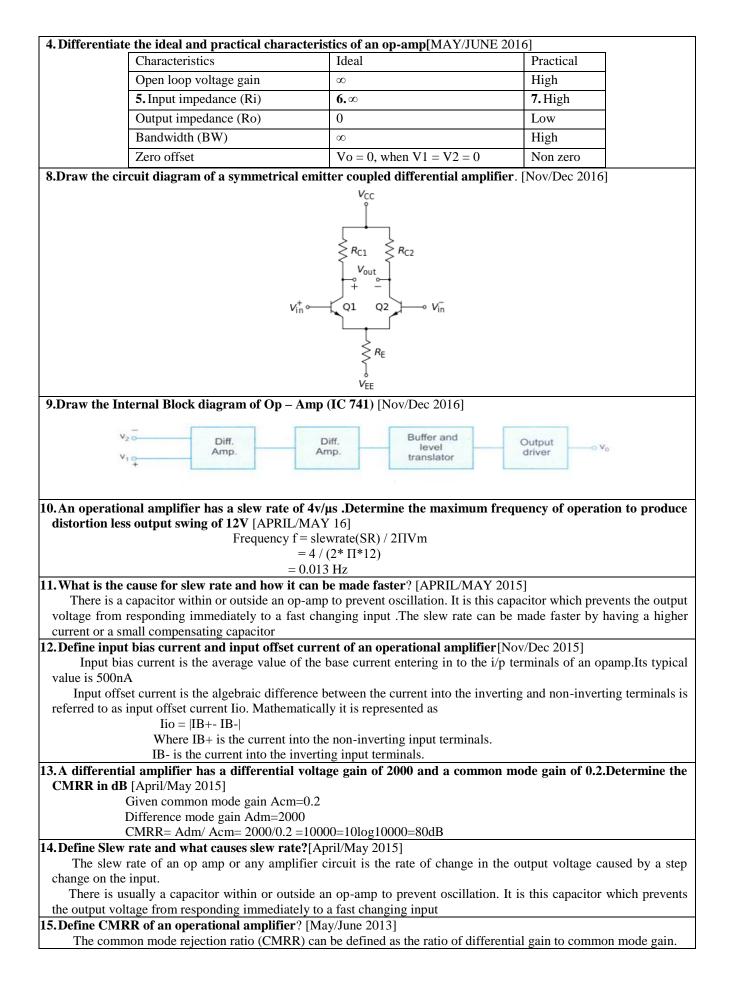
UNIT IV ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS

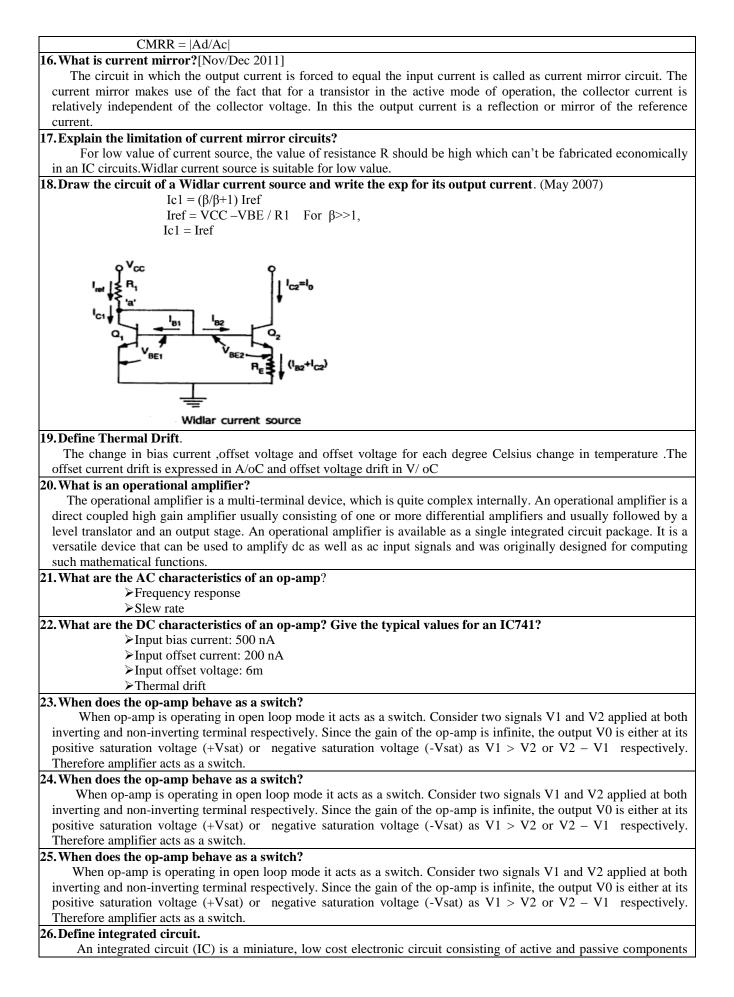
Analog and Digital Data Conversions, D/A converter – specifications - weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode R-2R Ladder types - switches for D/A converters, high speed sample-and-hold circuits, A/D Converters – specifications - Flash type - Successive Approximation type - Single Slope type – Dual Slope type - A/D Converter using Voltage-to-Time Conversion - Over-sampling A/D Converters. PART-A

CO Mapping : C213.4				
Q.NO	Questions	BT Level	Competence	РО
1.	How is the classification of A/D converters carried out based on their operational features?	BTL-1	Remembering	PO1
2.	Find the number of resistors required for an 8 bit weighted resistor D/A converter. Consider the smallest resistance is R and obtain those resistance values.	BTL-6	Creating	PO1
3.	Why are Scottky diodes used in sample and hold circuits?	BTL-5	Evaluating	PO1
4.	What are the advantages of inverted R-2R (current type) ladder D/A converter over R-2R (voltage type) D/A converter	BTL-2	Understanding	PO1
5.	What is the need for electronic switches in D/A converter?	BTL-2	Understanding	PO1
6.	A 12 bit D/A converter has a resolution of 20mv/LSB.Find the full scale output voltage.	BTL-6	Creating	PO1
7.	Draw the binary ladder network of DAC, If the value of the smaller resistance is 10K.What is the value of other resistance?	BTL-3	Applying	PO1,PO2
8.	Determine the number of comparators and resistors required for 8 bit flash type ADC	BTL-6	Creating	PO1
9.	Mention two advantages of R-2R ladder type DAC when compared to weighted resistor type DAC	BTL-4	Analyzing	PO1
10.	What would be produced by a DAC whose output ranges is 0 to 10V and whose input binary number is 10111100(for a 8 bit DAC)?	BTL-2	Understanding	PO1.PO2
11.	What is over sampling?	BTL-2	Understanding	PO1
12.	State the reason for keeping the integrating time in the dual slope analog to digital converter equal to that of mains supply period	BTL-2	Understanding	PO1
13.	Which is the fastest A/D converter? Give reason	BTL-5	Evaluating	PO1
14.	A 12 bit D/A converter have resolution of 30 mV/ LSB. Find the full scale output voltage.	BTL-6	Creating	PO1
15.	Calculate the number of comparators required for realizing a 4 bit flash A/D converter.	BTL-6	Creating	PO1
16.	Draw a sample and hold circuit.		Applying	PO1
17.	Define resolution of a D/A converter?	BTL-1	Remembering	PO1
18.	How many comparators are required to build n –bit flash type A/D converter?		Evaluating	PO1
19.	Define monotonicity with respect to D/A converter?	BTL-1	Remembering	PO1
20.	Why is R-2R ladder network DAC better than weighted resistor DAC?	BTL-5	Evaluating	PO1,PO3
21.	Which type of ADC is used in all digital voltmeter?	BTL-5	Evaluating	PO1
22.	What do you mean by delta modulation?	BTL-2	Understanding	PO1
23.	List the application of sample and Hold circuits?	BTL-4	Analyzing	PO1
24.	Mention the types of DAC techniques?	BTL-4	Analyzing	PO1
25.	Define the resolution of DAC?		Remembering	PO1
26.	Explain in brief stability of a converter:	BTL-2	Understanding	PO1
27.	What is meant by linearity?	BTL-2	Understanding	PO1
28.	What is monotonic DAC?	BTL-2	Understanding	PO1

20	What is multiplaine DAC?		I la denstea d'a e	DO1
29.	What is multiplying DAC?	BTL-2	Understanding	PO1
30.	What is a sample and hold circuit? Where it is used?	BTL-2	Understanding	PO1
31.	Define accuracy of converter.	BTL-1	Remembering	PO1
32.	Define sample period and hold period.	BTL-1	Remembering	PO1
	What output voltage would be produced by a D/A			
33.	converter whose output range is 0 to 10 V and whose	BTL-2	Understanding	PO1,PO2
	input binary number is 0110 for a 4 bit DAC.			
34.	What is the main drawback of dual slope ADC?	BTL-2	Understanding	PO1
35.	Define settling time	BTL-1	Remembering	PO1
36.	A 12 bit D/A converter has resolution of	BTL-6	Creating	PO1
	20mV/LSB.Find the full scale output voltage			
37.	Draw the weighted resistor network of DAC	BTL-3	Applying	PO1
38.	Draw the functional diagram of the successive	BTL-3	Applying	PO1
50.	approximation ADC	DIL-3	Applying	101
	PART:B & C			-
Q.NO		BT	Competence	PO
Q.NO		Level	Competence	
	Describe the operation of dual slope and successive			
1.	approximation type ADC .What are the advantages of	BTL-2	Understanding	PO1
	dual slope ADC			
	i)What is meant by resolution ,offset error in ADC	BTL-2	Understanding	PO1
2.	ii)Discuss on the single slope type ADC			
		BTL-2	Understanding	PO1
	i)Explain the successive approximation type A/D	BTL-2	Understanding	PO1
3.	converter			
	ii)Narrate the functions of Analog switches	BTL-2	Understanding	PO1
	i)How are A/D converters categorized?	BTL-5	Evaluating	PO1
4.	ii)Write Short Note on high speed sample and hold			
	circuits	BTL-2	Understanding	PO1
	i)Explain voltage mode and current mode	BTL-2	Understanding	PO1,PO2,PO3
5.	operations of R-2R ladder type DAC	DIL-2	Onderstanding	101,102,103
5.	ii) Explain over sampling type analog to	BTL-2	Understanding	PO1
	digital converters	DIL-2	Onderstanding	101
	Draw the block diagram and explain the working of			
6.	i)Charge Balancing VFCS	BTL-2	Understanding	PO1
	ii)Voltage to Time converter			
	Explain the following type DAC with suitable			
	diagrams			
7.	i)Binary weighted resistor DAC	BTL-2	Understanding	PO1
	ii)R-2R Ladder DAC			
	iii)Inverted R-2R ladder DAC			
	i)Explain the following type of electronic switches			
	used in D/A converter with suitable diagrams	BTL-2	Understanding	PO1,PO2
	1) Totem pole MOSFET switch(4)			
8.	2)CMOS inverter as a switch(4)			
	ii)Compare Flash type ,Dual slope and successive			
	approximation ADC in terms of parameters like speed			
		BTL-4	Analyzing	PO1
	accuracy, resolution input hold time		5 0	
9.	,accuracy, resolution ,input hold time With a neat block diagram explain the working of	BTL-2	Understanding	PO1

UNIT V WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS

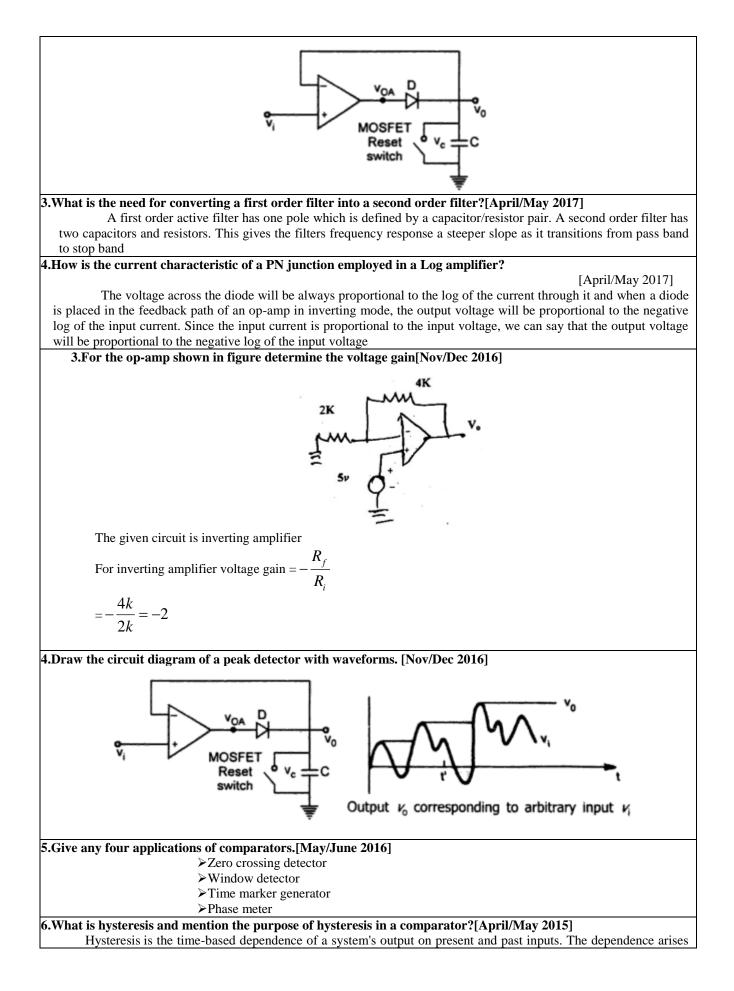

Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave generator, ICL8038 function generator, Timer IC 555, IC Voltage regulators – Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator - Monolithic switching regulator, Switched capacitor filter IC MF10, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Opto-couplers and fibre optic IC.

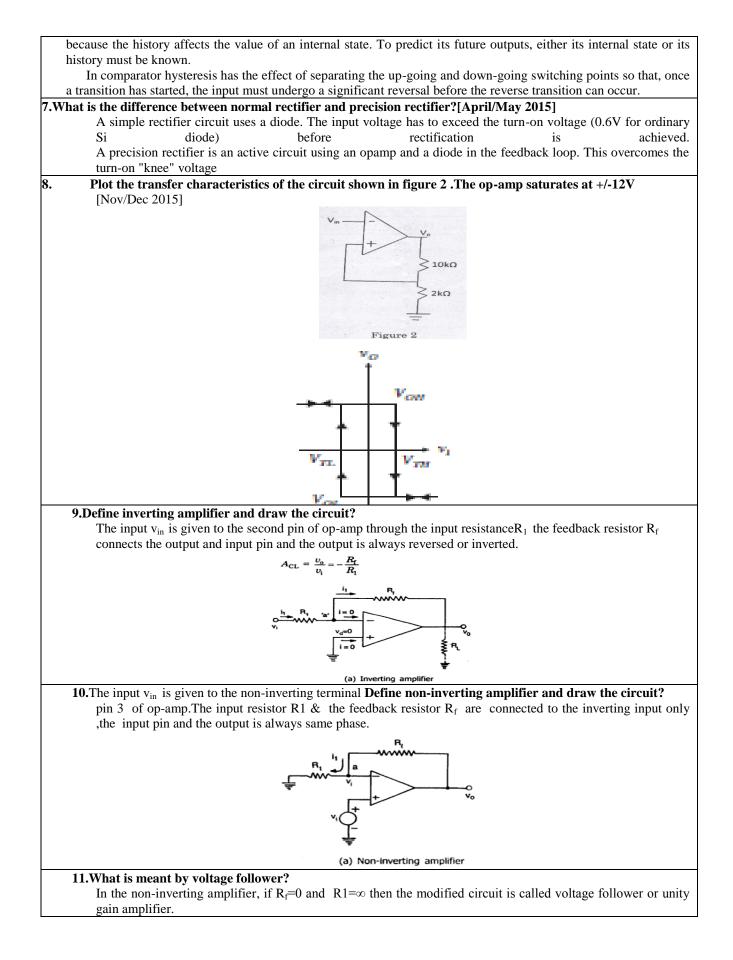

PART-A					
CO Map Q.NO	ping : C213.5 Questions	BT Level	Competence	РО	
1.	Define current transfer ratio of an opto coupler	BTL-1	Remembering	PO1	
2.	Draw a fixed voltage regulator circuit and state its operation	BTL-1	Remembering	PO1	
3.	What is a voltage regulator?	BTL-2	Understanding	PO1	
4.	Distinguish the principle of linear regulator and a switched mode power supply.	BTL-4	Analyzing	PO1	
5.	Draw the block schematic of IC 555 timer.	BTL-1	Remembering	PO1,PO2	
6.	Draw the internal circuit for audio power amplifier	BTL-1	Remembering	PO1	
7.	What is the function of a voltage regulator? Name few IC voltage regulators.	BTL-1	Remembering	PO1	
8.	Give the classification of voltage regulators:	BTL-2	Understanding	PO1	
9.	Mention some applications of 555 timer:	BTL-4	Analyzing	PO1	
10.	List the applications of 555 timer in monostable mode of operation:	BTL-1	Remembering	PO1,PO2,PO3	
11.	List the applications of 555 timer in Astable mode of operation:	BTL-1	Remembering	PO1,PO2,PO3	
12.	What is a linear voltage regulator?	BTL-2	Understanding	PO1	
13.	What is a switching regulator?	BTL-2	Understanding	PO1	
14.	What is the purpose of having input and output capacitors in three terminal IC regulators?	BTL-2	Understanding	PO1	
15.	Define line regulation.	BTL-1	Remembering	PO1	
16.	Define load regulation	BTL-1	Remembering	PO1	
17.	What is meant by current limiting?	BTL-2	Understanding	PO1	
18.	Give the drawbacks of linear regulators:	BTL-3	Applying	PO1	
19.	What is the advantage of switching regulators?	BTL-2	Understanding	PO1	
20.	What is an opto-coupler IC? Give examples.	BTL-2	Understanding	PO1	
21.	Mention the advantages of opto-couplers:		Analyzing	PO1	
22.	What is an isolation amplifier?	BTL-2	Understanding	PO1	
23.	What is the need for a tuned amplifier?	BTL-2	Understanding	PO1	
24.	Give the classification of tuned amplifier	BTL-2	Understanding	PO1	
25.	State the two conditions for oscillation.	BTL-2	Understanding	PO1	
26.	Draw the functional block diagram of 723 regulator.	BTL-3	Applying	PO1	
27.	Why is the monostable multivibrator circuit called time delay circuit and gating circuit?	BTL-2	Understanding	PO1,PO2	
28.	Why there is no phase shift provided in the feedback network in Wein-Bridge oscillator?	BTL-2	Understanding	PO1	
29.	Give the formula for period of oscillations in an op- amp astable circuit.	BTL-3	Applying	PO1	
30.	Define duty cycle for a periodic pulse waveform.	BTL-1	Remembering	PO1	
31.	What is meant by thermal shutdown applied to voltage regulators?	BTL-2	Understanding	PO1	
32.	What are the three waveforms generated by ICL8038?	BTL-2	Understanding	PO1	
33.	List the characteristics of optocoupler	BTL-1	Remembering	PO1	
34.	Mention two applications of frequency to voltage converter	BTL-4	Analyzing	PO1	
35.	What is the advantage of switching regulators?	BTL-2	Understanding	PO1	
	PART:B & C				
Q.NO		BT	Competence	PO	

		Level		
1.	i)With neat diagram explain the operation of an astable and monostablemultivibrators	BTL-2	Understanding	PO1,PO12
	ii)Draw the functional diagram and connection diagram of a low voltage regulator and explain	BTL-3	Applying	PO1
2.	Answer any two of the following1)Switchedcapacitor filters2)Audio power amplifier3)Opto coupler3)	BTL-2	Understanding	PO1
3.	With neat diagram explain IC723 general purpose voltage regulator	BTL-2	Understanding	PO1
4.	Explain Sawtooth waveform generator and LM 380Audio amplifier in detail	BTL-2	Understanding	PO1
5.	Describe the working of a astable multivibrator using 555 timer	BTL-2	Understanding	PO1
6.	Explain in detail Voltage to frequency and frequency to voltage converter	BTL-2	Understanding	PO1
7.	i)Design a phase shift oscillate at 100Hz	BTL-6	Creating	PO1,PO2
	ii)Describe monostablemultivibrator with necessary diagrams and derive for ON time and recovery time	BTL-2	Understanding	PO1
8.	i)Briefly describe about monolithic switching regulators	BTL-2	Understanding	PO1
	ii)Draw the schematic of ICL 8038 function generator and discuss its features	BTL-3	Applying	PO2
9.	Describe the working of a Astablemultivibrator using op-amp	BTL-2	Understanding	PO1
10.	Describe the working of a monostablemultivibrator using 555 timer	BTL-2	Understanding	PO1
11.	Explain Video amplifier and opto-couplers	BTL-2	Understanding	PO1

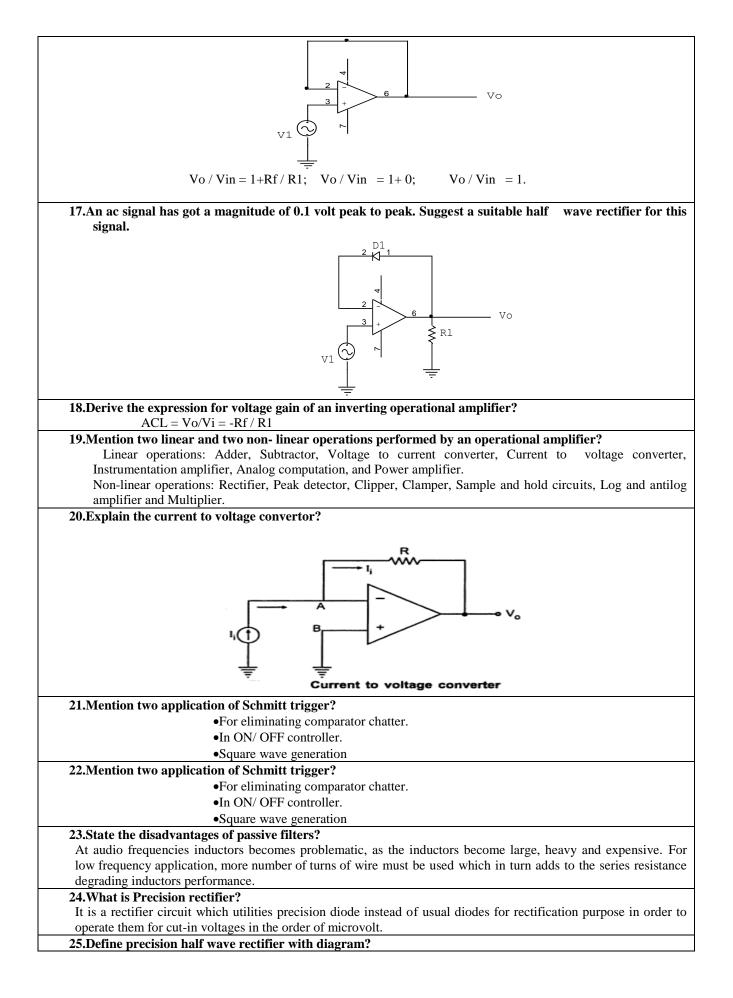
UNIT I- BASICS OF OPERATIONAL AMPLIFIERS Current mirror and current sources, Current sources as active loads, Voltage sources, Voltage References, BJT Differential amplifier with active loads, Basic information about op-amps - Ideal Operational Amplifier - General operational amplifier stages -and internal circuit diagrams of IC 741, DC and AC performance characteristics, slew rate, Open and closed loop configurations. **PART-A** 1.Draw the dc transfer characteristics of a BJT differential amplifier and define differential mode input voltage [Nov/Dec 2017] αI_{EE} $\frac{\alpha I_{EE}}{2}$ 21/2 $4V_7$ 2. Write down the characteristics of ideal operational amplifier? [April/May 2017][April/May 16] ≻Open loop voltage gain, (AOL) = ∞ >Input impedance (Ri) = ∞ ≻Output impedance (Ro) = 0≻Bandwidth (BW) = ∞ \blacktriangleright Zero offset Vo = 0, when V1 = V2 = 0 3.Why is the current mirror circuit used in differential amplifier stages? [April/May 2017]

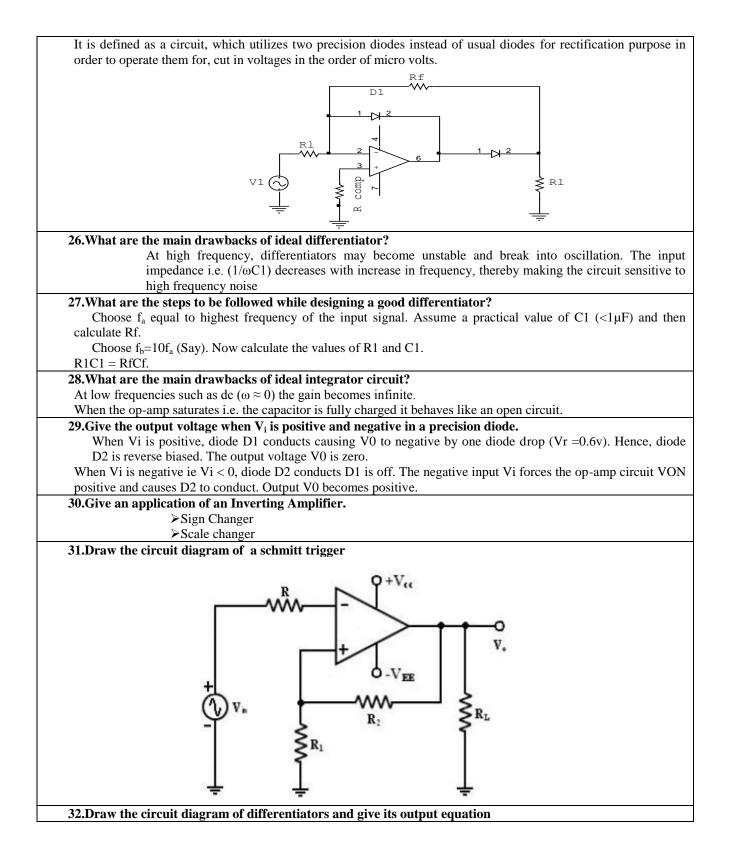
The current mirror is a special case of constant current bias and the current mirror bias requires of constant current bias and therefore can be used to set up currents in differential amplifier stages

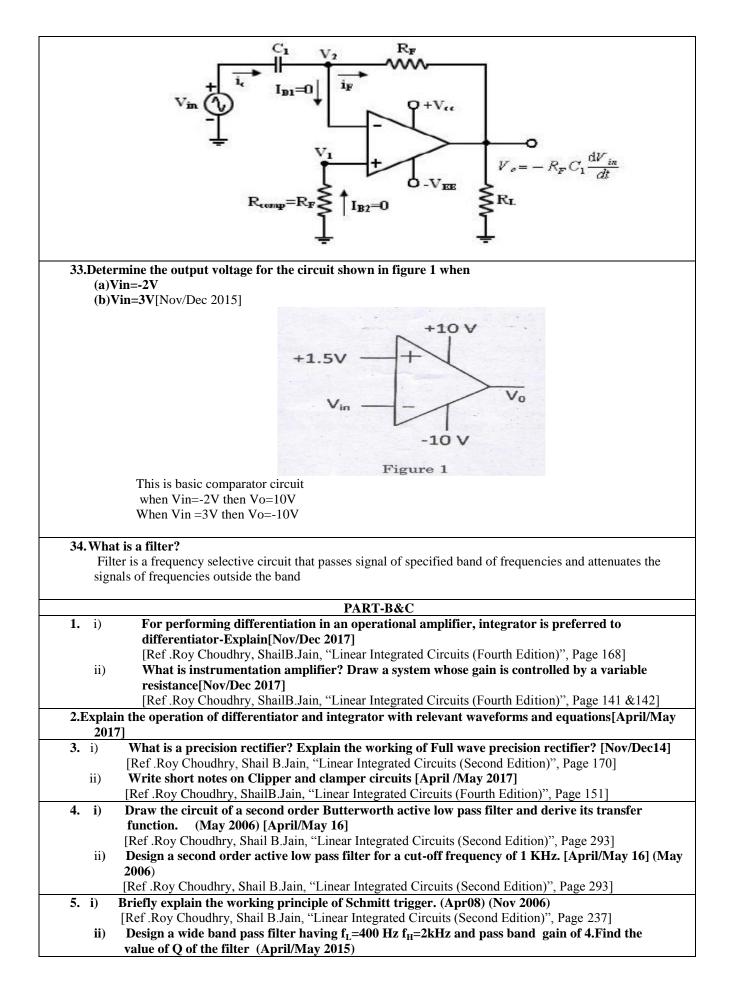

fabricated together on a single crystal of silicon. The active components are transistors and diodes and passive components are resistors inductors and capacitors 27. What are the advantages of integrated circuits over discrete components? ▶ Miniaturization and hence increased equipment density. ≻Cost reduction due to batch processing. >Increased system reliability due to the elimination of soldered joints. >Improved functional performance. ≻Matched devices. >Increased operating speeds. ▶ Reduction in power consumption 28. What are the disadvantages of integrated circuits ≻Inductors can't be fabricated ➢ IC's function at fairly low voltage > They can handle only limited amount of power. >It can't withstand for rough handling and excessive heat 29. What is meant by monolithic IC A monolithic integrated circuit (IC) is an electronic circuit that is built on a single semiconductor base material or single chip 30. What are the two requirements to be met for a good current source? A good current source must meet two requirements: \triangleright Output current IO should not depend on β ; >Output Resistance (RO) of the current source should be very high; 31. List the various methods of realizing high input resistance in a differential amplifier. The various methods of realizing high input resistance in a differential amplifier circuits are ≻Use of Darlington pair ≻Use of FET ≻Use of swamping resistors 32. Mention two advantages of active load over passive load in an operational amplifier[NOV/DEC 2015] ≻Larger gain ≻Larger Bandwidth 33. What is active load? Where it is used and why? In circuit design, an active load is a circuit component made up of active devices, such as transistors, intended to present a high small-signal impedance yet not requiring a large DC voltage drop, as would occur if a large resistor were used instead. Such large AC load impedances may be desirable, for example, to increase the AC gain of some types of amplifier. Most commonly the active load is the output part of a current mirror and is represented in an idealized manner as a current source. Usually, it is only a constant-current resistor that is a part of the whole current source including a constant voltage source as well 34. Define supply voltage rejection ratio (SVRR) The change in OPAMP's input offset voltage due to variations in supply voltage is called the supply voltage rejection ratio. It is also called Power Supply Rejection Ratio (PSRR) or Power Supply Sensitivity (PSS) 35. Define input offset voltage The input offset voltage is a parameter defining the differential DC voltage required between the inputs of an amplifier, especially an operational amplifier (op-amp), to make the output zero **36. Define Frequency Response** Frequency response is the quantitative measure of the output spectrum of a system or device in response to a stimulus, and is used to characterize the dynamics of the system. It is a measure of magnitude and phase of the output as a function of frequency, in comparison to the input 37. Define unity gain bandwidth of a Op-Amp The GBWP (Gain Band Width Product) of an operational amplifier is 1 MHz, it means that the gain of the device falls to unity at 1 MHz. Hence, when the device is wired for unity gain, it will work up to 1 MHz $(GBWP = gain \times bandwidth, therefore if BW = 1 MHz, then gain = 1)$ without excessively distorting the signal. PART B& C 1.i) With a help of a block diagram ,explain the various stages present in an operational amplifier[Nov/Dec 2017] [Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 108] Draw the transfer characteristics of an operational amplifier and explain the linear and non-linear ii) operation[Nov/Dec 2017] [Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 108]


a • >	
2.i)	What is the input and output voltage and current offsets? How are they compensated?
	[April/May 2017]
	[Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 108]
ii	
	the circuit Bandwidth, Frequency response and slew rate[April/May 2017]
	[Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 111]
a i)	
3.i)	With a schematic diagram, explain the effect of RE on CMRR in differential amplifier[April/May 16]
•••	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 63].
<u>ii</u>	
4.i)	With simple schematic of differential amplifier explain the function of Operational Amplifier
	[April/May 2015]
	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 63]
ii	
	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 73]
5.i)	Briefly explain the techniques used for frequency compensation[April/May2015] (12)
5.1)	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 135]
ii	
щ	[Ref. Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 225]
	[Ref Roy Choudiny, Shan D.Juni, Enfeat Integrated Chouns (Second Edition) , Lage 225]
6.Wit	h a neat diagram Explain the input side of the internal circuit diagram of IC741[Nov/dec 15]
	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 96]
7.What	at is the need for frequency compensation in an OPAMP? With a suitable illustration, explain the pole-zero
	requency compensation technique. [Nov/dec 15][April/May 2017]
	Ref. Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 135]
-	
8.Draw	v the circuit of basic current mirror and explain its operation. Also discuss about how current ratio can be
ir	nproved in the basic current mirror.Sketch the improved circuit and explain[Nov/dec 12]
ſI	Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 73]
9.(i)	Define and explain slew rate. What is full power bandwidth? Also explain the method adopted to
	improve slew rate[Nov/dec 12]
	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 140]
(ii) Define output off set voltage. Explain methods to nullify offset voltage[Nov/dec 12]
	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 123]
10.Ex	plain in detail wilson current source and widlar current source and derive necessary equations
	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 75]

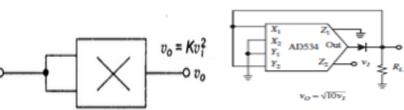

UNIT II -APPLICATIONS OF OPERATIONAL AMPLIFIERS


Sign Changer, Scale Changer, Phase Shift Circuits, Voltage Follower, V-to-I and I-to-V converters, adder, subtractor, Instrumentation amplifier, Integrator, Differentiator, Logarithmic amplifier, Antilogarithmic amplifier, Comparators, Schmitt trigger, Precision rectifier, peak detector, clipper and clamper, Low-pass, high-pass and band-pass Butterworth filters.


PART-A
1.State the limitations of an ideal integrator.[Nov/Dec 2017]
Bandwidth is very small and used for only small range of input frequencies.
For dc input (f = 0), reactance of capacitance, Xc is infinite. Because of this op-amp goes into open loop
configuration. In open loop configuration the gain is infinite and hence the small input offset voltages
are also amplified and appears at output as error
2.How will you realize a peak detector using a precision rectifier?[Nov/Dec 2017]



	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 306]
6.With a	circuit diagram discuss the following applications of op-amp. (Nov 2006)
	c. Voltage to current converter.
	d. Precision rectifier.
[Ref	.Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 166 & 169]
7.Explai	n the working of 3 op-amp Instrumentation amplifier? [Nov/Dec 14] [April/May 16]
[Ref	. Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 161]
8.Explai	n the working of Log amplifier and antilog amplifier? [May/June 14]
[Re	f.Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 178]
9.i)	Explain the operation of current to voltage converter
	[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 147]
ii)	Differentiate between low pass ,high pass ,band pass and band reject filter.Sketch the frequency
	plot
	[Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 263]


UNIT III-ANALOG MULTIPLIER AND PLL

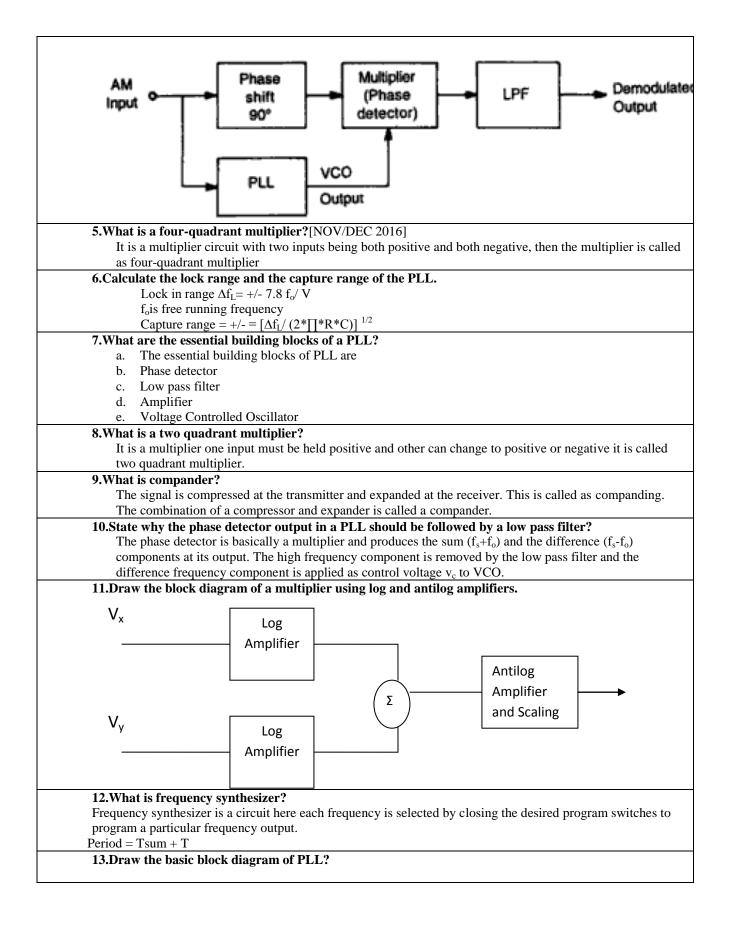
Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell – Variable transconductance technique, analog multiplier ICs and their applications, Operation of the basic PLL, Closed loop analysis, Voltage controlled oscillator, Monolithic PLL IC 565, application of PLL for AM detection, FM detection, FSK modulation and demodulation and Frequency synthesizing

PART-A

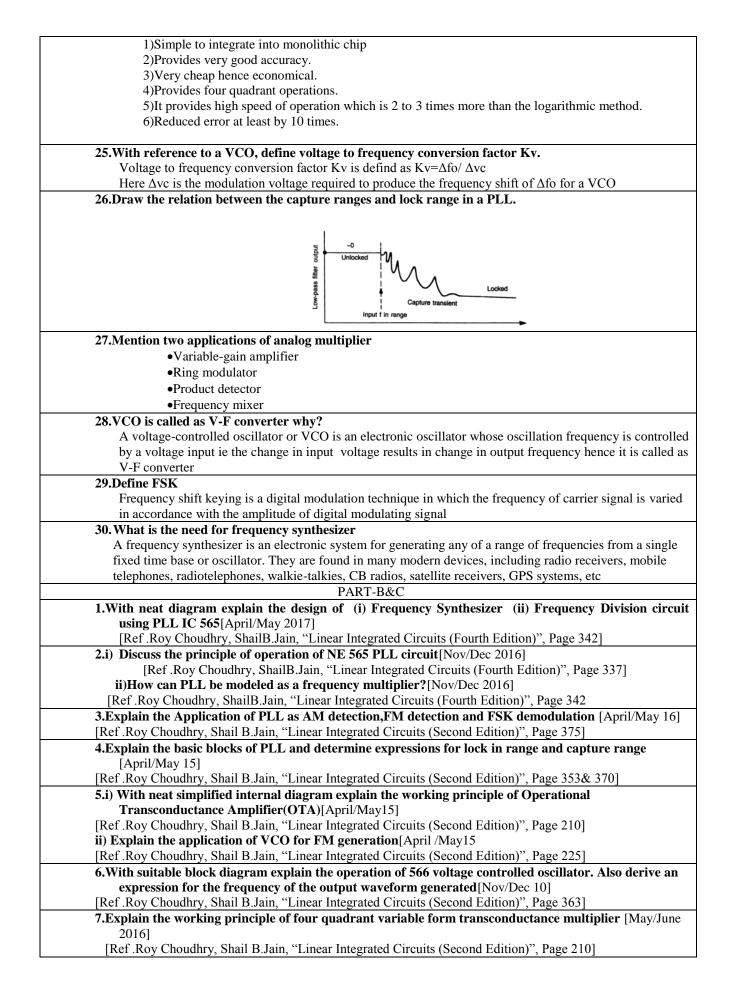
1.Define capture range of a PLL? [Nov/Dec 2017] The range of frequency over which the PLL can acquire lock with an input signal is called capture range. The PLL cannot acquire a signal outside the capture range, but once captured, it will hold on till the signal frequency goes beyond the lock-in range, larger capture range is required.

2.How are square root and square of a signal obtained with multiplier Circuit ?[April/May 2017] [April/May 2015]

Voltage squarer using multiplier


Square root circuit using multiplier

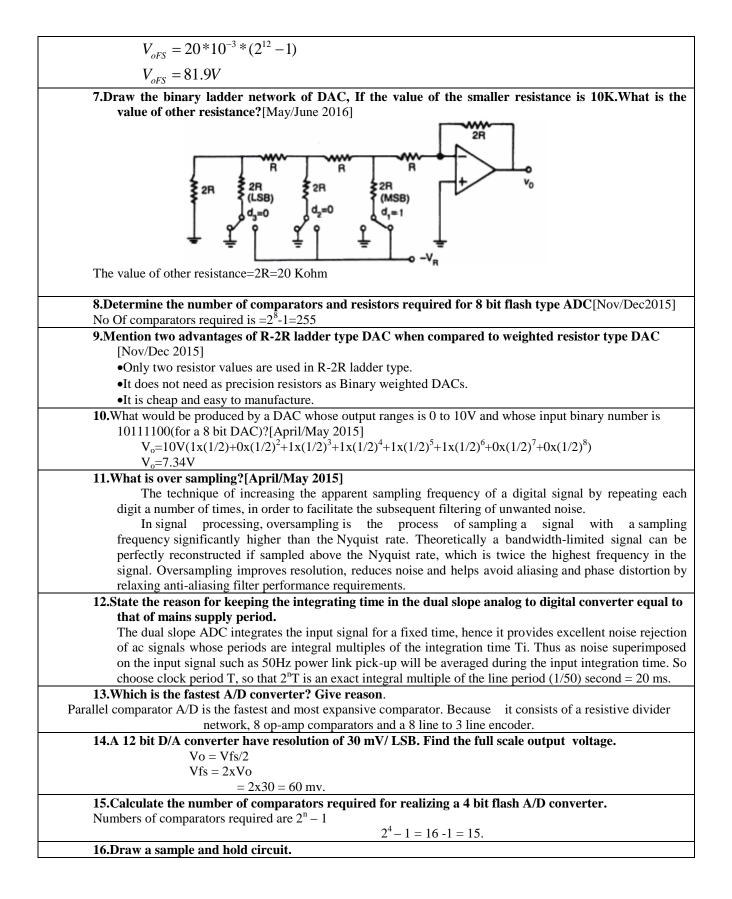
3.How is frequency stability obtained in a PLL by use of a VCO?[April/May 2017]


A voltage controlled oscillator is an oscillator circuit in which the frequency of oscillation can be controlled by an externally applied voltage. It provides the linear relationship between the applied voltage and the oscillation frequency.

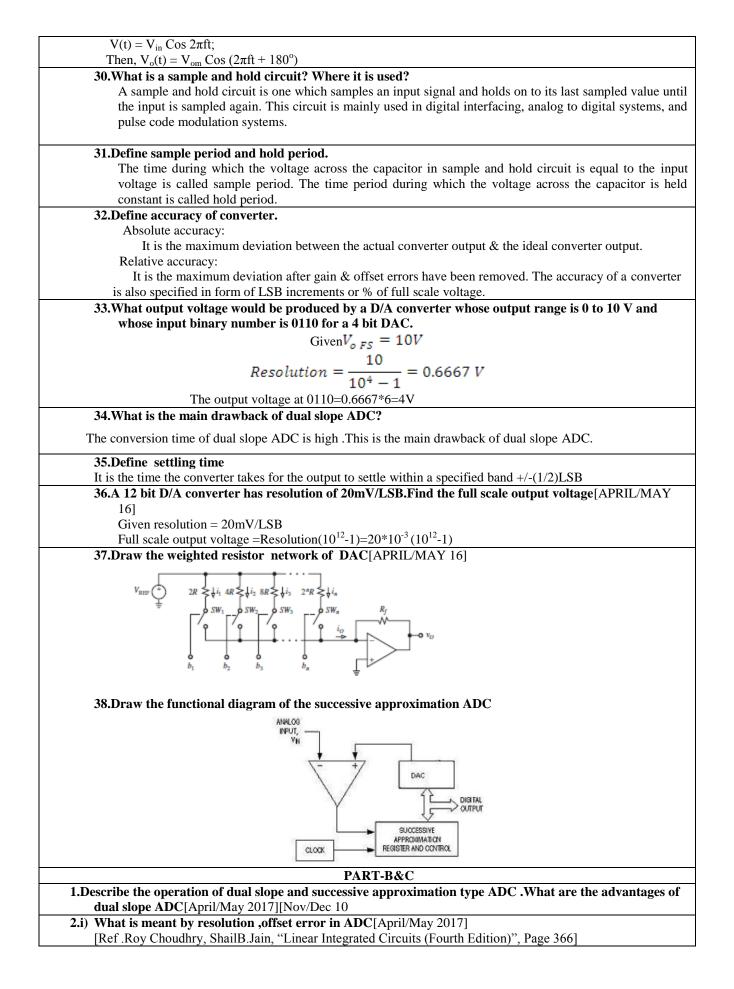
VCO is a free running multivibrator and operates at a set of frequency fo called free running frequency. This frequency is determined by an external timing capacitor and an external resistor. It can also be shifted to either side by applying a dc control voltage Vc to an appropriate terminal of the IC. The frequency deviation is directly proportional to the dc control voltage and hence it is called a "Voltage Controlled Oscillator

4.Draw the block diagram of PLL for AM detection? [APRIL/MAY 16]

Phase Detector
14.What is amplitude modulation? It is the process of amplitude of carrier wave varies in accordance with the instantaneous value of the amplitude of message signal.
15.Define voltage to frequency conversion factor kv?
It is given as
$K_v = \Delta f_o / \Delta v_c$
Here $K_{v is}$ the modulation voltage required to produce the frequency shift Δf_0 for a VCO.
16. Give two application of PLL?
i. Frequency multiplication and division
ii. Frequency translation.
iii. AM detection.
iv. FM demodulation
17.What is a voltage-controlled oscillator?
A voltage controlled oscillator is an oscillator circuit in which the frequency of oscillation can be controlled by an externally applied voltage. It provides the linear relationship between the applied voltage and the oscillation frequency.
VCO is a free running multivibrator and operates at a set of frequency fo called free running frequency. This frequency is determined by an external timing capacitor and an external resistor. It can also be shifted to either side by applying a dc control voltage Vc to an appropriate terminal of the IC.The frequency deviation is directly proportional to the dc control voltage and hence it is called a "Voltage Controlled Oscillator".
18. When an amplifier is also called an error amplifier?
An amplifier also called an error amplifier in control theory, which accepts the signal X_d and yields the output signal X_0 =a.Xd, where a is the forward gain of the amplifier is called the open-loop gain of the circuit.
19.What are the merits of companding?
•The compression process reduces the dynamic range of the signal before it is transmitted.
•Companding preserves the signal to noise ratio of the original signal and avoids non linear distortion of the signal when the input amplitude is large.
•It also reduces buzz, bias and low level audio tones caused by mild interference.
20.List the applications of OTA:
OTA can be used in
•programmable gain voltage amplifier
•sample and hold circuits
•voltage controlled state variable filter
•current controlled relaxation oscillator
21.Mention some areas where PLL is widely used.
Radar synchronization
Satellite communication systems
Air borne navigational systems
FM communication systems
22.Define lock-in range of a PLL.
The range of frequencies over which the PLL can maintain lock with the incoming signal is called the lock-in range of tracking range. It is expressed as a percentage of the VCO free supplies frequency.
range or tracking range. It is expressed as a percentage of the VCO free running frequency
23. Define free running mode. In a PLL if the error control voltage is zero then the PLL is said to be operated in free running mode and
its output frequency is called its center frequency f_0 .
24.What are the advantages of variable transconductance technique?
The advantages of variable transconductance technique are:
The definitions of function during the definition during the definition of the defin


8.Draw the analog multiplier IC and explain its features and Explain the application of analog multiplier IC[April/May 2015]

[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 183]


9.i)Explain Analog Multiplier using Emitter Coupled Transistor Pair [Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 183]
ii)Explain Gilbert Multiplier cell in detail

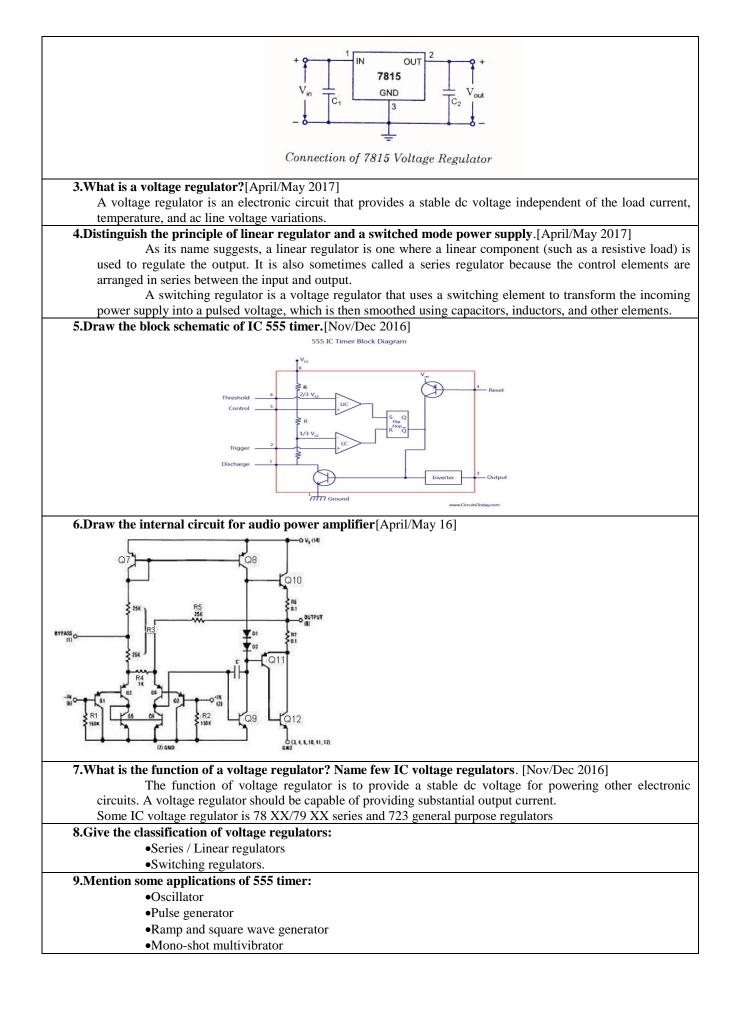
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 183]

UNIT IV-ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS Analog and Digital Data Conversions, D/A converter - specifications - weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode R-2R Ladder types - switches for D/A converters, high speed sample-and-hold circuits, A/D Converters - specifications - Flash type - Successive Approximation type - Single Slope type - Dual Slope type - A/D Converter using Voltage-to-Time Conversion - Over-sampling A/D Converters. PART-B&C 1. How is the classification of A/D converters carried out based on their operational features? [Nov/Dec 2017] A/D converter are classified into two groups according to their conversion i)Direct type ADC ii)Integrating type ADC Direct Type ADC (i)Flash Type converter (ii)Counter type converter (iii)Tracking or servo converter (iv)Successive approximation type converter Integrating type ADC (i)Charge balancing ADC (ii)Dual slope ADC 2.Find the number of resistors required for an 8 bit weighted resistor D/A converter. Consider the smallest resistance is R and obtain those resistance values.[Nov/Dec 2017] The No of Resistors required =8The resistance values are $2^{1}R, 2^{2}R, 2^{3}R, 2^{4}R, 2^{5}R, 2^{6}R, 2^{7}R, 2^{8}R$ 3.Why are Scottky diodes used in sample and hold circuits? [April/May 2017] Schottky diodes can be used in diode-bridge based sample and hold circuits. When compared to regular p-n junction based diode bridges, Schottky diodes can offer advantages. A forward-biased Schottky diode does not have any minority carrier charge storage. This allows them to switch more quickly than regular diodes, resulting in lower transition time from the sample to the hold step. The absence of minority carrier charge storage also results in a lower hold step or sampling error, resulting in a more accurate sample at the output 4.What are the advantages of inverted R-2R (current type) ladder D/A converter over R-2R (voltage type) D/A converter? [Nov/Dec 2016] In R-2R ladder type DAC current flowing in the resistors changes as the input data changes. More power dissipation causes heating which in turn creates non-linearity in DAC. This problem can be avoided in inverted R-2R ladder type as the current divides equally at each node. 5.What is the need for electronic switches in D/A converter?[Nov/Dec 2016] The Switches which connects the digital binary input to the nodes of a D/A converter is an electronic switch 6.A 12 bit D/A converter has a resolution of 20mv/LSB.Find the full scale output voltage.[May/June 2016] Resolution = $\frac{V_{oFS}}{2^n - 1}$ Where, V_{oFS} is the full scale output voltage n is the number of bits $V_{oFS} = \operatorname{Resolution}^*(2^n - 1)$

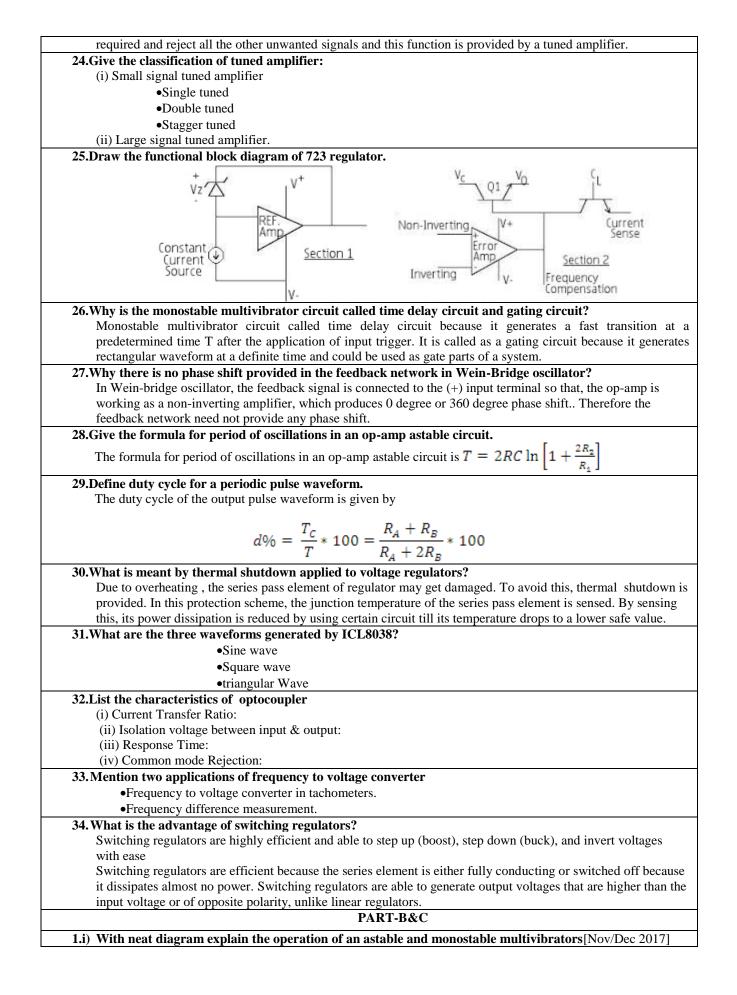
V1 $=$ VC $=$ VC
17.Define resolution of a D/A converter?
The resolution of a DAC is defined as the smallest change in voltage, which may be produced at the
output or input of the converter.
18. How many comparators are required to build n –bit flash type A/D converter?
Comparator required to build n –bit flash type A/D converter is $2^n - 1$
Where n is the desired number of bits.
19.Define monotonicity with respect to D/A converter?
A DAC is said to be monotonic if the analog output increases or remains the same as the digital input
increases. This results in the output always being single – valued.
20.Why is R-2R ladder network DAC better than weighted resistor DAC?
Wide ranges of resistors are required in binary weighted resistor type DAC.
This can be avoided by using R-2R ladder type DAC.
i. Easier to build accurately as only two precision metal film resistors are required.
ii. Number of bits can be expanded by adding more sections of same R-2R values.
iii. In inverted R-2R ladder DAC, node voltages remain constant with changing input
binary words. This avoids any slowdown effects by stray capacitances.
21.Which type of ADC is used in all digital voltmeter?
Dual slope ADC converters are particularly suitable for accurate measurement of slowly varying signals,
such as digital panel meters and multimeters.
22.What do you mean by delta modulation?
Delta modulation is a method of information transmission with the help of pulses. It is one type of digital
modulation and it determines the increase or decrease of the signal sample with respect to previous
sample. And encodes this rise or fall of amplitude by 1 bit.
23.List the application of sample and Hold circuits?
i. It is used in ADC.
ii. It is used in digital interfacing
iii. It is used in pulse modulation system
iv.It is used in analog demultiplexer
24.Mention the types of DAC techniques?
ii.Weighted resistance
iii.Inverted R_2R ladder
iv.Multiplying.
25.Define the resolution of DAC?
Resolution of DAC is defined as the change in the output voltage corresponding to the change of one bit in
the digital input.
26.Explain in brief stability of a converter:
The performance of converter changes with temperature age & power supply variation. So all the relevant
parameters such as offset, gain, linearity error& monotonicity must be specified over the full temperature
& power supply ranges to have better stability performances.
27.What is meant by linearity?
The linearity of an ADC/DAC is an important measure of its accuracy & tells us how close the converter
output is to its ideal transfer characteristics. The linearity error is usually expressed as a fraction of LSB
increment or percentage of full-scale voltage. A good converter exhibits a linearity error of less than
$\pm \frac{1}{2}$ LSB.
28.What is monotonic DAC?
A monotonic DAC is one whose analog output increases for an increase in digital input.
29.What is multiplying DAC?
A digital to analog converter which uses a varying reference voltage VR is called a multiplying DAC
(MDAC). If the reference voltage of a DAC, VR is a sine wave given by:

ii)Discuss on the single slope type ADC
[Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 363]
3.i) Explain the successive approximation type A/D converter[APRIL/MAY 16]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 396]
ii) Narrate the functions of Analog switches
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 383]
4.i)How are A/D converters categorized? [April/May 2017]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 393]
ii)Write Short Note on high speed sample and hold circuits[April/May 15] [April/May 16] (6)
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 176]
5.i) Explain voltage mode and current mode operations of R-2R ladder type DAC[Nov/Dec 10]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 386]
ii)Explain over sampling type analog to digital converters
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 176]
6.Draw the block diagram and explain the working of
i)Charge Balancing VFCS(8)
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 225]
ii)Voltage to Time converter(8)[May/June 13]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 225]
7.Explain the following type DAC with suitable diagrams
i)Binary weighted resistor DAC(6)
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 382]
ii)R-2R Ladder DAC(5)
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 385]
iii)Inverted R-2R ladder DAC(5)[Nov/Dec 11]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 386]
8.i) Explain the following type of electronic switches used in D/A converter with suitable
diagrams
1.Totem pole MOSFET switch(4)
2.CMOS inverter as a switch(4)[May/June 12]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 384]
ii) Compare Flash type ,Dual slope and successive approximation ADC in terms of parameters like
<pre>speed ,accuracy, resolution ,input hold time(8)[May/June 12]</pre>
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 393]
9. With a neat block diagram explain the working of three bit flash type analog to digital converter
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 393]

UNIT V-WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS


Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave generator, ICL8038 function generator, Timer IC 555, IC Voltage regulators – Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator - Monolithic switching regulator, Switched capacitor filter IC MF10, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Opto-couplers and fibre optic IC

PART-A


1.Define current transfer ratio of an opto coupler[Nov/Dec 2017]

The current transfer ratio (CTR) is a parameter similar to the DC current amplification ratio of a transistor (hFE) and is expressed as a percentage indicating the ratio of the output current (IC) to the input current (IF). CTR(%)=(IC/IF) x 100

2.Draw a fixed voltage regulator circuit and state its operation[Nov/Dec 2017]

	•Burglar alarm
	•Traffic light control.
	10.List the applications of 555 timer in monostable mode of operation:
	•Missing pulse detector
	•Linear ramp generator
	•Frequency divider
	•Pulse width modulation.
	11.List the applications of 555 timer in Astable mode of operation:
	•FSK generator
	Pulse-position modulator
	12.What is a linear voltage regulator?
	Series or linear regulator uses a power transistor connected in series between the unregulated dc input and t
	load and it conducts in the linear region. The output voltage is controlled by the continuous voltage drop
	taking place across the series pass transistor.
	13.What is a switching regulator?
	Switching regulators are those which operate the power transistor as a high frequency on/off switch, so
	that the power transistor does not conduct current continuously. This gives improved efficiency over series
	regulators.
	14. What is the purpose of having input and output capacitors in three terminal IC regulators?
	A capacitor connected between the input terminal and ground cancels the inductive effects due to long distribut leads. The output capacitor improves the transient response.
	15.Define line regulation.
	Line regulation is defined as the percentage change in the output voltage for a change in the input voltage. I
	expressed in millivolts or as a percentage of the output voltage.
	16.Define load regulation.
	Load regulation is defined as the change in output voltage for a change in load current. It is expressed
	millivolts or as a percentage of the output voltage.
	17.What is meant by current limiting?
	Current limiting refers to the ability of a regulator to prevent the load current from increasing above a pre
	value.
	18.Give the drawbacks of linear regulators:
	•The input step down transformer is bulky and expensive because of low line frequency.
	•Because of low line frequency, large values of filter capacitors are required to decrease the ripple.
	•Efficiency is reduced due to the continuous power dissipation by the transistor as it operates in
	linear region.
	19.What is the advantage of switching regulators?
	•Greater efficiency is achieved as the power transistor is made to operate as low impedance swit
	Power transmitted across the transistor is in discrete pulses rather than as a steady current flow.
	•By using suitable switching loss reduction technique, the switching frequency can be increased so as
	reduce the size and weight of the inductors and capacitors.
ź	20.What is an opto-coupler IC? Give examples.
	Opto-coupler IC is a combined package of a photo-emitting device and a photo sensing device.
	Examples for opto-coupler circuit :LED and a photo diode,
	LED and photo transistor,
	LED and Darlington.
	Examples for opto-coupler IC : MCT 2F, MCT 2E
ź	21.Mention the advantages of opto-couplers:
	•Better isolation between the two stages.
	•Impedance problem between the stages is eliminated.
	•Wide frequency response.
	•Easily interfaced with digital circuit.
	•Compact and light weight.
	•Problems such as noise, transients, contact bounce are eliminated.
1	22.What is an isolation amplifier?
	An isolation amplifier is an amplifier that offers electrical isolation between its input and output terminals
	23.What is the need for a tuned amplifier?
ź	
	In radio or TV receivers, it is necessary to select a particular channel among all other available channel Hence some sort of frequency selective circuit is needed that will allow us to amplify the frequency ba

[Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 216 & 318]
ii)Draw the functional diagram and connection diagram of a low voltage regulator and explain[Nov/Dec
2017] [Def. Dev. Chevellery, SheilD Jain, "Lincon Integrated Circuits (Eventh Edition)", Dece 2411
[Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 241]
2.Answer any two of the following[April/May 2017]
i)Switched capacitor filters
[Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 288]
ii)Audio power amplifier
[Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 322]
iii)Opto coupler
[Ref .Roy Choudhry, ShailB.Jain, "Linear Integrated Circuits (Fourth Edition)", Page 322]
2.With neat diagram explain IC723 general purpose voltage regulator [May/June 14] [April/May 16]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 272]
3.Explain Sawtooth waveform generator and LM 380Audio amplifier in detail [April/May 16]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 247]
4.Describe the working of a astable multivibrator using 555 timer [Nov/Dec 11] [April/May 16]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 345]
5.Explain in detail Voltage to frequency and frequency to voltage converter[May/June 14]
[Ref. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 3rd Edition page
520 6.i)Design a phase shift oscillate at 100Hz (May/June 15)
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 250]
ii) Describe monostable multivibrator with necessary diagrams and derive for ON time and recovery time[May/June 15]
[Ref.Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 337]
7.i)Briefly describe about monolithic switching regulators[April/May 15]
[Ref. Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 280]
ii) Draw the schematic of ICL 8038 function generator and discuss its features (8) [April/May 15]
[Ref.Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 225]
8.Describe the working of a Astable multivibrator using op-amp [Nov/Dec 14]
[Ref. Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 241]
9.Describe the working of a monostable multivibrator using 555 timer[Nov/Dec 13]
[Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 337]
10.Explain Video amplifier and opto-couplers [Ref .Roy Choudhry, Shail B.Jain, "Linear Integrated Circuits (Second Edition)", Page 380]
[Ker Koy Choudin y, Shan D.Jani, Emear megrated Circuits (Second Edition), Page 580]

COURSE DELIVERY PLAN-THEORY

Faculty Name : G C JAGAN	Programme/Branch:B.E/ECE
Academic Year:201-2018	Year/Semester/Batch:II/IV/2016-2020
Subject Code/Subject Name: EC6040/Linear Integrated Circuits	Regulation:2013

A. Deta	ils of the relevant POs & PSOs supported by the course								
PO1	and electronics engineering specialization to the solution of complex engineering problems.								
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.								
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.								
PO4	Conduct investigations of complex problems: Use research-based knowledge and research								
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern								
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.								
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.								
PSO I	Competence in using modern electronic tools in hardware and software co-design for networking and communication applications.								
PSO II	Promote excellence in professional career and higher education by gaining knowledge in the field of Electronics and Communication Engineering								
PSO III	Understand social needs and environmental concerns with ethical responsibility to become a successful professional.								

B. Details of COs Mapping with PO/PSOs identified for the course																
G		Program Outcomes/Program Specific Outcome														
Course Outcome	Course Description	P01	P02	P03	P04	P05	90d	P07	P08	604	P010	P011	P012	PS01	PSO2	PSO3
C215.1	Describe the basics of operational amplifiers.	3	3	3	2	1	-	-	-	-	-	-	-	2	2	-
C215.2	Design linear and non-linear applications of operational amplifiers.	3	3	3	3	2	-	-	-	-	-	1	1	3	3	-
C215.3	Develop applications using analog multiplier and PLL.	3	3	3	2	2	I	-	-	-	-	1	1	3	3	-
C215.4	Construct ADC and DAC using operational amplifiers.	3	3	3	2	2	-	-	-	-	-	1	1	3	2	-
C215.5	Generate waveforms using operational amplifiers and Construct circuits using special function IC's.	3	3	3	3	2	-	-	-	-	-	1	1	3	2	-

C. Syllabus of the course

UNIT I **BASICS OF OPERATIONAL AMPLIFIERS**

Current mirror and current sources, Current sources as active loads, Voltage sources, Voltage References, BJT Differential amplifier with active loads, Basic information about op-amps - Ideal Operational Amplifier - General operational amplifier stages -and internal circuit diagrams of IC 741, DC and AC performance characteristics, slew rate, Open and closed loop configurations.

UNIT II APPLICATIONS OF OPERATIONAL AMPLIFIERS

Sign Changer, Scale Changer, Phase Shift Circuits, Voltage Follower, V-to-I and I-to-V converters, adder, subtractor, Instrumentation amplifier, Integrator, Differentiator, Logarithmic amplifier, Antilogarithmic amplifier, Comparators, Schmitt trigger, Precision rectifier, peak detector, clipper and clamper, Low-pass, high-pass and band-pass Butterworth filters.

UNIT III ANALOG MULTIPLIER AND PLL

Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell - Variable transconductance technique, analog multiplier ICs and their applications, Operation of the basic PLL, Closed loop analysis, Voltage controlled oscillator, Monolithic PLL IC 565, application of PLL for AM detection, FM detection, FSK modulation and demodulation and Frequency synthesizing

ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS **UNIT IV**

Analog and Digital Data Conversions, D/A converter – specifications - weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode R-2R Ladder types - switches for D/A converters, high speed sample-and-hold circuits, A/D Converters - specifications - Flash type - Successive Approximation type - Single Slope type - Dual Slope type - A/D Converter using Voltage-to-Time Conversion - Over-sampling A/D Converters.

WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS9 UNIT V

Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave generator, ICL8038 function generator, Timer IC 555, IC Voltage regulators - Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator - Monolithic switching regulator, Switched capacitor filter IC MF10, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Opto-couplers and fibre optic IC..

D. Content Beyond Syllabus:

1. Dry EDM

2. Application of Cryogenic cooling in Machining

3.

F. Delivery Resources:

Text Book(s):

T1:D.RoyChoudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd., 2000..

9

9

0

9

T2: Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 3rd Edition, Tata McGraw-Hill, 2007

Reference Book(s):

R1:Ramakant A. Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice Hall / Pearson Edu, 2001..
R2: Robert F.Coughlin, Frederick F.Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Sixth Edition, PHI, 2001.

R3:B.S.Sonde, "System design using Integrated Circuits", 2nd Edition, New Age Pub, 2001

R4: Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International, 2005.

R5: Michael Jacob, "Applications and Design with Analog Integrated Circuits", Prentice Hall of India, 1996.

R6: William D.Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson Education, 2004.

R7: S.Salivahanan& V.S. KanchanaBhaskaran, "Linear Integrated Circuits", TMH, 2008.

On line learning materials (and Others if any):

1. nptel.ac.in/courses/112105126/39

2.

UNIT I	BASICS OF OPI	ERATIONAL AN	IPLIFIERS	
Topic to be Covered	Text Book with Pg.No	Reference Book (if any with Pg.No)	Online Resource (Web Link of the Specific Topic)	Delivery Method
Current mirror and current sources	T1: Pg no:65			
Current sources as active loads	T1: Pg no:77			
Voltage sources		R7: Pg no:57		
Voltage References	T2: Pgno:506			
BJT Differential amplifier with active loads	T1: Pg no:78			
Basic information about op-amps	T1: Pg no:37			
Ideal Operational Amplifier	T1: Pg no:41			
General operational amplifier stages	T1: Pg no:53			
Internal circuit diagrams of IC 741	T1: Pg no:82			
DC and AC performance	T1: Pg			
characteristics	no:104&111			
slew rate	T1: Pg no:123			
Open and closed loop configurations.		R7: Pg no:139		
Course Outcome: C215.1:	Describe the ba	sics of operational	amplifiers.	
No of hours in the syllabus : 9				
No of hours planned : 9				
No of hours taught : 9				

UNIT II AP	PLICATIONS OI	F OPERATIONA	L AMPLIFIERS	
		Delivery Resources		
Topic to be Covered	Text Book with Pg.No	Reference Book (if any with Pg.No)	Online Resource (Web Link of the Specific Topic)	Delivery Method
Sign Changer		R7: Pg no:183		
Scale Changer	T1: Pgno:135	R7: Pg no:183		
Phase Shift Circuits		R7: Pg no:184		
Voltage Follower	T1: Pg no:49			
V-to-I and I-to-V converters	T1: Pgno:146			
adder, subtractor	T1: Pgno:136			
Instrumentation amplifier	T1: Pgno:141			
Integrator,	T1: Pgno:168			
Differentiator	T1: Pgno:164			
Logarithmic amplifier,	T1: Pgno:155			
Antilogarithmic amplifier,	T1: Pgno:157			

Comparators	T1: Pgno:207				
Schmitt trigger	T1: Pgno:212				
Precision rectifier	T1: Pgno:148				
peak detector	T1: Pgno:151				
clipper and clamper	T1: Pgno:151				
Low-pass, high-pass and band-pass Butterworth filters	T1: Pgno:262				
Course Outcome: C215.2 Design linear and non-linear applications of operational amplifiers.					
No of hours in the syllabus : 9					
No of hours planned : 9					
No of hours taught : 9					

UNIT III	ANALOG N	MULTIPLIER AN	D PLL		
Topic to be Covered	Text Book with Pg.No	Reference Book (if any with Pg.No)	Online Resource (Web Link of the Specific Topic)	Delivery Method	
Analog Multiplier using Emitter Coupled Transistor Pair		R7: Pg no:394			
Gilbert Multiplier cell		R7: Pg no:398			
Variable transconductance technique		R7: Pg no:404			
analog multiplier ICs and their applications		R7: Pg no:406			
Operation of the basic PLL	T1: Pg no:327				
Closed loop analysis	T1: Pg no:328				
Voltage controlled oscillator	T1: Pg no:334				
Monolithic PLL IC 565	T1: Pg no:337				
application of PLL for AM detection	T1: Pg no:342				
FM detection	T1: Pg no:				
FSK modulation and demodulation	T1: Pg no:344				
Frequency synthesizing	T1: Pg no:343				
Course Outcome: C215.3Develop	Course Outcome: C215.3Develop applications using analog multiplier and PLL.				
No of hours in the syllabus : 9					
No of hours planned : 9					
No of hours taught : 9					

UNIT IV ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS				
Topic to be Covered	Delivery Resources			
	Text Book with Pg.No	Reference Book (if any with Pg.No)	Online Resource (Web Link of the Specific Topic)	Delivery Method
Analog and Digital Data Conversions	T1: Pg no:348			
D/A converter – specifications	T1: Pg no:349			
weighted resistor type	T1: Pg no:349			
R-2R Ladder type, Voltage Mode	T1: Pg no:352			
Current-Mode R-2R Ladder types	T1: Pgno:353			
switches for D/A converters	T1: Pg no:351			

high speed sample-and-hold circuits	T1: Pg no:153	R7: Pg no:479			
A/D Converters – specifications	T1: Pg no:357				
Flash type	T1: Pg no:358				
Successive Approximation type	T1: Pg no:361				
Single Slope type		R7: Pg no:398			
Dual Slope type	T1: Pg no:363				
A/D Converter using Voltage-to-Time Conversion		R7: Pg no:498			
Over-sampling A/D Converters		R7: Pg no:503			
Course Outcome: C215.4 Construct ADC and DAC using operational amplifiers.					
No of hours in the syllabus : 9					
No of hours planned : 9					
No of hours taught : 9					

UNIT V WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS				
	Delivery Resources			
Topic to be Covered	Text Book with Pg.No	Reference Book (if any with Pg.No)	Online Resource (Web Link of the Specific Topic)	Delivery Method
Sine-wave generators	T1: Pg no:222			
Multivibrators	T1: Pg no:216			
Triangular wave generator	T1: Pg no:220			
Saw-tooth wave generator	T2: Pg no:476			
ICL8038 function generator		R7: Pg no:336		
Timer IC 555	T1: Pg no:311			
IC Voltage regulators	T1: Pg no:240			
Three terminal fixed and adjustable voltage regulators	T1: Pg no:240			
IC 723 general purpose regulator	T1: Pg no:248			
Monolithic switching regulator	T1: Pg no:255			
Switched capacitor filter IC MF10	T1: Pg no:228			
Frequency to Voltage and Voltage to Frequency converters	T2: Pg no:486			
Audio Power amplifier		R7: Pg no:530		
Video Amplifier		R7: Pg no:538		
Isolation Amplifier		R7: Pg no:547		
Opto-couplers and fibre optic IC.		R7: Pg no:542		
Course Outcome: C215.2 Design	linear and non-li	near applications	of operational ampli	fiers.
No of hours in the syllabus : 9				
No of hours planned : 9				
No of hours taught : 9				