JEPPIAAR ENGINEERING COLLEGE

Jeppiaar Nagar, Rajiv Gandhi Salai – 600 119

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

II SEMESTER

GE-8292 ENGINEERING MECHANICS

Regulation – 2017

JEPPIAAR ENGINEERING COLLEGE

Vision of Institution

To build Jeppiaar Engineering College as an institution of academic excellence in technological and management education to become a world class university.

Mission of Institution

- To excel in teaching and learning, research and innovation by promoting the principles of scientific analysis and creative thinking.
- To participate in the production, development and dissemination of knowledge and interact with national and international communities.
- To equip students with values, ethics and life skills needed to enrich their lives and enable them to meaningfully contribute to the progress of society.
- To prepare students for higher studies and lifelong learning, enrich them with the practical and entrepreneurial skills necessary to excel as future professionals and contribute to Nation's economy..

PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

JEPPIAAR ENGINEERING COLLEGE

DEPARTMENT OF MECHANICAL ENGINEERING

VisionoftheDepartment

To create excellent professionals in the field of Mechanical Engineering and to uplift the quality of technical education on par with the International Standards.

Department Mission

1. To reinforce the fundamentals of Science and Mathematics to Mechanical Engineering and critically and relatively investigate complex mechanical systems and processes.

2. To engage in the **production**, **expansion** and **practice** of advanced engineering applications through knowledge sharing activities by interacting with global communities and industries.

3. To **equip** students with **engineering ethics**, **professional roles**, **corporate social responsibility** and life skills and **apply** them for the betterment of society.

4. To promote higher studies and lifelong learning and entrepreneurial skills and develop excellent professionals for empowering nation's economy.

PEO's

- 1. To enrich the technical knowledge of design, manufacturing and management of mechanical systems and develop creative and analytical thinking in research.
- 2. To relate, strengthen and develop the theoretical knowledge of the Mechanical Engineering by exhibiting various concepts applied through diverse industrial exposures and experts' guidance.
- **3.** Facilitate the students to communicate effectively on complex social, professional and engineering activities with strict adherence to ethical principles.
- 4. Create awareness for independent and life long learning and develop the ability to keep abreast of modern trends and adopt them for personal technological growth of the nation.

PSO's

- 1. To understand the basic concept of various mechanical engineering field such as design, manufacturing, thermal and industrial engineering.
- 2. To apply the knowledge in advanced mechanical system and processes by using design and analysis techniques.
- **3.** To develop student's professional skills to meet the industry requirements and entrepreneurial skills for improving nation's economy stronger.

COURSE OUTCOME

C114.1	Illustrate the vectorial and scalar representation of forces and moments.
C114.2	Analyze the rigid body in equilibrium.
C114.3	Evaluate the properties of surfaces and solids.
C114.4	Calculate dynamic forces exerted in rigid body.
C114.5	Determine the friction and the effects by the laws of friction.

GE8292 ENGINEERING MECHANICS L T P C OBJECTIVES:

 $\hfill\square$ To develop capacity to predict the effect of force and motion in the course of carrying out the

design functions of engineering.

UNIT I BASICS AND STATICS OF PARTICLES 12

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces — Vectorial representation of forces – Vector operations of forces -additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility.

UNIT II EQUILIBRIUM OF RIGID BODIES 12

Free body diagram – Types of supports –Action and reaction forces –stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Single equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions

UNIT III PROPERTIES OF SURFACES AND SOLIDS 12

Centroids and centre of mass– Centroids of lines and areas - Rectangular, circular, triangular areas by integration – T section, I section, - Angle section, Hollow section by using standard formula –28 Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem –Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia for prismatic, cylindrical andspherical solids from first principle – Relation to area moments of inertia.

UNIT IV DYNAMICS OF PARTICLES 12

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion -Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact of elasticbodies.

UNIT V FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS 12

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

TOTAL : 60 PERIODS

OUTCOMES:

 $\hfill\square$ ability to explain the differential principles applies to solve engineering problems dealing with

force, displacement, velocity and acceleration.

 \Box ability to analyse the forces in any structures.

□ ability to solve rigid body subjected to dynamic forces.

TEXT BOOKS:

1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and

Dynamics", 8th Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).

2. Vela Murali, "Engineering Mechanics", Oxford University Press (2010)

REFERENCES:

1. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition,

Pearson Education 2010.

2. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics – Statics and

Dynamics", 4th Edition, Pearson Education 2006.

3. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics - Volume 1, Dynamics- Volume

2", Third Edition, John Wiley & Sons, 1993.

4. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics",

3rd Edition, Vikas Publishing House Pvt. Ltd., 2005.

5. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International

(P) Limited Publishers, 1998.

6. Kumar, K.L., "Engineering Mechanics", 3rd Revised Edition, Tata McGraw-Hill Publishing

company, New Delhi 2008.

JEPPIAAR ENGINEERING COLLEGE

Jeppiaar Nagar, Rajiv Gandhi Salai – 600 119 DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK SUBJECT : GE8292 ENGINEERING MECHANICS

YEAR /SEM: I /II

UNIT I

BASICS AND STATICS OF PARTICLES

12

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces — Vectorial representation of forces – Vector operations of forces - additions,

subtraction, dot product, cross product – Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility .

	PART – A				
CO Maj	CO Mapping : C205.1				
Q. No	Questions	BT Level	Competence	РО	
1	Define scalar and vector quantities? (AUJUN'10,DEC'10,DEC'12)	BTL-1	Remembering	PO1,PO2	
2	Define parallelogram law of forces. What is the use of this law? (AU JUN'12,DEC'11	BTL-2	Understanding		
3	What is resolution of a force? (AUJUN'09)	BTL-1	Remembering	PO1,PO2	
4	State triangle law of forces.AUJUN'12,DEC 10	BTL-2	Understanding	PO1,PO2	
5	Define coplanar and non coplanar forces.AUDEC'09,JUN	BTL-1	Remembering	PO1	
6	Define collinear and concurrent forces.AU MAY'11	BTL-1	Remembering	PO2,PO3	
7	State Lame's theorem.AU MAY'11	BTL-2	Understanding	PO1, PO2,PO3	
8	Write the conditions for equilibrium for a particle in space.AU DEC'11	BTL-1	Remembering	PO1, PO2,PO3	
9	What is principle of transmissibility of forces?AUJUN'09, DEC'11	BTL-1	Remembering	PO1,PO2	
10	What is cross product of two vectors? DEC 10	BTL-1	Remembering	PO1,PO3,PO4	
11	Sate the principle of transmissibility (apr./may2017)	BTL-2	Understanding	PO1,PO2,PO4	
12	Find the resultant and direaction of Force F=3i-4j (apr./may2017)	BTL-5	Evaluating	PO1,PO2	
13	State the principle of transmissibility.	BTL-2	Understanding	PO1,PO2	
14	Find the resultant and direaction of force F=3i-4j	BTL-1	Remembering	PO1,PO2	
15	Two forces 30N and 40N act at a point 'o'. The include angle between them is 60 deg Find the magnitude and the direaction of the resultant.	BTL-5	Understanding	PO1,PO2	
16	What are the minimum requirement for eaquibrium of a particle in space?	BTL-1	Remembering	PO1,PO3,PO4	
17	Find the length of the line joning the origin with the point(2,1,-2)	BTL-4	Analyzing	PO1,PO2,PO4	
18	State triangle law of forces.	BTL-2	Understanding	PO1,PO2	
19	A vector F strts at point(2,-1,2) and passes through the point (-1,3,5). Find its unitvectors.	BTL-4	Understanding	PO1,PO2	
20	State the principle of transmissibility.	BTL-6	Analyzing	PO1,PO2	
	PART – H	3			
1	The four coplanar forces are acting at a point as shown in fig. Determine the resultant in magnitude and direction.AU JUN'10,	BTL-1	Remembering	PO1,PO2,PO3	

	(F2) ISSN A 14 X' 3° (F3) 252N 9° (F3) 228N (F4) 228N Y'			
2	The resultant of four forces which are acting at w is along Y axis. and F4 are 10kN, The angles made 30°, 90° and 120° ide and direction t is 72kN.AU	BTL-5	Evaluating	PO1,PO2,PO3
3	Two identical rollers each of weight 1000N are supported by an inclined plane and a vertical wall as shown in fig below. Find the support reactions at points A,B&C. assume all surfaces to be smooth.AU MAY'11,JUN'12	BTL-5	Analyzing	PO1,PO2,PO3, PO5, PO6,PO9, PO12,

	CI I OCON I OCON			
4	For the tripod shown in figure below, the end points are in ZX plane. A body of weight 5000N is suspended from point P. find the force in each leg.AUMAY'11,JUN'12	BTL-5	Evaluating	PO1,PO2,PO3, PO4
5	A Force F with a magnitude of 100 N is applied at the orgin 'O' of the axes x-y-z as shown in Fig. The line of action of F passes through a point A whose co-ordinates are 3m, 4m and 5m. Determine (i) the x,y,z scalar components of F (ii) the projection of F _{xy} on F on the x-y planes (iii) the projections of F along the line OB. (Anna University, Jan 2003)	BTL-5	Evaluating	PO1,PO2,PO3, PO4

6	ABCDE is a light string whose end A is fixed. the weights W1 and W2 are attached to the string at B and C and the string passes round a small smooth wheel at D carrying a weight 40 KN at the free end E. in the position of equilibrium, BC is horizontal and AB and CD makes angle 150° and 120° with horizontal. Find (i) the tension in the string AB, BC, CD and DE. (ii) Magnitude of W1 and W2.	BTL-4	Analyzing			
U	UNIT II EQUILIBRIUM OF RIGID BODIES 12					
Free t Mome repres theore Equili	ents and Couples – Moment of a force about a sentation of moments and couples – Scalar co em – Single equivalent force -Equilibrium of ibrium of Rigid bodies in three dimensions	d reaction f a point and mponents o Rigid bodie	orces –stable equ about an axis – V f a moment – Va s in two dimensi	/ectorial /ectorial urignon's ons –		
2015	PART – A	A				
<u>CO Ma</u>	pping : C205.2			DO		
Q .No	Questions	BT Level	Competence	PO		
1	What is a rigid body?AU Dec'09,Jun'10	BTL-1	Remembering	PO2,PO3		
2	What is a free body diagram?AU JUN'09,DEC'09, MAY'11,DEC'12	BTL-1	Remembering	PO1, PO2,PO3		
3	List some types of supportsAU JUN'09,Dec'11	BTL-1	Remembering	PO1, PO2,PO3		
4	List some types of loads.AU Dec'10,JUN'12	BTL-1	Remembering	PO1,PO2		
5	List some types of beams based on supports.AU MAY'11	BTL-1	Remembering	PO1,PO3,PO4		
6	What is a couple?AU JUN'10.	BTL-1	Remembering	PO1,PO2,PO4		
7	What is a resultant force?AUJun'10,DEC'12	BTL-1	Remembering	PO1,PO2		
8	What is equilibriant force? DEC'09	BTL-1	Remembering	PO1,PO2		
9	Replace the force 50N acting in positive Y	BTL-4	Analyzing	PO1,PO2		

	direction on the origin about the point (5,0) by a force and moment_DEC'12			
	by a force and moment. DEC 12			
10	Write the conditions for equilibrium for a rigid body in space. JUN'09	BTL-1	Remembering	PO1,PO4
11	State varignon's theorem. Nov/Dec 2012	BTL-2	Understanding	PO1,PO2
12	Different between moment and couple.	BTL-4	Analyzing	PO1,PO4
13	A uniform ladder of weight W leans against a vertical wall. Assuming the contact surfaces as rough, draw the body diagram of the ladder with necessary assumptions.	BTL-4	Evaluating	PO1,PO2,PO4
14	How free body diagram is construction?	BTL-1	Remembering	PO1
15	State varigon's theorem.	BTL-2	Understanding	PO1
16	List the different supports used to support structures component	BTL-2	Understanding	PO1
17	Find the magnitude and location of the single equivalent force for a beam AB of length 8m having C at 3m from A sbject to the following forces.	BTL-1	Remembering	PO1
18	Two forces of 400N and -600N act at an angle 60 deg., to each other. Dtermine the resultant in magnitude and direaction.	BTL-1	Understanding	PO1,PO4
19	State parallel axis theorem.	BTL-2	Understanding	PO1,PO2
20	What the equations of equilibrium of a rigid body in two dimensions.	BTL-1	Remembering	PO1,PO2
PART – B & C				

5 30tw 5 30tw 6 10tw 7 10tw 7 10tw 8 BTL-1 8 PO1, PO4	4	Four tug boats are used to bring an ocean liner to its pier. Each tugboat exerts a 5000 – N forces in the direction shown. Determine (a) the equivalent force – couple system at the foremast O, (b) the point on the hull where a single, more powerful tugboat should push to produce the same effect as the original four tugboats.(June 2010)	BTL-3	Evaluating	PO1,PO2,
	5	and D are hinged supports. B and C are roller supports.	BTL-1	Remembering	PO1, PO4

UNIT III PROPERTIES OF SURFACES AND SOLIDS

Centroids and centre of mass– Centroids of lines and areas - Rectangular, circular, triangular areas by integration – T section, I section, - Angle section, Hollow section by using standard formula – 28 Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem –Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia for prismatic, cylindrical and spherical solids from first principle – Relation to area moments of inertia.

	PART – A			
CO M	apping : C205.3			
Q.No	Questions	BT Level	Competence	РО
1	What is centre of gravity?AU DEC'09 ,DEC'12	BTL-1	Remembering	PO1
2	What is centroid?AU DEC'09,DEC'10,JUN'12	BTL-1	Remembering	PO1
3	Write the formula for finding the centroid of a compound area about X and Y axes.AUDEC'11	BTL-1	Remembering	PO1
4	What is moment of inertia of an area?AU JUN'09,DEC'10,JUN'12	BTL-1	Remembering	PO1
5	Write the formula for finding moment of inertia about X and Y axis.AU JUN'10	BTL-1	Remembering	PO1,PO4
6	What is parallel axes theorem for moment of inertia?AU MAY'11	BTL-1	Remembering	PO1
7	What is perpendicular axes theorem for moment of inertia?AU MAY'11,DEC'12	BTL-1	Remembering	PO1
8	What is product of inertia?AU JUN'10,DEC'11	BTL-1	Remembering	PO1,PO2
9	What is principal moment of inertia?AU JUN'09	BTL-1	Remembering	PO1,PO4
10	What is mass moment of inertia?DEC 12	BTL-1	Remembering	PO1,PO2
11	Determine the centroid of the rectangle lamina 55 mm × 25 mm.	BTL-5	Evaluating	PO1
12	Define Radius of Gyration. Apr/May 2015.	BTL-1	Remembering	PO1,PO2
13	When the equation of equilibrium of a rigid body in two dimensions.	BTL-3	Evaluating	PO1,PO2
14	When will the centroid and center of mass coincides?	BTL-5	Evaluating	PO1,PO2
15	Differentiate between center of gravity and centroid.	BTL-4	Analyzing	PO1
16	State parallel axis theorem as applied to area moment of Inertia.	BTL-2	Understanding	PO1
17	State pappus-guldinus theorem.	BTL-2	Analyzing	PO1,PO2,PO4

18	When will the product of inertia oa an area become Zero?	BTL-1	Remembering	PO1
19	A right angled traiangle of base 3m and height 4m is revolved edge. Compute the volume of the solid generated.	BTL-2	Understanding	PO1
20	Write an expression for the redius of gyration of an area.	BTL-1	Remembering	PO1,PO2
	PART – B	& C		
1	Determine the position of the centroid for the section with respect to the axes shown in fig. AU JUN'10,DEC 12	BTL-4	Analyzing	PO1,PO2,PO4
2	Locate the centroid of the plane area shown in figAU JUN'12	BTL-2	Understanding	PO1,PO2, PO3,PO4
3	Calculate the centroidal moment of inertia of the shaded area shown in figureAU DEC'10,JUN'12	BTL-5	Evaluating	PO1,PO2,PO3

4	Find the product of inertia about OX and OY axes of the trapezium shown in figure.AUDEC'12, JUN'10	BTL-5	Evaluating	PO1,PO2, PO3
5	Evaluate the moment of inertia of unequal Z section as shown in fig about the centroidalaxes .also find the product moment of inertia and principal moment of inertia at the centroid of section.AU DEC'11,DEC'12	BTL-5	Evaluating	PO1,PO2, PO3,PO4

UNIT IV

of elastic bodies.

DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion -Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact

	$\mathbf{P}\mathbf{A}\mathbf{P}\mathbf{T} = \mathbf{A}$			
CO Ma	pping : C205.4	1		
Q. No	Questions	BT Level	Competence	РО
1	What is kinematics?AU,Dec'09	BTL-1	Remembering	PO1,PO2
2	Write down the equations of motion of a body.AU,Jun'09	BTL-1	Remembering	PO1,PO2
3	List the types of motion.AU,Jun'10,Jun'12	BTL-1	Remembering	PO1
4	Define rectilinear, curvilinear motion.AU,Apr'11,DEC	BTL-4	Analyzing	PO1,PO2
5	What is relative motion? and how is position of a body expressed in relation with other body. AU,Dec'09	BTL-1	Remembering	PO1
6	A body a moves with a constant velocity of 5m/s along positive x axis and body B moves along positive Y axis with a constant velocity of 3m/s. Determine the relative velocity of A with respect to B. AU,Jun'10, Jun'12	BTL-5	Remembering	PO1,PO2
7	State Newton's second law of motion.(De Alembert's principle)AU,Dec'11	BTL-2	Understanding	PO1
8	Define projectile. Apr/ May 2015.	BTL-1	Analyzing	PO1
9	Define impulse & momentum.	BTL-1	Evaluating	PO1,PO2
10	Define co-efficient of restitution. May/June 2012.	BTL-1	Remembering	PO1,PO2
11	State law of conservation of momentum.	BTL-2	Understanding	PO1,PO4
12	A particle moves along X axis and its position is expressed as $x=3.5t^3-7t^2$ where x is in meters and t is in seconds. Determine	BTL-3	Remembering	PO1,PO2
13	A train running at 80km/h is brought to a standing halt after 50 seconds. Find the retardation.	BTL-5	Remembering	PO1
14	What is dynamics equilibrium?	BTL-1	Remembering	PO1
15	A particle is projected into space at an angle of 30 degree to the horizontal at a velocity of 40m/s. Find the max. height reached by the projectile.	BTL-5	Analyzing	PO1,PO3

16	Distinguish between perfectly plastic impact and perfectly elastic impact.	BTL-4	Analyzing	PO1		
17	Define Work Energy Principle.	BTL-1	Remembering	PO1.PO3		
18	A motorist is travelling at 90kmph, when he observes a traffic light 250m ahead turns red. The traffic light is timed to stay red for 12 sec. If the motorist wishes to pass the light without stopping, just as it turns green, Determine (a) The required uniform deceleration of the motor and (b) The speed of the motor as it passes the traffic light.	BTL-5	Analyzing	PO1,PO3		
19	Define Newton's law of motion.	BTL-4	Analyzing	PO1		
20	Give the equation of work energy for a rectilinear motion.	BTL-2	Analyzing	PO1		
	PART – B & C The acceleration of a particle moving along a straight line is defined by a=8-x; The particle					
1	Determine (a) Velocity of the particle when x=10m (b) The position of particle when velocity becomes zero. (c) Velocity of a particle when acceleration becomes zero.AU,Dec'10,Jun'12OperationTime (min) Labour cost/hr (Rs.)	BTL-4	Analyzing	PO1,PO2,		
	Moulding and pouring 15 20 60 Shot blasting 5 10 40 Fettling 6 10 40			103		
2	A stone is thrown up vertically from the foot of a tower of height 22m with a velocity of 12m/s. St the same time, another stone is dropped from the top of the tower. Find the height at which the two stones cross each other.	BTL-5	Evaluating	PO1,PO2		

	22m			
3	From the top of a 60m tower, a bullet os fired at an angle of 60° with the horizontal, with a velocity of 120m/s. Calculate the maximum height attained by the bullet and the time of its travel when it strikes the ground.AU,Apr'11	BTL-5	Evaluating	PO1,PO2, PO4
4	Two blocks A and b of masses 3 and 6kg respectively are placed one above the other on a horizontal table and connected to a suspended mass M through a frictionless pulley as shown in fig. The coefficient of static friction between A and B is 0.3 and the coefficient of kinetic friction between block B and table is 0.2. Find the maximum mass of the block M in order that b accelerates over the table without A slipping over B.AU,Apr'11,Dec'12	BTL-5	Evaluating	PO1,PO2, PO3,PO4

5	A block of mass 60 Kg moving down a 35° inclined plane from rest. After moving 1.3m, the block strikes a spring whose modulus is 20N/mm. Determine (i) Maximum deformation of the spring (ii) Maximum velocity of the block. Take μ as 0.15.	BTL-5	Evaluating	PO1,PO2
6	Direct central impact occurs between 300 N body moving to the right with the velocity of 6 m/s and 150 N body moving to the left with the velocity of 10 m/s. Find the velocity of each body after impact if the coefficient of restitution is 0.8. (AU – May/June 2010)	BTL-4	Analyzing	PO1,PO2, PO3

UNIT V FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS 12

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

PART – A					
CO Mapping : C205.5					
Q.No	Questions	BT Level	Competence	РО	
1	Statethelawsofdry(coloumb)friction.(AU,Jun' 10)	BTL-5	Remembering	PO1	
2	Definecoefficientof kineticfriction.(AU,Jun'09,Dec12)	BTL-1	Understanding	PO1,PO2	
3	What iscoloumbfriction?(AU,Jun'09)	BTL-1	Remembering	PO1,PO3	
4	Define:coefficient ofstaticfriction.(AU,Dec'10,Apr'11)	BTL-1	Remembering	PO1	
5	List out the different types of friction. Whatiscoefficientofstaticfriction?(AU,Dec'09)	BTL-2	Understanding	PO1	
6	When dowe saythat themotionofabodyisimpending?(AU,Dec'11,D ec'12,Jun'12)	BTL-1	Remembering	PO1	
7	What isgeneralplane motion? (AU,Jun'10,Apr'11)	BTL-1	Analyzing	PO1,PO2	
8	Arigidbodyisacteduponbyaforceof100N,thevel ocityofbodychangesfrom15m/sto25m /sduringaperiodof50s.Findthemassofbodyandt hedistancemovedbythebody during thetime ofinterval.(AU,Dec'09)	BTL-2	Understanding	PO1,PO12	
9	Arigidbodyrotatesaboutafixedaxis.Writethe expressionforangularvelocitywhe nthe rotationisuniformlyaccelerated.(AU, Dec'11)	BTL-2	Understanding	PO1,PO12	
10	Define angle of repose. Apr/May 2015	BTL-1	Understanding	PO12	
11	Explain the rolling resistance.	BTL-1	Understanding	PO1	

12	Define limiting friction	BTL-2	Understanding	PO1,PO3
13	Define instantaneous center of roation.	BTL-2	Understanding	PO1
14	What is dry friction?	BTL-2	Understanding	PO1
15	What is general plane motion? Give one example.	BTL-1	Remembering	PO1
16	What is angle of repose?	BTL-1	Remembering	PO1
17	A motor bike wheel of radius 80cm is moving along a straight road with a speed of 60 km/hr. Find the angular speed of the wheel.	BTL-4	Analyzing	PO1
18	What is angle of repose?	BTL-1	Remembering	PO1
19	A wheel of radius 50cm subject to a load of 300N rolls on a level ground at constant speed. If the wheel is pushed by a tractive force of 60N applied horizontally of rolling resistance.			
	PART –	B		
	A force of 300 N is required just to move a block up a plane inclined at 20° to the horizontal, the force being applied parallel to the plane of figure 15 (a). If the inclination of the plane is increased to 25°, the force required just to move the block up is 340 N, (the force is acting parallel to the plane). Determine the weight of the block and the coefficient of friction.	BTL-4	Analyzing	PO1,PO3
2	A 8m long ladder rests against a vertical wall making an angle of 50° with the wall and resting on a floor, If a boy, whose weight is	BTL-5	Evaluating	PO1,PO2,PO3

	distance along the ladder will he be, when the ladder is about to slip? The coefficient of friction between the ladder and the wall is 1/3 and that between the ladder and the floor is 1/2. (Nov/Dec 2012)			
3	A pull of 250 N inclined at 30° to the horizontal plane is required just to move a body kept on a rough horizontal plane. But the push required just to move the body is 300 N. If the push is inclined at 30° to the horizontal, find the weight of the body and the coefficient of friction. (May/June 2009 – AU)			
	Tranking to morror. Fi=HRN RN	BTL-2	Understanding	PO1,PO3,PO12
4	A block of weight 1290 N rests on a horizontal surface and supports another block of weight 570 N on top of it as shown in fig. Find the force P applied to the lower block that will be necessary to cause slipping to impend. Coefficient of friction between block (1) and (2) is 0.25 and Coefficient of friction between	BTL-2	Understanding	PO1,PO3,PO12

	block (1) and			
5	Twomassesof30kgand10kgaretiedtothetwoend			
	sofalightstringpassingovera			
	compositepulleyofradiusofgyrationas70mman			
	dmass4kgasshowninFigure below.Find the			
	pulls inthe two parts of the stringand the			
	angularacceleration of thepulley.			
	100mm Dammer, A 10kg Damer, John Jacomer, Jacomer, Jacomer, Jacomer, Jacomer, Jacomer, Jacomer, Jacomer, Jacomer,	BTL-6	Creating	PO1,PO2, PO3,PO12